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Electron transmission in the two-, three-, and four-terminal nanostructures is considered 
. under the influence of а radiation fiеlЦ. The frequency of the radiation field is tuned to the 

transition between the energy of а bound state and the Fermi energy of the incident electrons. 
The radiation induced resonant peaks and dips of the electron transport are exhibited for zero and 
low magnetic fields. It is shown tHat rotation of the radiation field polarization сап elТectively 
control the electron transport into diIТerent electrodes attached to the structures because of the 
symmetfY of the structures. The resonant anomalies of the НаН resistance are found in а weak 
magn~tic field. 

1. INТRODUCTION 

@1998 

For several decades the transport of electrons in structures of low dimensionality and 
complicated geometry has Ьееп the focus of extensive theoretical and experimental study. 
Electrons сап Ье confined to very narrow regions fabricated оп ап interface of ап AlGaAs/GaAs 

. heterostructure. Since the electrons in such regions сап have high mobilities in the two 
dimensions ауаilаЫе to them, such systems are called two-dimensional electron gases (2DEGs). 
The study of electronic transport properties of 2DEGs is of great current interest not only 
from the standpoint of the basic quantum effects involved but also for potential engineering 
applications. An idealized sample becomes ап electron waveguide, wherein the quantum 
transport properties are solely determined Ьу the geometry of the structure and the wavelike 
nature of the electrons. А remarkable manifestation of the successful achievement of quantum 
ballistic transport through а semiconductor nanostructure is the appearance of quantized steps 
оп the conductance through а narrow structure as the number of one-dimensional channels is 
successively varied [1,2], the quenching ofthe НаН effect, and the last plateau and the negative 
bend resistance in the cross geometry [3-5]. 

Ford et al. [5] presented а systematic investigation of the influence of cross geometry 
оп the НаН effect. They fabricated various differently shaped cross sections based оп GaAs­
AlxGal-хAs, which demonstrated that near zero magnetic field the Hall resistance сап Ье 
quenched, enhanced over its classical value, or еуеп negative. This effect has Ьееп considered 
in detail theoreticaHy Ьу Schult et al. [6] and Amemiya and Kawamura [7]. Another interesting 
feature of the cross geometries is а bound state found numericaHy Ьу Schult et al. [8] and Ьу 
Peeters [9] . 
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Fig. 1. The types of structures considered: L-structure (а), the T-structure (Ь), and 

Х -structure (с) 

The question of the existenee of eleetromagnetie modes trapped Ьу speeial geometries has 
Ьееп а elassie опе in the theory ofwaveguides [10]. It has Ьееп realized that the introduetion of 
bends into waveguides generally leads to bound states, or localized modes, which exist below the 
cut-offfrequency for the waveguide. Carini et al. [li, 12] have demonstrated theoretically and 
experimentally the presence of bound Т Е modes for rectangular bent waveguides and shown 
that the iшmЬег ofbound Т Е modes is bend-dependent. For the two-dimensional Sehrodinger 
equation it was proved that апу curved two-dimensional waveguide of constant width and infinite 
length posses bound states [13-18]. Bound states were found in the same year (1989) in а 
four-terminal junction of narrow wires Ьу Schult [6,8] and independently Ьу Peeters [9] (see 
also [19,20]). 

For.the stationary processes ofthe energy conservated electron transmission only quasi-bo­
undstates with energies within the conduction subbands are important [6,7]. In particular, 
it was shown that the quaSi-Ьоuпd states in the НаН junction result in resonant dips of the 
resistance in high magnetic fields when the magnetic length is comparable with the size of the 
junction. The Наll resistance sensitively depends оп the geometry ofajunction and сап Ьесоте 
negative for а smoothed junction for small magnetic ,fields. 

Although the bound states below the lowest subband threshold do not participate in 
stationary transmission, the possibility of observing of them, at least in principle, was shown Ьу 
Berggren and Ji for thecase of two intersecting electron waveguides with finite electrodes [20]. 
In that ease bound states сап Ье probed Ьу resonant tunneling through the electrodes below 
the subband. However, it is possible to mix the bound state with еlесtrtш transmission through 
eleetron waveguides with infinite electrodes directly Ьу application of а radiation field, provided 
that the dipole matrix elements between the bound state and propagating ones are not equal 

. to zero. Such а possibility was demonstrated for the fo~r-terrninal's Hall junction [21]. Let 
Е1 Ье the energy of the. bound state below the subbands which for zero magnetic field сап ье 
specified as 

h2 
Е (k) = __ (k2 + 1Г2n2 ) 

n 2m*d2 ' 

where d is the width ofthe eleetrodes, n is the numbei ofthe subband, and k is the wavenumber 
ofthe incident electron. Tuning а perturbation frequency near the resonance hw = En(k) - Ео , 

опе сап expect resonant anomalies in the electron transmission through the many-terminal 
junctions [21]. .. 

The aim of the present article is to consider the electron transmission effeeted Ьу mixing of 
bound states with the propagating solutions inthe Х -, т -, and L-types of eleetron waveguides 
which are shown in Fig. 1. 
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2. CONDUCГANCE ANOМALIES INDUCED ВУ ТНЕ RADIATION FIELD 

2.1. Numeгical method 

In this section we consider single electron transmission through the rectangular structures, 
the geometries of which are shown in Fig. 1 апд specified below as L-, Т -, апд Х -structures. 
ТЬеу share the property of having at least опе Ьоипд state. ТЬе Sсhгбdiпgег equation for ап 
electron of а mass m * subjected to а magnetic field В applied normal to the junction апд to 
а radiation field А1 (t) directed in the plane of the junction сап Ье written 

. 8'IjJ(r,t) 'h2 (, е )2 
zh ot =2т* zV'+ hс(Ло(г) +А1 cos,,-,t) 'IjJ(r,t). (1) 

Here we use the gauge Ao(r) = (-Ву, О, О). ТЬе radiation field is considered in the long­
wavelength approximation, in which the wavelength of the radiation field is mисЬ greater than 
the size of the junction. We use the following dimensionless transformations: 

ht 
t --> 2т*а} , 

r 
r --> -

d' 
27rdA1 

а=--

Фо ' 
where ФО = ch/e is the magnetic Лuх quantum. Iп terms of the dimensionless variables (2) 
the Sсhгбdiпgег equation (1) takes the form 

.8'IjJ(r, t) . 2 
Z 8t = (zV' + (ao(r) + acos,,-,t» 'IjJ(r, t), (3) 

where ao(r) "" (-'УУ, О, О). We mар this equation onto а square lattice with elementary unit 
w. The lattice site is specified as (т, l). The total vector potential ао + acos,,-,t is accounted 
for Ьу а Peierls phase factor [22]. ТЬеп Eq. (3) transforms as follows: 

iw2 8'IjJ~~, [) = 4'IjJ(т, [) - exp(i-Уl)'IjJ(m + 1, [) - ехр( -i-УI)'IjJ(m - 1, l) -

- ехр( -ia cos ,,-,t)'IjJ(m, l + 1) - exp(ia cos,,-,t)'IjJ(m, l - 1), (4) 

where-Y = 'Yw2 , а = aw. Iп the four-terminal junction we use also а different gaugeao(r) = 
= (О, 'УХ, О) for which the Sсhгбdiпgег equation (3) will mар onto а square lattice as follows: 

8'IjJ(т l) - - -
iw2 8t' =4'1jJ(m,l)-'IjJ(m+I,I)-'IjJ(m-I,l)-

- ехр( -ia cos,,-,t - i-уm)-ф(m, l + 1) - exp(ia cos,,-,t + i-уm)-ф(m, l - 1), (5) 

where 'IjJ(т, [) = ехр( -i-Уml)'IjJ(m, l). Because of the processes of absorption and emission of 
photons, we write the wave function in the electrodes [23,24] 

(6) 
n 

Substitution of (6) into (4) gives 

W 2(E + n,,-,)'ljJn(т, l) = 4'IjJn(т, l) - exp(i'Yl)'ljJn(m + 1, l) - ехр( -i-уl)'IjJn(m - 1, [) -

- L rns'IjJs(m, [- 1) - L r~s'IjJs(m, 1 + 1), (7) 
. s 
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where 

Here we used the standard expansion of an exponential in Bessel functions [25] 

(8) 
m 

Let us introduce colomn vectors for each site of the square lattice describing the amplitudes 
of the wave function (6) 

Then Eq. (7) takes more compact form 

(W 2 f + ЩЧJ = 4ЧJ(m, [) - ехр(i.:уl)ЧJ(m + 1, l) - ехр( -i.:уZ)ЧJ(m - 1, l) -

- Г'Р(m, Z - 1) - Г*ЧJ(m, Z + 1), (9) 

where we have introduced two matrices П = diag(w2nw) and Г = {г nэ}. Following Ando [26] 
we take the electrodes 1, 4 (Fig. lс) to Ье infinit~y !ong in the х direction and consisting of 
М !attice sites in the у direction. We introduce а generalized vector 

Ст = соl(ЧJ(m, М), ЧJ(m, М - 1), ... , ЧJ(m, 1». 

The dimension of this vector is М х L where L is the dimension of the vector ЧJ(m, l). In 
computer simulations the dimension L, which is the number of amplitudes of the wave function 
(6), was taken to ье а finite number chosen Ьу numerical accuracy [27]. We also introduce а 
diagona! matrix 

PII' = 811' ехр( -i.:уZ), 

the unit matrices 10 of dimension М х М and 1 of dimension L х L, and the up-diagonal 
matrix 

of dimension М хМ. 
Then Eq. (9) takes the form presented Ьу Ando [26] 

where 

(W 2f - НО)Ст + PIICm - 1 + ljjCm +1 = О, 

Но = 410 &/ 1 - D &/ г* - D+ &/ Г - 10 &/ П, 

PII =Р&/1. 
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То obtain the Iinearly independent modes of Eq. (10) we set [26] 

which gives 

(11) 

In order to find similar modes in the perpendicular electrodes (2, 3 in Fig. lс) we write 
the Schrodinger equation (5) as follows: 

(W 2f + щФ(т, l) = 

= 4Ф(т, l)-ехр(-i-Ут)Г*Ф(т, l+I)-ехр(i-Ут)N(т, l-l)-Ф(т+l, l)-Ф(т-l, [). (12) 

Introducing again the column vector ёl which describes the amplitudes of the l-th line along 
the x-direction, we obtain from Eq. (12) 

2 - - - -
(w f - HO)Cl + P.l..Cl - 1 + PICl+ 1 = О, (13) 

where 

Но = 410 0 1 - D 01 - D+ 0 1 - 10 0 П, 

P.l..=P*0r. 

Using the relation ёl = >,lёо we obtain from (13) the linearly independent solutions in the 
electrodes 2, З: 

(14) 

From the Schrodinger equations (4) and (5) the following continuity equation for the probability 
density follows: 

w2 ар _ .(х) .(х) + .(у) .(у) 
-2 at - Jm,l - Jm-l,l Jm,l - Jm,l-l> (15) 

where jm,l = (j~~l> j~~l) is the probability current density. In particular, for the gauge 
ао = (-iУ, О, О) in the electrodes 1, 4 we Ьауе 

j~~l = 1т {exp(i-Yl)1/J;",l1/Jm+l,l} , 

j~~l == 1т {ехр( -iii cos,,-,t)1/J;;",(Фm,l+l} . 

For the gauge ао = (О, [х, О) in the electrodes 2, 3 we Ьауе 

j~~l = 1т { ;fi;"ikm+l,l } , 

j~~l = 1т { ехр( -iii cos,,-,t - i-yт);fi;",l;fim,l+l} . 
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Fig. 2. Conflguration of the lattice model 
for the scattering region 

From these expressions for the probability current density it is easy to find the sЦitionary 
current carryed Ьу the propagating modewith 1,\1 = 1 in the х direction through the section 
m in the electrodes 1, 4: 

(18) 

As with the mode propagating in the у direction in the electrodes 2, 3 we have 

( 19) 

Now let us consider the scattering region (Fig. 2) connected to four electrodes. Following 
Ando [26] we define 

Here lli(±) are the solutions of Eq. (11) which correspond to the eigenvalue '\i(±). The signs 
«±» refer to the propagating and evanescent modes in the positive (negative) х direction in the 
electrodes 1, 4. Similar matrices Й, л сап Ье defined for the electrodes 2, з. 

For the modes which are superpositions опlу of the «+» type (or of the «-» type) we сап 
write simple recurrence formulas [26] 

with 

F(±) = U(±)Л(±)U- 1 (±). 

The same formulas take place for the electrodes 2, з. These relations will ье explored to define 
boundary conditions in the scattering region. 

Next, we consider the solutions inside the scaHering region which are shown in Fig. 2. At 
the boundary 1 there is the incident mode С\ (+), and at the boundaries 2, з, 4 there are only 
outgoing modes. I~troduce vertical vectors С\, С2 , ••. , СМ+2 which describe the amplitudes of 
the wave function оп а square lattice in the scattering region along the у direction as shown 
in Fig. 2, and а pair of horizontal vectors Q'U, Qd which describe the amplitudes at the upper 
and down boundaries of the scattering region. The aim is to write closed equations for these 
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vectors using the boundary conditions. The boundary conditions are that the wave is incident 
only through the left boundary 1 and is given as С 1 ( + ), and the other waves exit through аН 
boundaries. Within the scattering region the equation for the amplitudes takes 

(W2f - НО)Ст + PIICm-1 + P1iCm+1 = О, (20) 

where т = 2,3, ... , М + 1. 
In addition we consider the analogous equations at еуесу boundary. At the boundary 1 

we represent the vertical vector С1 at site 1 as а superposition of the incident and ref1ected 
solutions: 

The vector Со belonging to the electrode 1 сап Ье expressed as 

Со = p-I(+)CI(+) + p-I(_)CI(-) = p-I(_)C1 + (p-I(+) - p-I(_»CI(+). 

Непсе the solutions at the right edge of the electrode 1 are expressed in terms of the solutions 
at sites of the boundary of the scattering region and incident wave. As а result the equation 
for the amplitudes at the first vertical sites of the scattering region has the form 

(W2f - H1)C1 + P1iC2 = -РII[р-I(+) - p-I(_)]CI(+), 

At the boundary 4 we сап write similar equations 

(W2f - Н4)СМ+2 + 1jICM +1 = О, 

Since at the boundaries 2, 3 we Ьауе different gauges, we introduce two additional matrices 
which transform the primary gauge of the wave function: 

Еul = diag (exp(i1'm(M + 1)/2») ® 1, 

в'и2 = diag (exp(i1'm(M - 1)/2») ® 1. 

If we take into account these gauge transformations, the equation for the vector Q и at the 
boundary 3 сап ье written 

Нз = Но - PIF(+). 

At the boundary 2 
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т т 
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Fig. З. ТЬе energy dependenee of the transmission ib the L-strueture under the influenee of the 
radiation field: а - stationary transmission а = О for zero magnetic field; Ь - the frequeney of 
а radiation field is resonant with transitions between the edges ofthe first subband and the seeond 
опе ЦJ = 29.6, а = 0.1, 1=0. ТЬе solid Нпе represents the ease in whieh the polarization ofthe 
radiation field is perpendieular to the input eleetrode, the dashed line shows the еаве, in whieh 
the polarization is parallel to the input eleetrode. с - Тhe frequeney of the radiation field is 
tuned to transitions between the bound state and the first subband ЦJ = 10.82, I = О. Тhe eurve 
1 eorresponds to а = 0.2, the eurve 2 to а = 0.5. ТЬе dashed line shows the steady ease. d­
Similar resonant dips with applied magnetie field produced Ьу the radiation field: ЦJ = 10.82, 

а = 0.5. ТЬе curves 1, 2, and 3 correspond to I = 0,2,4 respectively 

Here Q u и, Q dd denote the horisonta! vectors adjacent to the vectors Q и, Q d as shown in Fig. 2. 

Ву means of these re!ations it is ешу to write the Schrodinger equation for the 
amp!itudes at the sites of the scattering region in c!osed form as k х = У where Х = 
= co!(C1, С2 , ... , СМ+2, Qu, Qd) with the known matrix К and vector У. Numerical so!ution 
of this equation gives the so!ution inside the scattering region, at its boundary, and thereby 
at each e!ectrode. For the simp!er, L- and Т -structures shown in Fig. 1 а, Ь the so!utions are 
easily obtained if we set the so!utions in the exc!uded electrodes equal to zero. 

In conclusion we comment оп the choice of the matrix Г defined in (7). For an infinite 
matrix Г we have the unitary condition гг+ = 1. Ifwe were to truncate directly the matrix Г in 
the numerical calcu!ations the unitary condition would ье vio!ated. In tum this wou!d give rise 
to breakdown of the probability сипепt conservation and what is more crucial, to appearance 
of undesirable exponentially growing and decaying propagating solutions with small exponents. 
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In order to avoid this difficulty we introduce а new Hermitian matrix W which determines' the 
matrix Г as follows 

г = exp(iiiW/2), . (21) 

where 

W= (
0100"') 1 О 1 О .. . 
~ 1 О 1 .... . 

Although in the computer simulations the matrix W is truncated to а finite dimension L, the 
relation (21) preserves the unitarity of the matrix Г. 

2.2. Numerical results 

We begin Ьу considering the simplest L-structure (Fig. lа). It has only one bound state 
with energy Ео = 0.929171"2 [14]. А magnetic field slightly increases this value. Consider at first 
the case when the frequency of the radiation field is tuned to transitions between the edges 
of the second and first subbands, U) ::;:j 371"2. When the polarization а of the radiation field is 
perpendicular to the input electrode of the structure the dipole matrix element mixing states 
of the second and first subbands equals 

(1IYI2) = J dyJI(y)yJ2(y) =f о, 

where JI(Y) = V2sin(71"(y - 1/2», J2(y) = V2sin(271"(Y - 1/2». If the polarization of the 
radiation field is parallel to the input electrode the dipole matriX element (klxlk') calculated 
in terms ofthe incident modes exp(ikx) is less than (1IYI2) beca!1se ofthe oscil1atory behavior of 
the functions exp(ikx). Since the square ofthe dipole matrix element determines the radiation 
field effect, the electron transmission strongly depends оп the polarization of the field as IS in 
fact seen from Fig. 3Ь. 

Second, consider th~ case when the f~equency of the radiation field is resonant with 
transitions between the bound state energy and the first subband. For zero magnetic field the 
radiation field induces the deep narrow resonant dip shown in Fig. 3с. ТЬе width ofthe resonant 
dip depends sensitively оп the amplitude of the radiati'on field. Figure 3d shows the shift of the 
resonant dip versus the applied magnetic field. 

ТЬе structure intermediate between the L- and Х -structure is the Т -structure (Fig. lЬ). 

Like the L-structure, it has only one bound state provided that the whole structure Ьм the 
same ~idth, but there are two ways to direct an incident electron: through the electrode 1 and 
through the electrode 2. For the former case the transmissions T I2 and ТlЗ coincide, provided 
that 'у = о. ТЬе polarization of а radiation field is chosen perpendicular to the input electrode 
along the y-axis (Fig. lЬ). Consider the dipole matrix element between the bound state and the 
propagating one, (Хllуl'Фk,I), where ю(х, У) denotes the bound state with the energy ЕI = 7.98 
and 'Фk,1 (х, У) is the propagating state for the steady case describing an electron incident оп 
the first subband and the electrode 1. Since both states are even relative to inversion У -+ -У 

) around the symmetry line У = О (for 'у = о), this dipole matrix element vanishes and the 
radiation field produces по effect. In fact, our numerical calculations show that if the incident 
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Fig. 4. Transmissions through the T-structure. 0- Electron incidents оп the electrode 1 (see 
Fig. 1 Ь) and the first subband: r.v = 12, а = 0.2, 'у = 2. Ь. - Electron incidents оп the second 
subband with parameters r.v = 41.86, а = 0.5, 'у = О. с - Electron incidents оп the electrode 2, 
r.v = 12, а = 0.1, 'у = О. d - The same as in Fig. 4с with parameters r.v = 12, а = 0.5, 'у = 4 

electron propagates in the first subband at zero magnetic field there are по resonant phenomena 
resulting fюm the radiation field. 

There are two ways to the dipole matrix element сап Ье finite. The first опе is to аррlу 
ап external magnetic field, and the second опе is to consider electron transport in the secorid 
subband. These possibilities are shown in Figs. 4а and Ь. The steady transrnissions through the 
т -structure are shown Ьу thin Iines. Опе сап see that а magnetic field makes th~ transmissions 
Т1 2 and Т1З nonequivalent. Application of the radiation field gives rise to resonant dips which 
are уесу narrow,with widths proportional to the square ofthe amplitude ofthe radiation field. 
In the vicinity of the resonance the transmission Т13 exceeds the transmission Т12 which gives 
rise to the anomalous НаН etТect. This etТect was first demonstrated for the four-terminal 
structure [21]. 

If ап electron is incident оп the second electrode, the dipolematrix element is not zero, 
and we expect resonant behavior for the transmissions to both electrodes 1 and З. However, 
the radiation field produces а resonant dip опlу for the transmission Т2З (Fig. 4с). The reason 
for the absence of.a resonant dip for the transmission to the first electrode is related to the 
тоге complicated symmetry and will Ье given below. Application of ап extemal magnetic field . 
causes the resonant dips for аН transmissions shown in Fig. 4d. A1so because the bound state 
energy level is increased Ьу ап extemal magnetic field, the 10cation of the resonant dips is 
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Fig. 5. Transmissions through the Х -strueture for zero magnetie field. In аll pietures the electron 
is ineident оп theelectrode 1. а - The frequeney of the radiation field is tuned to transitions 
between the energy ofthe first bound state and bottom ofthe first subband, UJ = 4. The ease ofthe 
polarization of the radiation field along the input eleetrode is shown Ьу thiek lines, and the ease 
of the polarization perpendieular to the input electrode is shown Ьу thin lines. In both cases the 
amplitude ofthe radiation field is а = 0.05. The eleetron is ineident оп the first subband (n = 1). 
Ь - UJ = 38.45, а = 0.5, the electron is incident оп the first subband. с.-:.. Тhe frequency is 
tuned to transitions between the second bound state and the first subband, UJ = 16.715, а = 0.2. 

d - As in Fig. 5Ь, but the eleetron is incident оп the seeond subband (n = 2) 

slightly shifted as is seen from Fig. 4с, d. 

Consider the foиr-termina1 junction. (Fig. lс) which is ап element of the Hall structu­
res [6,7,9,19]. First, consider the radiation field effects for zero magnetic field, атоng which 
the most interesting is the resonant control of the electron transmissions Ьу rotation of the 
radiation field polarization. As was mentioned for the Т -structure this effect has а pиrely 
symmetric origin. However, the symmetry ofthe Х -structure is higher than that ofthe Т -struc­
ture. Moreover, theX -structure has two bound states. The опе withthe energy 1:1 = 6.55 below 
the first subband is symmetrica1 relative to coordinate inversions х -+ -х or у -+ -у , and 
the second with the energy 1:2 = 36.72 below the second subband is antisymmetric. . 

As was observed for the Т -structиre, ifthe polarization ofthe radiation field is perpendicular 
to the input electrode and the frequency of the field is tuned to the transition between the first 
subband and the епещу ofthe first symmetrica1 bound state, there are по field-induced resonant 
effects in the transmissions. The reason is that the propagating state is еуеп, Фk,I(Х, у) = 
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= Фk,I(Х,.-У), and so we Ьауе {ХllуIФk,l) = о, which means that the transmissions exhibit 
по resonant effect. Оп the other hand, there is по symmetry of the propagating state relative 
to х -+ -х due to electrons incident оп the first electrode along the x-axis. Therefore, for 
the СаБе of the polarization paraHel to the input electrode 1 the dipole matrix element satisfies 
(ХllхIФk,l) i о. In fact, опе сап see from Fig. 5а а narrow resonant peak in the transmission 
T14 • Иоwеvеr, as in the case ofthe T-structure, surprisingly, there are по resonant effects for 
the transmissions to the electrodes 2 and З. 

То understand this following 121] we perform the gauge transformation 

ф(r, t) = ехр(iаrсоswt)ф(r, t), 

and substitute it into Eq (3). As а result we obtain the foHowing equation for the amplitudes 
фn(r) of expansion (6): . 

. (Е + nW)Фn = (iV' + ao(r»2 Фn + Z~ (аr)(Фn+1 - Фn-I)' (22) 

Since we Ьауе assumed that the radiation field is resonant with transitions between the first 
bound state and the propagating опе, for smaH perturbations we сап restrict ourselves to two 
states Фо and Ф_I in Eq. (22) satisfying the following equations: 

(23) 

2 Z 
v' Ф_I + (Е - W)Ф_I = "2(аr)wфо, (24) 

where the functions фо(r) and Ф_I (r) correspond to the propagating and the bound states, 
respectively. For the resonant сазе f - W :::::: Еl we сап write the truncated Green's function 
for the left side of Eq. (24) 

G ( ') XI(r)xi(r') 
I r, r , f :::::: .k 

. f - Еl - Zu 
(25) 

where б accounts for the finite width of the level because of coupling of the structure with 
the electrodes and the mixing of propagating states with the bound state Ьу the radiation field. 
ТЬеп а solution of Eq. (24) сап ье expressed via the Green's function (25) as foHows: . 

- iwю(r) J *, , ('. 2 I Ф-I(r)-2( .k) ХI(r)(аr)ФОhr)dr. 
f - W - Еl - Zu 

(26) 

Substituting Eq. (23) and carrying out а similar procedure of expression in terms ofthe Green's 
function, we finally obiain 

Иеrе Фоh(r) is the solution for а switched off radiation field and 

d10 = J xt (r)(аr)ФОh (r)d2r 

1965 

(27) 
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is the dipole matrix element between the Ьоипд state апд the propagating опе. 
Similar to (26) апд (27) we сап write а solution of Eq. (24) for the case when the frequency 

of the radiation field is resonant with transitions between the second Ьоипд state апд the Fermi 
energy of the incident electron € + (.v ~ €2 

( ) , (.V2d20 / ')' '2 , Фо r) = ФОh (r + 4( '8) G(r, r ,€ (ar )X2(r )d r , 
€ - €2 + (.v - z 

(28) 

In order to analyze the transmission оп the basis of Eq. (27) we пеед the following symmetry 
properties of the Green's function in the Х -structure: 

G(x, у; х', у', €) = G( -х, у; -х', у', €) = G(x, -у; х', -у', €). (29) 

Now let us retum to the transmission T12 (Fig.' lс) for the case when the radiation field 
polarization is parallel to the input electrode (x-axis). From Eqs. (27) апд (29) we сап see that 
the last resonant term in (27) is одд relative to х -+ -х in the electrodes 2 апд З, provided 
that the Ьоипд state х1 (r) is even. Thus, the last term in (27) is not аЫе to contribute to the 
propagating тоде in the electrodes 2, 3 because for the electron transport in the first subband 
it should Ье even with respect х -+ -х. Next, since the last term in (27) is even with respect 
у -+ -у, it contributes to the even transport тоде ФО in the electrodes 1, 4. As we see from 
Fig. 5а computer calculations completely confirm that conclusion. If the incident electron 
belongs to the first subband with n = 1.(even state relative to у -+ -у), but the outgoing тоде 
сап Ье represent as а superposition of states of the first апд second subband (n = 1,2), these 
symmetry restrictions are removed [ог the polarization parallel to the input electrode. As а 
result the radiation field induces resonant anomalies in the transmissions T12 , ТlЗ (see Fig. 5Ь). 
Brief1y, this symmetry rule сап Ье formulated as follows. If the parity of the state excited Ьу 
the dipole transition (ar)Xl (r) does not conf1ict with the parity of the outgoing modes, then 
the transmission to the corresponding electrode 'сап display resonant features, апд vice versa. 
Later we wi1l demonstrate numerous examples of the application of this symmetry rule. 

First, we apply the symmetry rule to the case of radiation field mixing of the second Ьоuпд 
state, which is одд relative to х'-+ -х ог у -+ -у. Рог the radiation field polarization directed 
parallel to the input electrode the dipole matrix element d20 vanishes, апд consequent1y there аге 
по radiation field induced etТects. In the opposite case, when the polarization is perpendicular to 
trn~ input electrode, the dipole matrix element is not equal to zero. However, the radiation field 
contribution to the electrodes 2 апд 3 described Ьу the last term in Eq. (26) is одд, opposite to 
the symmetry of the incident тоде. So the transmissions to the electrodes 2 апд 3 coincide with 
steady results, as shown in Fig. 5с. Finally, Fig. 5d shows the case when the incident electron 
belongs to the second subband. In contrast to the case in Fig. 5Ь, the field-induced etТects 
take place when the polarization is perpendicular to the input electrode. Note that the same' 
symmetry argumentsexplain the absence of radiation field etТects in the electron transmission 
from electrode 2 to electrode 1 shown in Fig. 4с [ог the Т -struct,ure. 

То confirm the approach using the quasi energy amplitudes (26) апд (27) апд to illustrate 
symmetry rules, in Fig. 6 we present numerical solutions of the full Schrodinger equation (4). 
In Fig. 6а, Ь, с the amplitudes 'Фn(r) with n = О, 1, -1 respectivelyare sh,own for parameters 
corresponding to the case shown in Fig. 5с. Опе' сап see that, in fact, only two amplitudes, 
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Fig.6. Views ofthe amplitudes ofthe quasienergywave function € = 20.02, а = 0.2, f.A) = 16.715. а­
l'Фо(r)l, ь - l'ФI(r)l, с -1'Ф-I(r)l, d -1'Фо(r) - 'ФОh(r)l. Definitions ofthe amplitudes are given in (6) 

'Фо, 'Фl, are important in the resonant case. Moreover, in agreement with Eq. (28) we see 
that the ampIitude 'Фl (r) exactly reproduces the second bound wave function Х2 and that the 
next amplitude 'Ф-l is negligible. Second, the difference between the radiation field perturbed 
solution 'Фо and the steady solution 'ФОh is shown in Fig. 6d. Оnе сап see that symmetry of 
the outgoing part of this difference in the electrodes coincides with that predicted Ьу the last 
term in Eq. (28). The parity is even in the electrodes 1 and 4 and is odd in the electrodes 2 
and З. Also we сап see from Fig. 6d that the odd contributions are decaying in the electrodcs 
1 and З. 

As was mentioned above an external rnagnetic field breaks the symmetry of ф.е structure, 
resulting in а more compIicated picture of radiation field effects. Results of these calculations 
are presented in Fig. 7. Figure 7 а corresponds to Fig. 5а, with the difference that we have 
, = 1, and presents а case in which the radiation field excites the first bound state in the 
first subband. Оnе сап see all transmissions undergo resonant реаЬ or dips, in contrast to 
Fig. 5а. Figure 7 Ь presents а сме in wblch the frequency of the radiation field is tuned to 
r.v = (€2 - €1)/2. One сап see that exciting of two bound states results in two resonant peaks 
in the transmissions. The first bound state gives rise to sharp resonant реш and dips, while 
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Fig.7. The energy dependences ofthe transmissions in applied magnetic field in the Х -structure. 
а - UJ = 4, а = 0.05, I = 1.0, the polarization of the radiation fie1d is paralle1 to the input 
e1ectrode; Ь - w = 15.08, а = 0.5, I = 2, po1arization of the radiation fie1d is perpendicu1ar 

to the input electrode 

the second produces wide peaks and dips. 
From Fig. 7 Ь we сап see that in some narrow region of energies the transmission ТlЗ 

coincides with TI2 and тау еуеп slightly exceed it. Obviously, it would give rise to the negative 
НаН resistance as was shown in [21]. Moreover we сап see from Fig. 7Ь that the transmission 
TI2 undergoes peaks, while the transmission Т13 does dips. As а result we тау observe resonant 
peaks in the НаН resistance as ii> demonstrated in Fig. 8. 

From Fig. 7а, Ь (see also [21]) in the narrow region of resonance the transmission ТlЗ сап 
slightly exceed the transmission TI2 in ап extemal magnetic field. This means that the radiation 
'field сап еуеп cause anomalies of the НаН resistance to Ье negative [21]. Figure 8 illustrates 
various resonant anomalies of the НаН resistance induced Ьу the radiation field: dips (Fig. 8а) 
and peaks (Fig. 8Ь, с, ф. The resonance between the first bound state and the Ferrni energy 
of the incident electron produces а resonant dip (Fig. 8а). In the case of the Ferrni energy 
Е >=:::: (Е2 + Е\)/2 and I..V >=:::: (Е2 - Е\)/2 the radiation field induces two wide peaks contributed 
Ьу two bound states. Figure 8с shows that the radiation field transforms the dip in the НаН 
resistance [6] into а resonant peak. FinaHy, Fig. 8d shows а case like Fig. 8а, but the radiation 
field excites the second bound state. ' 

З. CONCLUSION 

The resonant behavior in the electron transmission arises because the radiation field 
resonantly substitutes the bound states into the state of the incident electron propagating through 
the scattering region of the structures to produce various interference phenomena. These 
phenomena are clearly seen in the current density pattems shown in Fig. 9. Тhe resonant 
anomalies are уесу specific to the forrns the structure and the type ofbound state. The symmetry 
of the structure and corresponding parity of the bound state plays ап important role for the 
radiation field-induced effects because of symmetry rules for the dipole matrix element and for 
the resonant contribution, which is described Ьу the right side of Eqs. (27), (28). As а result 
the direction ofthe radiation field's polarization relative to the input electrode has strong effect 
оп the resonant anomalies. This suggests ап idea [or controlling electron transmissions through 
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Fig. 8. The НаН resistence RH in the Х -structure versus an extemal magnetic field in responce to 
the radiation field. The radiation field induced resistance is shown Ьу solid Iines, the steady resistance 
is shown Ьу dotted line. а - € = 10.95, w = 4.3, а = 0.05; Ь - € = 22, w = 15.08, а = 0.5; 

с - € = 36.75, I.<J = 30.17, а = 0.1; d - € = 20.5, w = 16.715, а = 0.5 
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the corresponding electrodes Ьу simple rotation of the polarization of the radiation field. 
In conclusion we give dimensional estimates for the radiation field which is аЫе to produce 

resonant effects in the 2О БG. ТЬе Fermi energy in the semiconductor layered AlGaAs structures 
depends оп the density of the electron gas and typically lies between 10 meVand 100 теУ. 
ТЬе characteristic sizes d of the structures are between 100 nm and 1 J.Lm. Accordingly, the 
frequency of the . radiation field tuned to transitions beA:ween the bound states and the first 
electron subband will Ье roughly proportional to the Fermi energy. ТЬе amplitude of the 
radiation field is oforder Е ~ Epaw/ed '" 103_104 У/ст, where а and w are dimensionless. 

А. F. S. thanks K.-F. Berggren, Р. Seba and S. Wang for useful discussions of electron 
transport in waveguides. This work was partially supported Ьу the INTAS-RFBR (grant 
NQ 95-IN-RU-657), RFFI (grant NQ 97-02-16305), Krasnoyarsk Science Foundation (grant 
NQ 7FO 130) and (Ье Foundation for Theoretical Physics in Slemeno, Czech Republic. 

References 

1. В. J. уап Wees, Н. уап Houten, С. W. J. Beenakker, J. G. WilIiamson, L. Р. Kouwenhouhen, О. уап 
der Marel, and С. Т. Foxon, Phys. Rev. 60, 848 (1988). 

2. О. А. Wrahamn, Т. J. Thornton, R. Newbury, М. Pepper, Н. Ajmed, J. Е. F. Frost, О. G. Hasko, 
О. С. Peacock, О. А. Ritchie, and G. А. С. Jones, J. Phys. С 21, L209 (1988). 

3. М. L. Roukes, А. Sherer, S. J. Аllеп, Jr., Н. G. Graighead, R. М. Ruthen, Е. О. Beeke, and 
J. Р. Harbison, Phys. Rev. Lett. 59, 3011 (1987). 

4. У. Takagaki, К. Gamo, S. Namba, S. Ishida, S. Takaoka, К. Murase, К. Ishibashi, and У. Aoyagi, 
Solid.State Соmmип. 68, 1051 (l98?). 

5. с. J. В. Ford, S. Washburn, М. Buttiker, С. М. Кnoedler, and J. М. Hong, Phys. Rev. Lett. 62, 
2724 (1989). 

6. R. L. Schult, О. G. Ravenhall, and Н. W. Wyld, Phys. Rev. В 41, 12760 (1990). 
7. К. Amemiya and К. Kawamura, J. Phys. Soc. Jpn. 63, 3087 (1994). 
8. R. L. Schult, О. G. Ravenhall, and Н. W. WyJd, Phys. Rev. В 39, 5476 (1989). 
9. F. М. Peeters, Superlatt. Microstruct. 6, 217 (1989). 

10. Н. Sakaki, in Ргос. о/ the 1ntern. Syтp. оп Foundation о/ Quantuт Mechanics in the Light о/ New 
Techn%gy, ed. Ьу S. Kamefuchi, Physical Society of Japan, Tokyo (1984), р. 94. 

11. J. Р. Carini, J. Т. Londergan, К. Миllеп, and О. P.·Murdock, Phys. Rev. В 46, 15538 (1992). 
12. J. Р. Carini, J. Т. Londergan, К. Миllеп, and О. Р. Murdock, Phys. Rev. В 48, 4503 (1993). 
13. Р. Ехпег and Р. Seba, J. Math. Phys. 30, 2574 (\989). 
14. Р. Exner, Р. Seba, and Р. Stovicek, Czech. J. Phys. В .39, 1181 (1989). 
15. У. Avishai, О. Bessis, В. G. Giraud, and G. Mantica, Phys. Rev. В 44,8028 (1991). 
16. J. Goldstone and R. L. Jaffe, Phys. Rev. В 45, 14100 (1992). 
17. Р. Duclos and Р. Exner, Rev. Math.Phys. 7,73 (\995). 
18. К. Lin and R. L. Jaffe, E-prints archive cond-mat/9601004. 
19. У. Avishai and У. В. Band, Phys. Rev. Lett. 62, 2527 (1989). 
20. K.-F. Berggren and Z.-L. Ji, Phys. Rev. 43, 4760 (1991). 
21. Е. N. Bulgakov and А. F. Sadreev, JETPLett. 66, 431 (1997). 
22. R. Е. Peierls, Z. Phys. 80, 763 (1933). 
23. М. Buttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982). 
24. О. L. Haavig and R. Reifenberger, Phys. Rev. В 26, 6408 (1982). 
25. Handbook о/ Matheтatica/ Functions, ed. Ьу М. Abramowitz and 1. А. Stegun, U.S.GPO, Washington, 

ОС (1964). 
26. Т. Ando, Phys. Rev. В 44, 8017 (\991). 
27. Е. N. Bulgakov and А. F. Sadreev, J. Phys.: Cond. Matter 8,8869 (1996). 

1970 


