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Electron transmission in the two-, three-, and four-terminal nanostructures is considered
‘under the influence of a radiation field. The frequency of the radiation field is tuned to the
transition between the energy of a bound state and the Fermi energy of the incident electrons.
The radiation induced resonant peaks and dips of the electron transport are exhibited for zero and
low magnetic fields. It is shown tHat rotation of the radiation field polarization can effectively
control the electron transport into different electrodes attached to the structures because of the
symmetry of the structures. The resonant anomalies of the Hall resistance are found in a weak
magngtic field.

1. INTRODUCTION

For several decades the transport of electrons in structures of low dimensionality and
complicated geometry has been the focus of extensive theoretical and experimental study.
Electrons can be confined to very narrow regions fabricated on an interface of an AlGaAs/GaAs
‘heterostructure.  Since the electrons in such regions can have high mobilities in the two
dimensions available to them, such systems are called two-dimensional electron gases (2DEGs).
The study of electronic transport properties of 2DEGs is of great current interest not only
from the standpoint of the basic quantum effects involved but also for potential engineering
applications. An idealized sample becomes an electron waveguide, wherein the quantum
transport properties are solely determined by the geometry of the structure and the wavelike
nature of the electrons. A remarkable manifestation of the successful achievement of quantum
ballistic transport through a semiconductor nanostructure is the appearance of quantized steps
on the conductance through a narrow structure as the number of one-dimensional channels is
successively varied [1, 2], the quenching of the Hall effect, and the last plateau and the negative
bend resistance in the cross geometry [3-5].

Ford et al. [S5] presented a systematic investigation of the influence of cross geometry
on the Hall effect. They fabricated various differently shaped cross sections based on GaAs-
Al,Ga;_,As, which demonstrated that near zero magnetic field the Hall resistance can be
quenched, enhanced over its classical value, or even negative. This effect has been considered
in detail theoretically by Schult et al. [6] and Amemiya and Kawamura [7]. Another interesting
feature of the cross geometries is a bound state found numerically by Schult et al. {8] and by
Peeters [9].
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Fig. 1. The types of structures considered: L-structure (a), the T-structure (b), and
X -structure (c)

The question of the existence of electromagnetic modes trapped by special geometries has
been a classic one in the theory of waveguides [10]. It has been realized that the introduction of
bends into waveguides generally leads to bound states, or localized modes, which exist below the
cut-off frequency for the waveguide. Carini et al. [11, 12] have demonstrated theoretically and
experimentally the presence of bound T'F modes for rectangular bent waveguides and shown
that the number of bound T'E modes is bend-dependent. For the two-dimensional Schrodinger
equation it was proved that any curved two-dimensional waveguide of constant width and infinite
length posses bound states [13-18]. Bound states were found in the same year (1989) in a
four-terminal junction of narrow wires by Schult [6, 8] and independently by Peeters [9] (see
also [19,20]). :

For the stationary processes of the energy conservated electron transmission only quasi-bo-
und states with energies within the conduction subbands are important [6,7]. In particular,
it was shown that the quasi-bound states in the Hall junction result in reésonant dips of the
resistance in high magnetic fields when the magnetic length is comparable with the size of the
junction. The Hall resistance sensitively depends on the geometry of a junction and can become
negative for a smoothed junction for small magnetic .fields.

Although the bound states below the lowest subband threshold do not participate in
stationary transmission, the possibility of observing of them, at least in principle, was shown by
Berggren and Ji for the case of two intersecting electron waveguides with finite electrodes [20].
In that case bound states can be probed by resonant tunneling through the electrodes below
the subband. However, it is possible to mix the bound state with electron transmission through
electron waveguides with infinite electrodes directly by application of a radiation field, provided
that the dipole matrix elements between the bound state and propagating ones are not equal

“to zero. Such a possibility was demonstrated for the four-terminal’s Hall junction [21]. Let
E, be the energy of the bound state below the subbands which for zero magnetic field can be
specified as , '

E.(k) = Ty (¥ + 7*n?),

where d is the width of the electrodes, n is the number of the subband, and k is the wave number
of the incident electron. Tuning a perturbation frequency near the resonance hw = E,, (k) — Ey,
one can expect resonant anomalies in the electron transmission through the many-terminal

junctions [21]. ' , .

The aim of the present article is to consider the electron transmission effected by mixing of
bound states with the propagating solutions in the X -, T-, and L-types of electron waveguides
which are shown in Fig. 1. '
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2. CONDUCTANCE ANOMALIES INDUCED BY THE RADIATION FIELD

2.1. Numerical method

In this section we consider single electron transmission through the rectangular structures,
the geometries of which are shown in Fig. 1 and specified below as L-, T-, and X -structures.
They share the property of having at least one bound state. The Schrodinger equation for an
electron of a mass m* subjected to a magnetic field B applied normal to the junction and to
a radiation field A,(¢) directed in the plane of the junction can be written

Y.ty _- A
ot 2m*
Here we use the gauge Ay(r) = (—By, 0,0). The radiation field is considered in the long-

wavelength approximation, in which the wavelength of the radiation field is much greater than
the size of the junction. We use the following dimensionless transformations:

e 2
ih (iV + 2 (Au(n) + A, cosaut)) W(r, 1). (1)
he

ht P T = 2m*d’E w 2m*d*w a= 2rdA, _ 27d’B
—_ — — = = —— — = — = —

@’ k e R $% T T4
where ¢y = ch/e is the magnetic flux quantum. In terms of the dimensionless variables (2)
the Schrodinger equation (1) takes the form

IY(r, t)
ot

where ay(r) = (—yy,0,0). We map this equation onto a square lattice with elementary unit
w. The lattice site is specified as (m,l). The total vector potential ag + acoswt is accounted
for by a Peierls phase factor [22]. Then Eq. (3) transforms as follows:

2 2P D)
ot

t

(2)

= (V + (ag(r) + acoswt) 9(r, 8), 3)

i

= 4yp(m, 1) — exp(y)P(m + 1,1) — exp(—iyD)p(m — 1,1) —
— exp(—iacoswt)y(m,l + 1) — exp(ia coswt)p(m,l — 1), 4)

where 4 = yw?, @ = aw. In the four-terminal junction we use also a different gauge ay(r) =
~ = (0,~z,0) for which the Schrodinger equation (3) will map onto a square lattice as follows:

2 0P(m, 1)
T

o = dgh(m, 1) — P(m + 1,1) — P(m — 1,1) —

— exp(—ia coswt — iym)P(m, 1 + 1) — exp(ia coswt + iym)yp(m,l — 1), (5)

where ¢Y(m,l) = exp(—i'?ml)'t[;(m, ). Because of the processes of absorption and emission of
photons, we write the wave function in the electrodes [23,24]

B(r,1) =) exp[—i(e + nw)t] P (r). (6)

Substitution of (6) into (4) gives

w(e + nwYpn(m, 1) = 4n(m, 1) — exp(Eilypn(m + 1,1) — exp(—idlypn(m — 1,1) -
=Y Tasths(m,l— 1) = Y " Thps(m, 1+ 1), (7)
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where
Fns = "7 " Js_n(a).
Here we used the standard expansion of an exponential in Bessel functions [25]

exp(ia coswt) = Z 1™ J (@) exp(imwt). ’ ‘(8)

Let us introduce colomn vectors for each site of the square lattice descn'bing the amplitudes

of the wave function (6) 7
‘P(m’ l) = COI("', wl(my l)y TIJO(mv l)a w—l(m’ l)1 )

Then Eq. (7) takes more compact form

(wle + Q¥ = 4¥(m, ) — exb(i’yl)\l’(m +1,1) — exp(—iy)¥(m - 1,1) —
-TI¥(m,l — 1) = T*¥Y(m,l + 1), 9)
where we have introduced two matrices Q = diag(w?nw) and I' = {I',,,}. Following Ando [26]

we take the electrodes /, 4 (Fig. 1¢) to be infinitely long in the x direction and consisting of
M lattice sites in the y direction. We introduce a generalized vector

C'm = COI(“P(”TL, M)7 \P(ma M - 1)’ T ,‘{‘(m, 1))'

The dimension of this vector is M x L where L is the dimension of the vector ¥(m,!). In
computer simulations the dimension L, which is the number of amplitudes of the wave function
(6), was taken to be a finite number chosen by numerical accuracy [27]. We also introduce a
diagonal matrix

Py = &y exp(—i7l),

the unit matrices I, of dimension M x M and I of dimension L x L, and the up-diagonal
matrix

(== B e
SO =
[ )
—_—o O

of dimension M x M.
Then Eq. (9) takes the form presented by Ando [26]

(W’ = H))Com + PiCmy + P{Cms1 =0, - (10)
where

Hy=4L, QI - DT -D*'@Tr- 9 Q,

P” =P®I.
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To obtain the linearly independent modes of Eq. (10) we set [26]

Cm = A" Cy,

C\ _ ( PyHy—wi) —P}\ [ C,
’\(co) ( L WAL (11)

In order to find similar modes in the perpendicular electrodes (2, 3 in Fig. 1c) we write
the Schrodinger equation (5) as follows:

‘which gives

| (w’e + Q¥(m,1) =

= 4¥(m, l)—exp(—iAm)*¥(m, I+1)—exp(iym)I¥(m, | - 1) =¥ (m+1, ) —=¥(m—1,1). (12)

Introducing again the column vector C‘, which describes the amplitudes of the [-th line along
the z-direction, we obtain from Eq. (12)

(w’e = H)Cy + PLCi_y + P Cii = 0, (13)
where .

Hy=4L,I-DQI-D'®I-1,9Q,

PJ_=P*®I‘.

Using the relation C‘, = /\’C'O we obtain from (13) the linearly independent solutions in the

electrodes 2, 3.
e} Py (Hy — w%) —P? ) (éx )
2 = I 14
A ( Cy ) ( 1 0 Co (14

From the Schrddinger equations (4) and (5) the following continuity equatlon for the probablhty
density follows:

) .
w* 9p (z) () (¥) ()
5 3 dmit = Imeit T Imt = Jma- (15)

where jm, = (Jf:),, jff{?l) is the probability current density. In particular, for the gauge

a9 = (—~y,0,0) in the electrodes I, 4 we have

Jf:)z = Im {exp(i3)Y], 1 ¥me14}

(16)
§&, = Im {exp(—ia coswt):p:‘n,,d)m,m} .
For the gauge ag = (0,~z,0) in the electrodes 2, 3 we have
.7::)1 =Im {1/)m Pm1 l}
17)

Jomt = Im {exp( iacoswt — z'ym)d)m ﬂﬁm 1+1}
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From these expressions for the probability current density it is easy to find the stationary
current carryed by the propagating mode with |A| =1lin the x direction through the section
m in the electrodes 1, 4: , /

J@ = Im(\(Cy| P} |Co)). o (18)
As with the mode propagating in the y direction in the electrodes 2, 3 we have
J¥ = Im(\(Co| P |Co)). (19)

Now let us consider the scattering region (Fig. 2) connected to four electrodes. Following
Ando [26] we define

U(£) = (u (%), u(F), - - -upp(F)),

A(E) = diag(Ai(£), Aa(F), - - - AL (F)).

Here u;(+) are the solutions of Eq. (11) which correspond to the eigenvalue \;(+). The signs
«» refer to the propagating and evanescent modes in the positive (negative) x direction in the
electrodes 1, 4. Similar matrices U, A can be defined for the electrodes 2, 3.

For the modes which are superpositions only of the «+» type (or of the «—» type) we can
_ write simple recurrence formulas [26]

with
F(%) = U@R)AGR)U ().

The same formulas take place for the electrodes 2, 3. These relations will be explored to define
boundary conditions in the scattering region.

Next, we consider the solutions inside the scattering region which are shown in Fig. 2. At
the boundary 7 there is the incident mode C;(+), and at the boundaries 2, 3, 4 there are only
outgoing modes. Introduce vertical vectors C|, C3, ..., Cpr+2 Which describe the amplitudes of
the wave function on a square lattice in the scattering region along the y direction as shown
in Fig. 2, and a pair of horizontal vectors @Q,,, Q4 Which describe the amplitudes at the upper
and down boundaries of the scattering region. The aim is to write closed equations for these
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vectors using the boundary conditions. The boundary conditions are that the wave is incident
only through the left boundary 7 and is given as C\(+), and the other waves exit through all
boundaries. Within the scattering region the equation for the amplitudes takes

(w? — Hp)Cp, + PiCrr1 + P|Tcm+1 =0, (20)

where m =2,3,...,. M + 1.

In addition we consider the analogous equations at every boundary. - At the boundary /
we represent the vertical vector C; at site 1 as a superposition of the incident and reflected
solutions:

Ci=Ci(+) + Ci(-).

The vector C, belonging to the electrode I can be expressed as
Co=F'(H)Ci1(+) + FH(=)Ci(=) = F7'(=)C1 + (F~'(+) = F~'(-))C1(+).

Hence the solutions at the right edge of the electrode [ are expressed in terms of the solutions
at sites of the boundary of the scattering region and incident wave. As a result the equation
for the amplitudes at the first vertical sites of the scattering region has the form

(we — H)C + PiCy = —~B|[F~'(+) - FT'(-)]Ci(+),
Hi=Ho— PF7\(-).
At the boundary 4 we can write similar equations
(’wzf —H)Cp+at+ P]]CM+1 =0,
d _ H,=H, - PITF(+)'

Since at the boundaries 2, 3 we have different gauges, we mtroduce two additional matrices
which transform the primary gauge of the wave function:

E,, = diag (exp(Gym(M +1)/2)) ® I

E,, = diag (exp(i3m(M — 1)/2)) ® I.

If we take into account these gauge transformations, the equation for the vector @), at the
boundary 3 can be written

(wzf - H3)E‘u.lQu + P_I_EuZQuu = 01

Hy = Hy — PLF(+).
At the boundary 2
(wle — H))E}Qq + PYE},Qua =0,

Hz = I?[() - PJ_F_I(—).
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Fig. 3. The energy dependence of the transmission il the L-structure under the influence of the
radiation field: a — stationary transmission a = 0 for zero magnetic field; & — the frequency of
a radiation field is resonant with transitions between the edges of the first subband and the second
one w = 29.6, a = 0.1, v = 0. The solid line represents the case in which the polarization of the
radiation field is perpendicular to the input electrode, the dashed line shows the case, in which
the polarization is parallel to the input electrode. ¢ — The frequency of the radiation field is
tuned to transitions between the bound state and the first subband w = 10.82, v = 0. The curve
1 corresponds to a = 0.2, the curve 2 to a = 0.5. The dashed line shows the steady case. d —
Similar resonant dips with applied magnetic field produced by the radiation field: w = 10.82,
a = 0.5. The curves I, 2, and 3 correspond to v = 0,2, 4 respectively

Here Q..., Q44 denote the horisontal vectors adjacent to the vectors Q,,, @4 as shown in Fig. 2.

By means of these relations it is easy to write the _Schrédipger equation for the
amplitudes at the sites of the scattering region in closed form as KX = Y where X =
= col(Cy, Cy, ..., Cp+2, Qu, Q4) with the known matrix K and vector Y. Numerical solution
of this equation gives the solution inside the scattering region, at its boundary, and thereby
at each electrode. For the simpler, L- and T-structures shown in Fig. 1a, b the solutions are
easily obtained if we set the solutions in the excluded electrodes equal to zero.

In conclusion we comment on the choice of the matrix I' defined in (7). For an infinite
matrix I we have the unitary condition I'T* = 1. If we were to truncate directly the matrix I" in
the numerical calculations the unitary condition would be violated. In turn this would give rise
to breakdown of the probability current conservation and what is more crucial, to appearance
of undesirable exponentially growing and decaying propagating solutions with small exponents.
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In order to avoid this difficulty we introduce a new Hermitian matrix W which determines the
matrix T as follows

I =exp(iaW/2), . (21)
where
0100
1010
W=10101

Although in the computer simulations the matrix W is truncated to a finite dimension L, the
relation (21) preserves the unitarity of the matrix I'.

2.2. Numerical results

We begin by considering the simplest L-structure (Fig. 1a). It has only one bound state
with energy ¢; = 0.92917% [14]. A magnetic field slightly increases this value. Consider at first
the case when the frequency of the radiation field is tuned to transitions between the edges
of the second and first subbands, w = 372. When the polarization a of the radiation field is
perpendicular to the input electrode of the structure the dlpole matrix element mixing states
of the second and first subbands equals

(1lyl2) = / dyFi@ ) 70,

where fi(y) = V2sin(n(y — 1 /), faly) = V2 sin(27(y — 1/2)). If the polarization of the
radiation field is parallel to the input electrode the dipole matrix element (k|z|k') calculated
in terms of the incident modes exp(:kz) is less than (1|y|2) because of the oscillatory behavior of
the functions exp(:kz). Since the square of the dipole matrix element determines the radiation
field effect, the electron transmission strongly depends on the polarization of the field as is in
fact seen from Fig. 3b.

Second, consider the case when the frequency of the radiation field is resonant with
transitions between the bound state energy and the first subband. For zero magnetic field the
radiation field induces the deep narrow resonant dip shown in Fig. 3c. The width of the resonant
dip depends sensitively on the amplitude of the radiation field. Figure 3d shows the shift of the
resonant dip versus the applied magnetic field.

The structure intermediate between the L- and X -structure is the T-structure (Fig. 15).
Like the L-structure, it has only one bound state provided that the whole structure has the
same Width, but there are two ways to direct an incident electron: through the electrode I and
through the electrode 2. For the former case the transmissions T, and Ti3 coincide, provided
that v = 0. The polarization of a radiation field is chosen perpendicular to the input electrode -
along the y-axis (Fig. 15). Consider the dipole matrix element between the bound state and the
propagating one, (x1|y|%k,1), where x(z,y) denotes the bound state with the energy €; = 7.98
and ¥y 1(z, y) is the propagating state for the steady case describing an electron incident on
the first subband and the electrode 1. Since both states are even relative to inversion y — —y
around the symmetry line y = 0 (for v = 0), this dipele matrix element vanishes and the
radiation field produces no effect. In fact, our numerical calculations show that if the incident
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Fig. 4. Transmissions through the 7-structure. a — Electron incidents on the electrode I (see
Fig. 1b) and the first subband: w = 12, a = 0.2, v = 2. b — Electron incidents on the second
subband with parameters w = 41.86, a = 0.5, v = 0. ¢ — Electron incidents on the electrode 2, *
w=12,a =0.1, v = 0. d — The same as in Fig. 4c with parameters w = 12, a = 0.5, vy = 4

electron propagates in the first subband at zero magnetic field there are no resonant phenomena
resulting from the radiation field.

There are two ways to the dipole matrix element can be finite. The first one is to apply
an external magnetic field, and the second one is to consider electron transport in the second
subband. These possibilities are shown in Figs. 4a and . The steady transmissions through the
T -structure are shown by thin lines. One can see that a magnetic field makes the transmissions
T, and T3 nonequivalent. Application of the radiation field gives rise to resonant dips which
are very narrow, with widths proportional to the square of the amplitude of the radiation field.
In the vicinity of the resonance the transmission 73 exceeds the transmission 7', which gives
rise to the anomalous Hall effect. This effect was first demonstrated for the four-terminal
structure [21].

If an electron is incident on the second electrode, the dipole matrix element is not zero,
and we expect resonant behavior for the transmissions to both electrodes I and 3. However,
the radiation field produces a resonant dip only for the transmission 753 (Fig. 4c). The reason
for the absence of a resonant dip for the transmission. to the first electrode is related to the
more complicated symmetry and will be given below. Application of an external magnetic field
causes the resonant dips for all transmissions shown in Fig. 4d. Also because the bound state
energy level is increased by an external magnetic field, the location of the resonant dips is
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Fig. 5. Transmissions through the X -structure for zero magnetic field. In all pictures the electron
is incident on the.electrode 1. a — The frequency of the radiation field is tuned to transitions
between the energy of the first bound state and bottom of the first subband, w = 4. The case of the
polarization of the radiation field along the input electrode is shown by thick lines, and the case
of the polarization perpendicular to the input electrode is shown by thin lines. In both cases the
amplitude of the radiation field is a = 0.05. The electron is incident on the first subband (n = 1).
b — w = 38.45, a = 0.5, the electron is incident on the first subband. ¢ — The frequency is
tuned to transitions between the second bound state and the first subband, w = 16.715, a = 0.2.
d — As in Fig. 5b, but the electron is incident on the second subband (n = 2)

slightly shifted as is seen from Fig. 4c, d.

Consider the four-terminal junction (Fig. 1¢) which is an element of the Hall structu-
res [6,7,9, 19]. First, consider the radiation field effects for zero magnetic field, among which
the most interesting is the resonant control of the electron transmissions by rotation of the
radiation field polarization. As was mentioned for the T'-structure this effect has a purely
symmetric origin. However, the symmetry of the X -structure is higher than that of the T'-struc-
ture. Moreover, the X -structure has two bound states. The one with the energy ¢; = 6.55 below
the first subband is symmetrical relative to coordinate inversions x — —z or y — —y , and
the second with the energy ¢; = 36.72 below the second subband is antisymmetric. '

As was observed for the T'-structure, if the polarization of the radiation field is perpendicular
to the input electrode and the frequency of the field is tuned to the transition between the first
subband and the energy of the first symmetrical bound state, there are no field-induced resonant
effects in the transmissions. The reason is that the propagating state is even, ¥ 1(z,y) =
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= 9x,1(z,—y), and so we have {x1|y|¥k,1) = 0, which means that the transmissions exhibit
no resonant effect. On the other hand, there is no symmetry of the propagating state relative
to r — —z due to electrons incident on the first electrode along the z-axis. Therefore, for
the case of the polarization parallel to the input electrode I the dipole matrix element satisfies
(x11z|¥k,1) # 0. In fact, one can see from Fig. 5a a narrow resonant peak in the transmission
Ti4. However, as in the case of the T'-structure, surprisingly, there are no resonant effects for
the transmissions to the electrodes 2 and 3.
To understand this following [21] we perform the gauge transformation

(r, t) = exp(zar coswt)d(r, t),

and substitute it into Eq (3). As a result we obtain the following equation for the amplitudes
¢, (r) of expansion (6):

e+ nw)pn = GV + 2(1) ¢ + %w(al‘)(tﬁnﬂ — ¢n—1). (22)

Since we have assumed that the radiation field is resonant with transitions between the first
bound state and the propagating one, for small perturbations we can restrict ourselves to two
states ¢y and ¢_; in Eq. (22) satisfying the following equations:

Vigy + ey = 3 (b1, eD)

V2_; + (€ — w)p_y = %(ar)wo, (24)

where the functions ¢o(r) and ¢_,(r) correspond to the propagating and the bound states,
respectively. For the resonant case ¢ — w = ¢; we can write the truncated Green’s function
for the left side of Eq. (24)

x1(nx; )

€—€ —10 (25)

Gi(r,r,e) =
where § accounts for the finite width of the level because of coupling of the structure with
the electrodes and the mixing of propagating states with the bound state by the radiation ﬁeld
Then a solution of Eq. (24) can be expressed via the Green’s function (25) as follows:

60 = 5N [iwamertr. e

Substituting Eq. (23) and carrying out a similar procedure of expression in terms of the Green’s
function, we finally obtain

w dlo

Bo(r) = gun(0) + 2 [car oare@dr. @

4(e —
Here ¢on(r) is the solution for a switched off radiation field and
dw= [ xi@Yar)m O
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is the dipole matrix element bétween the bound state and the propagating one.

Similar to (26) and (27) we can write a solution of Eq. (24) for the case when the frequency
of the radiation field is resonant with transitions between the second bound state and the Fermi
energy of the incident electron € + w =~ ¢,

wzdzo
(e—etw

$0l®) = Gon(6) + 7 —5 | cer 0@, @8

%=/ﬁ®wmmwr

In order to analyze the transmission on the basis of Eq. (27) we need the following Symmétry
properties of the Green’s function in the X -structure:

G(xa y;‘z"a y’v 6) = G(_:E’ Y; —CU’,ZI', 6) = G(IL‘, _y;z'a _yla 6)- (29)

Now let us return to the transmission T3, (Fig.’ 1c) for the case when the radiation field
polarization is parallel to the input electrode (z-axis). From Egs. (27) and (29) we can see that
the last resonant term in (27) is odd relative to z — —z in the electrodes 2 and 3, provided
that the bound state x,(r) is even. Thus, the last term in (27) is not able to contribute to the
propagating mode in the electrodes 2, 3 because for the electron transport in the first subband
it should be even with respect x — —z. Next, since the last term in (27) is even with respect
y — —y, it contributes to the even transport mode ¢y in the electrodes I, 4. As we see from
Fig. 5a computer calculations completely confirm that conclusion. If the incident electron
belongs to the first subband with n = 1 (even state relative to y — —y), but the outgoing mode
can be represent as a superposition of states of the first and second subband (n = 1, 2), these
symmetry restrictions are removed for the polarization parallel to the input electrode. As a
result the radiation field induces resonant anomalies in the transmissions T}, T3 (see Fig. 5b).
Briefly, this symmetry rule can be formulated as follows. If the parity of the state excited by
the dipole transition (ar)y:(r) does not conflict with the parity of the outgoing modes, then
the transmission to the corresponding electrode can display resonant features, and vice versa.
Later we will demonstrate numerous examples of the application of this symmetry rule.

First, we apply the symmetry rule to the case of radiation field mixing of the second bound
state, which is odd relative to x'— —x or y — —y. For the radiation field polarization directed
parallel to the input electrode the dipole matrix element dyy vanishes, and consequently there are
no radiation field induced effects. In the opposite case, when the polarization is perpendicular to
the input electrode, the dipole matrix element is not equal to zero. However, the radiation field
contribution to the electrodes 2 and 3 described by the last term in Eq. (26) is odd, opposite to
the symmetry of the incident mode.  So the transmissions to the electrodes 2 and 3 coincide with
steady results, as shown in Fig. 5c. Finally, Fig. 5d shows the case when the incident electron
belongs to the second subband. In contrast to the case in Fig.. 55, the field-induced effects
take place when the polarization is perpendicular to the input electrode. Note that the same’
symmetry arguments explain the absence of radiation field effects in the electron transmission
from electrode 2 to electrode 7 shown in Fig. 4c for the T'-structure.

To confirm the approach using the quasi energy amplitudes (26) and (27) and to illustrate
symmetry rules, in Fig. 6 we present numerical solutions of the full Schrodinger equation (4).
In Fig. 64, b, ¢ the amplitudes 1), (r) with n = 0, 1, —1 respectively are shown for parameters
corresponding to the case shown in Fig. Sc. One can see that, in fact, only two amplitudes,
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Fig. 6. Views of the amplitudes 6f the quasienergy wave function € = 20.02, a = 0.2, w = 16.715. a —
[he(0)], & — |Phi(r)|, ¢ — |9 1(r)|, d — |3o(r) — 1hon (r)|. Definitions of the amplitudes are given in (6)

1o, ¥y, are important in the resonant case. Moreover, in agreement with Eq. (28) we see
that the amplitude 1, (r) exactly reproduces the second bound wave function x, and that the
next amplitude ¢ _, is negligible. Second, the difference between the radiation field perturbed
solution 1/, and the steady solution 1, is shown in Fig. 6d. One can see that symmetry of
the outgoing part of this difference in the electrodes coincides with that predicted by the last
term in Eq. (28). The parity is even in the electrodes 7 and 4 and is odd in the electrodes 2
and 3. Also we can see from Fig. 6d that the odd contributions are decaying in the electrodes
Iand 3.

As was mentioned above an external magnetic field breaks the symmetry of the structure,
resulting in a more complicated picture of radiation field effects. Results of these calculations
are presented in Fig. 7. Figure 7a corresponds to Fig. 5a, with the difference that we have
~ = 1, and presents a case in which the radiation field excites the first bound state in the
first subband. One can see all transmissions undergo resonant peaks or dips, in contrast to
Fig. 5a. Figure 7b presents a case in which the frequency of the radiation field is tuned to
w = (€; — €1)/2. One can see that exciting of two bound states results in two resonant peaks
in the transmissions. The first bound state gives rise to sharp resonant peaks and dips, while

1967



E. N. Bulgakov, A. F. Sadreev XOTD, 1998, 114, evin. 6(12)

0.8

0.6

0.4

0.2

10.5 10.6 10.7 108 21 22 23 24 25
€ €

Fig. 7. The energy dependences of the transmissions in applied magnetic field in the X -structure.

a—w =4, a = 0.05, v = 1.0, the polarization of the radiation field is parallel to the input

electrode; b — w = 15.08, a = 0.5, v = 2, polarization of the radiation field is perpendicular
to the input electrode '

the second produces wide peaks and dips.

From Fig. 7b we can see that in some narrow region of energies the transmission 7}3
coincides with T, and may even slightly exceed it. Obviously, it would give rise to the negative
Hall resistance as was shown in [21]. Moreover we can see from Fig. 75 that the transmission
T, undergoes peaks, while the transmission T3 does dips. As a result we may observe resonant
peaks in the Hall resistance as i$ demonstrated in Fig. 8. v

From Fig. 7a, b (see also [21]) in the narrow region of resonance the transmission T3 can
slightly exceed the transmission T, in an external magnetic field. This means that the radiation
‘field can even cause anomalies of the Hall resistance to be negative [21]. Figure 8 illustrates
various resonant anomalies of the Hall resistance induced by the radiation field: dips (Fig. 8a)
and peaks (Fig. 8b, ¢, d). The resonance between the first bound state and the Fermi energy
of the incident electron produces a resonant dip (Fig. 8a). In the case of the Fermi energy
€ = (e +€)/2 and w = (e; — €)/2 the radiation field induces two wide peaks contributed
by two bound states. Figure 8c shows that the radiation field transforms the dip in the Hall
resistance [6] into a resonant peak. Finally, Fig. 8d shows a case like Fig. 8a, but the radiation
field excites the second bound state. -

3. CONCLUSION

The resonant behavior in the electron transmission arises because the radiation field
resonantly substitutes the bound states into the state of the incident electron propagating through
the scattering region of the structures to produce various interference phenomena. These
phenomena are clearly seen in the current density patterns shown in Fig. 9. The resonant
anomalies are very specific to the forms the structure and the type of bound state. The symmetry
of the structure and corresponding parity of the bound state plays an important role for the
radiation field-induced effects because of symmetry rules for the dipole matrix element and for
the resonant contribution, which is described by the right side of Egs. (27), (28). As a result
the direction of the radiation field’s polarization relative to the input electrode has strong effect
on the resonant anomalies. This suggests an idea for controlling electron transmissions through
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Fig. 8. The Hall resistence Ry in the X -structure versus an external magnetic field in responce to

the radiation field. The radiation field induced resistance is shown by solid lines, the steady resistance

is shown by dotted line. a — € = 10.95, w = 4.3, ¢ = 0.05; b — € = 22, w = 15.08, a = 0.5;
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Fig. 9. Current density flowing in the X -structure when the radiation field is switched off (a)
and switched on (b); w = 4.3, a = 0.05, ¢ = 10.95, v = 1.21
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the corresponding electrodes by simple rotation of the polarization of the radiation field.

In conclusion we give dimensional estimates for the radiation field which is able to produce
resonant effects in the 2DEG. The Fermi energy in the semiconductor layered AlGaAs structures
depends on the density of the electron gas and typically lies between 10 meV and 100 meV.
The characteristic sizes d of the structures are between 100 nm and 1 um. Accordingly, the
frequency of the radiation field tuned to transitions between the bound states and the first
electron subband will be roughly proportional to the Fermi energy. The amplitude of the
radiation field is of order E ~ Epaw/ed ~ 10>*-10* V/cm, where a and w are dimensionless.

A. F. S. thanks K.-F. Berggren, P. Seba and . Wang for useful discussions of electron
transport in waveguides.. This work was partially supported by the INTAS-RFBR (grant
Ne 95-IN-RU-657), RFFI (grant Ne 97-02-16305), Krasnoyarsk Science Foundation (grant
Ne 7F0130) and the Foundation for Theoretical Physics in Slemeno, Czech Republic.
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