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The two-dimensional femlion system with the indirect Einstein phonon-exchange attraction 
and additionallocal four-fermion interaction is considered. It is shown that as а result of the 
attraction between fermions, the normal phase of such а system is divided into two regions. In 
опе of them, called the pseudogap region, the absolute value of the order parameter exists as 
essentially nonzero value, Ьи! its phase is а random quantity. It is important that in the case of 
attraction due to the phonons, this abnormal region appears at rather low carrier concentrations, 
i.e., it decreases appreciably with increasing doping. The relevance of the results obtained for 
blgh-temperature superconductors is speculated. 

1. INТRODUCTION 

@1998 

The problem of an adequate description of the physical properties of high-temperature 
superconductors (HTSCs) stiIl remains one of the important problems of the modem solid
state physics. It is connected with some peculiar properties of HTSCs. Among them there 
are such problems as quasi-2D character of electronic (and magnetic) properties, а relatively 
low and changeable carrier density n f' and its inf1uence оп the properties of HTSCs (see, for 
ехатрlе, the review article [1]). 

At present, one of the widely discussed topics оп HTSCs is the «pseudogap» (or «spin 
gap» if magnetic subsystem of HTSCs is taken into account) [2-4], wllich is experimentally 
observed, for ехатрlе, as а 10ss in the spectral weight of quasiparticle (or spin) excitations 
in the normal-state samples with 10wered carrier density [5-7]. Сопеsроnding samples reveal 
some specific spectral, magnetic, and thermodynarnic pecularities which are not yet sufficiently 
understood. In addition, the striking difference between the 10w (underdoped) and high 
(overdoped) density regions in HTSCs is hotly debated and is considered as one of the very 
central and key questions in the physics of cuprates [8,9]. 

The possibi1ity of experimentally changing the carrier concentration in НТSСs created 
а general theoretical problem of the description of the crossover from composite boson 
superf1uidity (low n f) to Cooper pairing (large n f) when n f increases (in other words, а 
description of the continuous transition from the so-called underdoped regime to the overdoped 
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опе). Such а crossover Ьм already Ьееп studied in 3D and quasi-2D systems (see the review 
articles [10, 11]). lЬе 2D case has Ьееп considered [10, 12] at temperature Т = О in connection 
with the Hohenberg-Mermin-Wagnertheorem, which forbids any homogeneous (i.e., 10ng-ran
ge) order in pure 2D systems at Т =J о due to the 10ng-wave fluctuations ofthe charged order 
parameter (ОР). 

ТЬе problem ofthe inhomogeneous condensate (the Berezinskii-Kosterlitz-Тhoи1ess (ВКТ) 
phase) formation was also considered, despite some difficulties in the 2 + 1 relativistic field 
models [13], where the fermion concentration effects are irrelevant. At the same time, these 
effects were studied in the nonrelativistic model in Ref. [14], for example, without allowance 
for the existence ofthe neutral order parameter р. Its consideration proves to Ье very important 
(see Ref. [15]) and, in fact, results in the formation of an equilibrium region with р =J о, which 
is mainly located in the рЬме diagram of а system between the ordinary normal phase and 
the superconducting (here ВКТ) phase. Because ofthe fluctuations ofthe ОР рЬме, this new 
region of the system, which is а part of tha normal phase, is of course а nonsuperconducting 
рЬме. 

J n this paper ап attempt is made to study the crossover and the possibility for the appearance 
of the above-mentioned new region in the 2D fermion system with а more rea1istic indirect 
(рЬопоп) and also а direct (loca1) four-fermion (4Р) interactions. Thus, this study is to а certain 
extent а specific and nontrivial genera1ization of the preliminary short communication [15], 
where this abnormal region was studied for 4Р сме only, and ofthe paper [16], in which the 
Frohlich model was used to study the crossover at Т = о. As wi1l Ье seen in the boson exchange 
model (in contrast with the pure 4Р case), the new region exists when n! is rather sma11, 
which allows опе to compare this result qualitatively with the underdoped HTSC compounds. 
It is actually more interesting to take into account а more realistic situation with an indirect 
attraction and some kind of local repulsion, which тау in principle correspond to the short
range (screened) Coulomb interaction between carriers. In general, however, we assume that 
4Р interaction сап Ье repulsive as well as attractive. Besides, the сме oftotal repulsion a110ws 
one to explore the fermion-antifermion (electron-hole) pairing channel, which, despite physical 
difference, сап Ье formally described in the same manner. 

2. MODEL AND BASIC EQUATIONS 

Let us choose the simplest Hamiltonian density in the form 

Н(х) = -'Ф~(х) (~~ + J.t) 'Ф,Ах)Нрh(<Р(Х» 
+gрh'Ф~(х)'Ф(Ах)<р(х) - g4F'Фf(х)'Фl (х)'Фl (х)'Фr(Х), (х = r, t), (1) 

where 'Ф,Ах) is the fermionic field with an effective mass т and spin (7' =j,1, J.t is the 
chemical potential of the fermions which fixes n f' <р(х) is а phonon field operator, and gph 
and g4F are the electron-phonon and the 4Р interaction coupling constants, respectively. As 
was indicated аЬоуе, g4F сап Ье positive (fermion-fermion attraction) or negative (fermion
antifermion attraction); in Eq. (1) we set h = kB = 1. 

In Eq. (1) H ph is the Harniltonian of free phonons, which сап Ье described Ьу the 
propagator 
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(2) 

where аn = 2тгТ (n is an integer) is the Matsubara frequency [17]. As follows from (2), the 
propagator D(iQn) was chosen in а very simple form; here "-'о is the Einstein (dispersionless) 
phonon frequency. Тhis choice was made for several reasons. First, this propagator makes 
it possible to integrate the equations which we obtained. Second, the орНс phonon and 
quadrupolar exciton modes with their relatively weak dispersion are widely considered as 
exchange bosons which сап contribute to the hole-hole attraction in HTSCs [1, 18, 19]. Third, 
the qualitative results concerning retardation effects do not strongly depend оп the model 
studied. Оп the other hand, the propagator (2) for the model under consideration сап hardly 
Ье used for quantitative description of the cuprates and their spin-wave branches which, as is 
wellknown, оЬеу the linear dispersion law. 

It is important that the Hamiltonian (1) is invariant under global gauge transformations 
of two types [20]: 

'ФtY(х) -+ 'ФtY(х)еiа , 'Ф~(х) -+ 'Ф~(х)е-iа (3) 

and 

'Фт(х) -+ 'Фт (х)еiа , 'Ф! (х) -+ 'Фl (x)e- ia , 

'Фi(х) -+ 'Фi(х)е-iа , 'Фl(х) -+ 'Фl<х)еiа , (4) 

which must Ье taken into account. The phase а in (3) and (4) is real. 
То calculate the phase diagram of а system it is necessary to find its thermodynamic 

potential. It сап Ье calcиlated Ьу making use of the auxiliary bilocal field method (see, for 
example, Ref. [21]), which is а generalization of the standard Hubbard-Stratonovich method 
for the boson-exchange сме. The grand partition function Z сап then Ье expressed in terms 
of the path integral over the fermionic 'ФtY(Х) and the complex auxiliary fields (for example, 
ф(х,х') '" ('Фi(Х)'Фl(х'»)). 

In the сме of model (1) it is convenient, following Ref. [22], to introduce the bispinor 

(5) 

and its Hermitian conjugate, which here are the analogs of the Nambu spinors [23]. After 
substituting (5) in (1), we сап write the Hamiltonian in the form 

Н(х) = -~Ч't(х) (: + JL) 1 QS) тzЧ'(х) - ~9РhЧ't(х)I QS) ТzЧ'(Х)ip(Х)-
1 _ 

- 4 94FЧ't(х)I QS) тzЧ'(х)Ч't(х)I QS) ТzЧ'(х) + ip(x)D 1 (x)ip(x), (6) 

where 1 QS)Tz is the direct product ofthe unit 1 and Pauli Тх 2 х 2 matrices, and D(x) is defmed 
Ьу (2). In such а representation ofthe Hamiltonian (6) and the field variables (5) the Feinman 
diagram technique is applicable in its ordinary form [22]. Thus, after standard exclusion ofthe 
boson field ip(x), the Lagrangian of the system сап Ье expressed Ьу the formula 
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L(x\, У\, Х2, У2) = ~'Pt (х) [-8т + (~~ + М) 1 Q9 Tz] 'Р(х) -
1 

- 4'P(X\)'Pt (у\)I Q9 TzK(x\, у\; Х2, Y2)'P(X2)'Pt (У2)I Q9 Tz • (7) 

The kemel К is the effective, nonlocal, particle-particle interaction function which is explicitly 
defined in the momentum space below. 

In order to explore the pairing possibility in the system we introduce the bilocal auxiliary 
field or ОР, 

Ф(х\,у\) = Tz K(x\,Y\;X2,Y2)'P(x2)'Pt (Y2)IQ9Tz == 
== -iт+ Q9 ТУФ;h (Х\, У\) - iT _ Q9 ТуФсh(Х\, Уl) - Tz Q9 1 Фins(Хl, Уl), (8) 

wllere Т+ = (Тх +iTy )/2, Т _ = (Тх -iТу )/2, and the integration over Х2 and У2 is assumed. Here 

Фсh'" ('I/{Фi) and Фins '" ('Ф+'Фi) are the electron-electron (charged) and the electron-hole 
(insulating) spin-singlet ОР, respectively (we ignore the nonzero spin pairing). Тhe auxiliary 
fields Фсh and Фins are responsible for the dynamic symmetry breaking (in accordance with (3) 
and (4), respectively). 

Adding to (7) а zero term, 

1 4 [Ф(Хl, Уl) - к(хl, Уl; x~, y~)'P(x~)'Pt (у;)I Q9 Tz] к- 1 (х\, Уl; Х2, У2)[Ф(Х2, У2) -

-К(Х2, У2; x~, y~)'P(x~)'Pt (y~)I Q9 Tz], 

to cancel the 4Р interaction, we obtain the Lagrangian in the form 

Let us transform the expression for the kemel К; in the momentum space it then is 

where Pi = (Pi,Wi) (i = 1,2) and Р = (P,w) represent the relative and the center-of-mass 
momenta, respectively. According to the definition, the kemel К Р(Рl; Р2) is in fact independent 
of Р (we сап therefore omit the index Р below) and acquires а simple form 

(10) 

which is used in (9). The last expression evidently demonstrates that the total character of the 
effective particle-particle interaction, as it always takes place in such а situation [23,24], is 
defined Ьу а possible competition between the first (retarded) and second (nonretarded) terms 
in (10) or, in other words, Ьу their common action. 

Тlle partition function сап Ье written as 
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z = J @'рt1»'Р1»ф1»ф* ехр [-,8 J L('Pt , 'Р, ф*, ф)dХdУ] == 

== J 1»ф1»ф* ехр(-,8Щ~]), ,8 = I/Т, 

where Щ~] is the thermodynamic potential which in the «leading order» is 

(11) 

where Tr includes 2D spatial r and «time» О :::; т :::; ,8 integrations, as well as the standard 
trace operation. The full Green's function of the system is 

~-1 = _~ [ат - (: + JL) 10 T z - ф] . 

From (11) and (12) we obtain to the ф-еquаtiоп (the Schwinger-Dyson equation) 

Ба J d2kdu.J 
Бф = Ф - (27[-)3 К(р; k, w)~(k, w) = О. 

Substituting (13) into (11), we obtain the expression for Щ~): 

1 
,8Щ~) = -ТrLп~-l + 2Tr~K~. 

(12) 

(13) 

This expression is the wellknown Comwell-Jасkiw-ТоmЬоuIis formula for the effective action 
in tlle one-loop approximation [25]. Using (13), we сап rewrite this expression in the [олn 

,8Щ~) = -Tr [Ln~+ ~[~~ol -1]]. (14) 

As was shown Ьу Thouless et al. [26] (see also Ref. [15]) in the 2D case it is more natural 
to use а new parametrization of the charge аР (Eq. (8» - its absolute value (modulus) and 
the phase. In other wordsl): 

ФСh(Х, у) = Pch(X, у) ехр [-i (В(х) + В(у» /2] , (15) 

where Pch is real. As for Pins, it сопеsропds, as сап Ье seen from Eq. (8), to а one-component 
аР and therefore does not characterize the phase factor. 

As will Ье shown below, with the given kemel (10) only опе (Фсh or ФinS) аР сап arise. 
Therefore, it is necessary to make, simultaneously with (15), the spinor transformation ОП 
accordance with (3) and (4» 

(16) 

1) It should Ье noted that Efetov and Larldn, in fact, were the first to use such а parametrization. They 
studied [27] the effect ofinterchain hopping and ОР phase fluctuations оп the superconducting transition 
temperature in lD superconductors. 
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(17) 

(the spinor х(х) is real and formally corresponds to chargeless fermions). Below we shall 
obtain the O-corrections for the Фсh case on1y, but the equations for Pins are the same uр 
to the substitution Pch ~ Pins. Тhe reason is that when К(Р"Р2) describes the attraction 
(charge pairing channel), the symmetry of the Lagrangian under operations (3) proves to 
Ье crucial for the representation (16); whi1e when К(р" Р2) corresponds to the repulsion 
(chargeless, or electron-hole, pairing channel) the symmetry (4) is already irnportant and the 
representation (17) must Ье used as а «working» representation. With this difference, the rest 
of the calculations for p's are almost identical but the «phase effects» persist for the charge 
channelonly. This channel, the most interesting one for metallic (superconducting) systems, 
we shall therefore consider in detai1. 

In the variables (16) the Green's fиnction (12) transforms to 

~-1 = _~ [Вт - 1 0 Tz (~~ + М) + iTx 0 TyPch -

- 10Tz (ВтО+ ~:) -iI01(~~ + "9~"9)] =G-l(Рсh)-~(ВО). (18) 

Using (18) under assumption that the О gradients are srnall (the hydrodynamic 
approximation) and taking them into account uр to the second order, we сап divide the effective 
potential (14) into two parts: Q = Qkin(Pch, "90)+Qpot(Pch), where in the ("90)2 approxirnation 

(3Qkin(Pch, "90) = Tr [c~ -co~ + ~c~c~ -
- ~Co~Co~ + Тх 0 1 ~iPchG(G~ + C~C~)] . (19) 

Assuming Ьу analogy witll Ref. [27] (see also Ref. [28]) that Pch(X, у) is homogeneous2) after 
rather tedious but otherwise straig11tforward calculation, we obtain from (19) the expression 

(20) 

where 

J(/L, Т, Pch(/L, Т» = 

(21) 

2) Equations for pch and pins are obtained below and, as was shown in Ref. [16], it is an admissible 
approximation to put in them the value pch (and Pin.), which is independent of spatia1 and time variables. 
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plays the role of the neutral ОР stiffness. Note that in comparison with the retardation-free 
4F model [15], the last expression contains one more terrn: the terrn with the derivative. 

The equation for the temperature Твкт ofthe ВКТ transition сап Ье written after direct 
comparison of the kinetic terrn (20) in the effective action with tле Hamiltonian of the 2D 
ХУ model, which forma11y has the identical [оrrn [29]. It is therefore easy to conclude that 

(22) 

The basic difference between this equation and the one for the ХУ model is the inherent 
dependence of the forrner оп J-L (or n f) and Pch. 

То complete the set of self-consistent equations, which allow one to trace an explicit 
dependence ofTBKT оп nf' we also give the equations for Pch and J-L. In particular, а simple 
equation for Pch(iwn) is Eq. (13) with \!() = О; i.e., the Green's function G of the neutral 
fermions substitutes ~, so that (13) in the frequency-momentum represantation takes the [оrrn 

where Wn = (2n + l)7rT is the Matsubara fermionic frequency [23], ~(k) = k 2/2m - J-L, and 
the kernel К (wm , wn ) is defined above. 

We gave the final equations forboth OPs, Pch, and Pins in orderto showthat theyindeed are 
the same but alternative if the kernel К changes sign. The analytic solution of these equations, 
as well as obtaining Eq. (22) and the number equation needed, сап Ье done Ьу assuming that 
Pch(iwn) does not depend оп the Matsubara frequencies (see the footnote оп page 6). 

Making use of this approximation, the equation which follows from the ordinary condition 
v-lдЩ~]1 BJ-L = -n f (V is the volume of the system) and which is crucial for the crossover 
description must Ье added to Eqs. (22) and (23) for self-consistency. We thus obtain 

JJ-L2+Р~h+J-L+2ТlП[I+ехр(-JJ-L2;р~h)] =2€F, (24) 

wllere € F = 7rn f 1т is the Ferrni energy of free 2D fermions with а simple quadratic dispersion 
law. Thus, in the case under consideration аll unknown quantities, Pch, J-L, and Твкт , are the 
explicit functions of n f. 

3. ANALYSIS OF ТНЕ SOLUТIONS 

In contrast with the standard (with the Т -independent unit vector) ХУ model, in the 
superconducting model two characteristic temperatures сап Ье introduced: Тр , where fOffilally 
the complete ОР given Ьу (8) arises but its phase is а random quantity 3), i.e., (ф(х, у») = О 
and another temperature, Твкт < Тр , where the phase ofthe ОР becomes ordered, so that 
(ф(х, у») =J О. In other words, we define the temperature Тр as the temperature of а relatively 
sharp change in the neutral ОР, which does not break any real symmetry. Therefore, this 

З) Because pch and pin8 cannot exist simu!taneous!y (see Eq. (23)), the index р is the on!y ОР, which 
appears at а definite sign of the kerne! (10). 
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Fig. 1. Тhe Т -щ phase diagram of the 2D metal with 4F fermion attraction. Тhe lines correspond 
to the functions Тр(щ) (the dotted curve) and TBKT(nj) (the solid curve) at 94Fm/2Jr = 0.5. Figures 
1, П, and ПI show the regions of the norтal, pseudogap, and superconducting phases, respectively 

Fig. 2. The Т -n! phase diagram of the 2D metal with indirect intercarrier attraction for л = 0.5. 
Similarly to Fig. 1, the curves correspond to the functions Tp(nf) and TBKT(nj) and separate the same 

regions 

temperature (unlже Твкт is not the phase-transition temperatиre. Nevertheless, it gives (see 
Refs. [27,28]) а convenient scale for the description of the neutral аР temperatиre behavior. 
RecaH that according to the equations obtained аЬоуе both these temperatures directly depend 
оп the carrier density in the system. 

The «critical» temperatиre Тр сап Ье found, for example, from Eqs. (21)-(24) Ьу setting 
Pch = О (in accordance with the derivation ofthese equations, it corresponds to the mean-field 
approximation4». As а result, with а decrease in temperatиre, а 2D metal (similarly to а 
lD metal [27]) passes from the normal phase (Т > Тр ) to another phase, where the average 
homogeneous (charged) аР (Ф(х, у») = о or, equivalently, the superconductivity is absent, but 
chargeless аР Pch =f О. It is evident that the pseudogap is formedjust in the temperatиre region 
Твкт < Т < Тр , because, as follows from the formulas cited аЬоуе (see, e.g., Eqs. (21)-(24», 
Pch = Pch(T) acquires аН the spectral characteristics of а 2D meta1 in the same way as the 
superconducting gap t:..(T) enters into corresponding expressions for ordinary superconductors. 
It justifies why this region сап Ье called «the pseudogap phase». Тhe density of states near 
EF in the pseudogap phase is definitely 10wer than that in the region of the normal phase with 
Pch = О, but does not equal zero as in the superconducting phase. The latter must Ье checked Ьу 
direct ca1culation ofthe one-particle fermion Green's function, which is most lжеlу а separate 
problem that is not considered here. 

Тhe phase diagram of а system сап Ье found from Eqs. (21)-(24). The quantities Тр(n f) 
and Твкт(n f) behave differently for different correlations between interaction constants. 

1) g4F > О, gph = О (an unretarded interaction). 
Тhis case has been partly analyzed in Ref. [15]. It corresponds to fermion-fermion pairing 

due to the 10саl attraction. Note (see Eq. (23» that in this case (or in the case of attraction 

4) Despite the fact that the temperature Тр is not identical to the BCS critical temperature TffJs, they 
coincide for the large carrier density оnlу (see below). 
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between сапiеrs) the fermion-antifermion (insulating) pairing сЬanпеl is absent, i.e., Pin. = О. 
ТЬе corresponding phase diagram is shown in Fig. 1. We see that the pseudogap рЬме exists 
at апу сапiеr concentrations, that the temperature width of this phase region weakly increases 
with increasing nj, апд that the ВКТ phase always begins to form when Pch(TBKT) is finite, 
which means that f1uctuations of the latter near апд below Твкт are not essential. 

As EF -+ О, the temperature ofthe BKTphase formation is definedbytheequalityTBKT = 
= Е F /8, апд Тр as а function of n j сап Ье [оипд from the equation 

Тр ln(Tp/EF) = Wexp(-Фл,/g4Fm) = -еь4F) /2, 

which follows from (23) (W is the conduction Ьапд width, апд eb4F) is the two-fermion Ьоипд 
state energy, which is always different from zero in the 2п case). 

2) g4F = О, gph =f О (а pure indirect interaction). 
This is опе of the most interesting cases because it corresponds to the widely accepted 

electron-phonon (or the BCS-Bogolyubov-Eliashberg) тодеl of superconductivity. Тhe 

numerically calculated phase diagram is shown in Fig. 2. It shows that а comparatively large 
region with the pseudogap phase exists at rather low carrier concentrations оnlу, апд that its 
temperature area shrinks when n! -+ 00. Such а behavior qualitatively agrees with that which 
takes place in real HTSCs [5-8] апд demonstrates that а pseudogap (апд also а spin gap) is 
mainly observed in underdoped HTSC samples. 

It is not difficult to conclude that the asymptotic behavior ofTp(nj)and TBKT(nj) has 
the following forms: 

i) when the ratio EF/WO ~ 1 (very low free fermion density or the local pair case) the first 
опе satisfies the equation 

Тр ln(Tp/ EF) = Wo ехр( -47!' / g~hm) = _e~h) /2, 

which immediatedly results in aTp(nj)/anjln,-->о -+ 00 (here similarly to the 4Р case it is 
convenient to introduce the Ьоипд state energy ebPh) for the рЬопоп attraction). At the same 
time, the temperature Твкт in the limit n! -+ О has identica1 дерепдепсе оп the carrier 
density апд, as аЬоуе, Твкт = EF /8. This simply means that here again it is proportional to 
tI1i~ lшmЬеr n! /2 of composite bosons; in this density region Тр/Твкт » 1 (this inequality 
is also satisfied for the pure 4Р interaction). 

ii) in the opposite case Е F / Wo » 1 (very large fermion density or the Cooper pair case) 
we easily obtain the standard BCS value: 

Тр = (2,,/wo/7!') ехр( -27!' / g~hm) == T/f!s = (2,,/ /7!')tlBCS 

(tlBCS is the usual one-particle BCS gap at Т = О). In otherwords, in this limit the temperature 
Тр becomes ечиа1, as it should Ье, to the BCS уа1ие5). ТЬе Твкт asymptotic behavior here 
is not so evident and requires а more detailed consideration. 

First of аН, it is natural to assume that for large n! the temperature Твкт -+ Тр . It is 
then necessary to check the dependence of Р оп Т as Т -+ Тр . For this purpose Еч. (23) сап 
Ье transformed to 

5) Being equal (in the mean-field approximation only), these temperatиres (Тр and TlfJs) are in fact 
different: ifTlfJs immediately decreases to zero as the fluctuations Ф and ф* are taken into account, Тр 
does not decrease and is renormalized only when р fluctuates. 
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~ = /00 dx (th Jx2 + p~h/4T2 _ th Jx2 + p~h/4T2 - th(wo/2T) 
g~hт Jx2 + p~h/4T2 . 2(Jx2 + p~h/4T2 - wo/2T) 

о 

_ thJX2+P~h/4T2+th(WO/2T») (25) 
2(Jx2 + p~h/4T2 +wo/2T) . 

(Here it was assumed that in the concentration region under consideration the ratio м/Тр ~ 
~ fF /Тр ~ 1 because JL ~ fF [10-12,16].) 

Since usually wo/Tp ~ 1, only very small х give the main contribution to the integra1 (25) 
(this is seen from the limit р/Тр -+ О, when EF /wo -+ 00). Therefore, it takes the approximate 
form 

~ = /00 dx (th Jx2 + p~h/4T2 _ 1 ) 
g~hт о Jx2 + p~h/4T2 Х + wo/2T . 

(26) 

Оп the other hand, the accepted condition Pch(Tp ) = О in (26) directly results in the simple 
equation 

271" /00 d (thX 1) 
g~hт = х -;- - х + wo/2Tp 

о 

(27) 

for Тр . Comparing (26) and (27), we obtain 

/
00 dx (thx _ th Jx2 + P~h/4T2) = ln Тр • 

х . / х2 + р2 /4Т2 Т 
о \1 ch 

Now from the expansions 

th. /х2 + р2 /4Т2 {1- з-1 [х2 + p~h/4T2], х:5 1 v ch f"V 

Jx2 + p~h/4T2 - х- 1 - Р~h/8т2хз, Х > 1 

we obtain the expression wblch we need 

(28) 

Recall that the well-known 3D result is t:.Bcs(T) = з.О6ТffJsVТffJs/Т - 1 (Ref. [17]) and 
the small difference сап Ье explained Ьу the аЬоуе approximation,wblch is suitable for the 
qualitative discussion below (see Sec. 4). 

The dependence (28) must Ье substituted in Eq. (22); because М/ТВКТ ~ EF /ТВКТ ~ 1 
and Pch(TBKT)/TBKT «: 1 when ТВКТ -+ Тр , this equation сап ье written as 

~ [1 _ ~ а ] /00 dx (_1 _ 
4Твкт 4Т1кт a(p~h/4T1KT) ch2 х 

о 

(29) 
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Finally, using the expansion in Pch(TBKT)/2TBKT in integral (29), the latter СаП Ье 
transformed to 

a€F [PCh(TBKT )] 4 = 1 
8Твкт 2Твкт ' 

(30) 

where the numerieal eonstant 

/

00 th2x _ x- I thx + 1 
а= dx 2x2 ehx ~ 1.98. 

о 

Combining now (28) and (30), we obtain the final simple relation between Тр and Твкт for 
the large earrier density 

Твкт ~ Тр (1- 2.34JTp /€F ) . 

In other words, Твкт as а funetion of n! (see Fig. 2) aetually approaehes Тр (or TJ!!s). 
With regard to the erossover region defmed Ьу the equality f.t ~ О, it is easy to see from 

Eqs. (21)-(24) and Fig. 2 that the former eorresponds to the densities when the temperatures 
Тр and Твкт are essentially different; otherwise, the pseudogap phase really exists here. It is 
important that beeause of the relatively, low for the phonon ease, the value of the energy 
of state of the bound pair e~h) and the very small region of negative f.t (Ref. [16]), the 
behavior TBKT(nf) '" €F hardly eorresponds to the Bose-Einstein eondensation and, in faet, 
is eonsistent for earrier densities when f.t > О (although probably f.t =J €F)' 

3) g4F =J О, gph =J О. 
This general ease eontains the boson exehange and unretarded interaetions. Тhe situation 

elosest to the real systems eorresponds to the ease g4F < О (or to some sort of short-range 
repulsion) but total interaetion has attraetive eharaeter; this means that at least g;h > Ig4F 1. 
Тhere are two qualitatively different eases again: i) low and ii) high earrier densities. 

i) €F/VJO ~ 1. ForthisinequalityweseethatTp satisfiesthesameequationTpln(fF/Tp) = 
= -еь/2, where now 

еь = -2W VJo ехр - * ( ) 
>'/<>'-JLс) ( 2) 

W +VJo л - f.tc 

is the two-body bound state energy, and л = g;hm/21Г and JLe = -g4Fm/21Г are the ordinary, 
effeetive, eleetron-phonon (attraetive) and Coulomb (repulsive) eonstants; the differenee л - f.te 
should Ье positive. We see that еь equals to e~4F) or e~M (ifW ~ VJo) for the previous limiting 
eases. Here Твкт = €F/8 and BTp(nf)/Bnf ~ 00 as n! ~ О. 

ii) €F/VJO ~ 1. In this limit the expression for Тр has the form 

(31) 

It follows from this expression that the dependenee оп n f is still weak, which results in ап 
inerease (for g4F > О) or deerease (for g4F < О) of Тр when fF 2:: VJо(Л - f.te)/ f.te, whieh is 
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direct consequence of the model with unretarded 4F interaction. The temperatиre Твкт is 
described Ьу Eq. (30) with Тр , defined Ьу (31). 

It must Ье noted, however, that with more realistic assumptions about Coulomb repulsion 
ftc, which сап Ье initially represented (see, for example, Ref. [22]) Ьу the matrix elements 

{ 
Ve, 

V(k k') = , о , 

1~(k)l, 1~(k')1 s Iftl 
1~(k)l, 1~(k')1 > Iftl 

it acquires the wellknown Tolmachev logarithmic correction or tums out to Ье screened at large 
n j. At low carrier densities such effect (screening) does not take place, so the local repulsion 
model сап Ье considered as а good approximation in the physical cases in which the Реrrni 
energy offree fermions is less than or not much greater than the characteristic boson frequency. 

4. CONCLUSIONS 

Тhe model proposed to describe the possible two-stage superconducting phase transition in 
2D (and quasi -2D) metallic systems was greatly very simplified in order to investigate their most 
typical and general features. Surprisingly, it gives some essential details which are characteristic 
of underdoped HTSC copper oxides. In particular, the experimental data show [30,31] that 
i) the critical temperature Те for low n j indeed is proportional to n j (which is simply €F), ii) Те 
«becomes saturated» when n! approaches «optimal doping» (i.e., carrier concentration when 
Те as а function of n! reaches its highest possible valur for the given compound), Ш) the ratio 
Те! €F in these and other «exotic» superconductors is as high as 10-2-10-1 which independently 
points to rather low Fermi energy, etc. (for details see Ref. [31]). In addition, the standard ratio 
(see Ref. [23]) 2!1(0)jTe сап Ье rougbly estimated as 2p(0)jTBKT; this value always exeeds its 

canonical BCS value and increases approximately rv n f 1/2 at small values of n j. 
Опе would think that the pecularities mentioned above receive their natиral interpretation 

оп the basis of the model for the metal with indirect ferrnion-ferrnion interaction if the 
temperatиre Твкт is the critical temperatиre Те (this isjustifiable for pиre 2D systems [13]). 
In а quasi-2D model the third spatial direction and the phase fluctuation stabilization give 
rise to the true temperatиre Те of ап ordinary homogeneous ordering arises [31,32] (see also 
Ref. [11]), but the region where Те =J Тр (or TeBCS ) сап Ье conserved [11]. 

As regards the other temperatиre (here esimated as Тр ), it is usиally deterrnined empirically 
as some temperatиre point Т* , where the observable spectral (or magnetic) properties of HTSCs 
begin to deviate appreciably from their standard for normal metallic state-behavior [5-9]. As 
а rule, such а deviation is attributable to the appearance offluctuating (short-lived) pairs. We 
showed, however, that а finite number ofthese pairs does exist or begins to Ье formed (rapidly) 
below some definite ОП the mean-field approximation) temperatиre Тр , which, as indicated 
above, does not correspond to а phase transition. Additionally, because of the fluctuations 
(including quantum fluctuations), р(Тр ) remains nonzero at Т > Тр • In this temperature region 
the number of pairs is exponentially small, and the fluctuations, which are superconducting 
(developed in the 2D case) сап contribute to the temperatиre behavior of different observables 
(even at large n! (Ref. [33]». The оnlу difference [roт the supposed dependence Т* оп the 
density of doped holes is the decreasing asymptotic behavior at n j. We have found that this 
collective temperatиre also decreases, while (see, for example, Ref. [31]) Т* is usually plotted 
as опе that increases with decrasing n j. It seems that such а behavior still has по satisfactory 
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explanation, especially for the 2D case, where the bound states do not demand, as in the 3D 
case а strong coupling. Nevertheless, it must Ье stressed that the аЬоуе limit, Tp(nf) -+ о 

when n f -+ О, cannot Ье considered as sufficiently regular because ofthe growth of the neutral 
ОР fluctuations; their role was disregarded, and they Ьесоте very important at sma11 values 
of n f' when, [or example, any col1ective behavior cannot exist. 

The model under consideration qualitatively correctly describes the explicit narrowing of 
the pseudogap area as the carrier density increases [such а narrowing results in а rather rapid 
confluence of the temperatures (Те and Тр and their experimental confluence, rendering them 
indistinguishable) in the BCS limit]. Оп the other hand, recent angle-resolved photoemission 
spectra unexpectedly showed [2,3] that, unlike Те, the superconducting gap even in the 
underdoped samples is essentially independent of doping. Such а difference to some extent 
also fol1ows from the superconducting transition scenario proposed Ьу us: Indeed, one-particle 
spectrum gap as а fиnction of n f is simply defined Ьу the value р(n f) (it was ealculated in 
Ref. [16]), which is proportional to Tp(nf), and the latter (see Fig. 2) very quickly becomes 
equal to {).BCS, or а eonstant, although ТВКТ (and Те) not quite yet reach this point. This 
behavior is а direct consequence of the evident sma11ness of the negative J.L (local pairs and/or 
stronglydeveloped fluctuations) region for the indirect ferrnion-ferrnion interaction model in 
which the bound states prove to Ье extremely subtle. 

Some important problerns still remain unresolved and must Ье investigated. These problerns 
are: more complete and deep development ofthe model, which must eonsider different kinds of 
dispersion laws for the intermediate bosons; more carefиl taking into account of the Coulomb 
repulsion; neutral ОР fluctuations, especial1y for low nf; generalization ofthe approaeh to the 
ease of nonisotropic pairing. Оп the other hand, high-Те eompounds must Ье studied in the 
frame of more realistic models, which inelude such pecularities of HTSCs as the rnagnetism of 
euprate layers, non-qudratic free carrier dispersion relation with possible van Ноуе singularities 
in the hole density of states, and, of course, spatial quasi-two-dimensionality. One of the most 
interesting problerns is to obtain doping and temperature dependent effective action, which is 
equivalent to the Ginzburg-Landau potential, beeause in тапу eases the phenomenology is 
more preferable. 

We would like to thank V. Р. Gusynin, S. G. Sharapov, and 1. А. Shovkovy for extremely 
interesting and usefиl diseussions coneerning the questions rised in this study. 
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