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The two-dimensional fermion system with the indirect Einstein phonon-exchange attraction
and additional local four-fermion interaction is considered. It is shown that as a result of the
attraction between fermions, the normal phase of such a system is divided into two regions. In
one of them, called the pseudogap region, the absolute value of the order parameter exists as
essentially nonzero value, but its phase is a random quantity. It is important that in the case of
attraction due to the phonons, this abnormal region appears at rather low carrier concentrations,
i.e., it decreases appreciably with increasing doping. The relevance of the results obtained for
high-temperature superconductors is speculated.

1. INTRODUCTION

The problem of an adequate description of the physical properties of high-temperature
superconductors (HTSCs) still remains one of the important problems of the modern solid-
state physics. It is connected with some peculiar properties of HTSCs. Among them there
are such problems as quasi-2D character of electronic (and magnetic) properties, a relatively
low and changeable carrier density ns, and its influence on the properties of HTSCs (see, for
example, the review article [1]).

At present, one of the widely discussed topics on HTSCs is the «pseudogap» (or «spin
gap» if magnetic subsystem of HTSCs is taken into account) [2-4], which is experimentally
observed, for example, as a loss in the spectral weight of quasiparticle (or spin) excitations
in the normal-state samples with lowered carrier density [5-7]. Corresponding samples reveal
some specific spectral, magnetic, and thermodynamic pecularities which are not yet sufficiently
understood. In addition, the striking difference between the low (underdoped) and high
(overdoped) density regions in HTSCs is hotly debated and is considered as one of the very
central and key questions in the physics of cuprates [8, 9].

The possibility of experimentally changing the carrier concentration in HTSCs created
a general theoretical problem of the description of the crossover from composite boson
superfluidity (low nf) to Cooper pairing (large n¢) when ny increases (in other words, a
description of the continuous transition from the so-called underdoped regime to the overdoped
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one). Such a crossover has already been studied in 3D and quasi-2D systems (see the review
articles [10, 11]). The 2D case has been considered [10, 12] at temperature T' = 0 in connection
with the Hohenberg-Mermin-Wagner theorem, which forbids any homogeneous (i.e., long-ran-
ge) order in pure 2D systems at 7" # 0 due to the long-wave fluctuations of the charged order
parameter (OP).

The problem of the inhomogeneous condensate (the Berezinskii-Kosterlitz-Thouless (BKT)
phase) formation was also considered, despite some difficulties in the 2 + 1 relativistic field
models [13], where the fermion concentration effects are irrelevant. At the same time, these
effects were studied in the nonrelativistic model in Ref. [14], for example, without allowance
for the existence of the neutral order parameter p. Its consideration proves to be very important
(see Ref. [15]) and, in fact, results in the formation of an equilibrium region with p # 0, which
is mainly located in the phase diagram of a system between the ordinary normal phase and
the superconducting (here BKT) phase. Because of the fluctuations of the OP phase, this new
region of the system, which is a part of tha normal phase, is of course a nonsuperconducting
phase.

In this paper an attempt is made to study the crossover and the possibility for the appearance
of the above-mentioned new region in the 2D fermion system with a more realistic indirect
(phonon) and also a direct (local) four-fermion (4 F) interactions. Thus, this study is to a certain
extent a specific and nontrivial generalization of the preliminary short communication [15],
where this abnormal region was studied for 4F' case only, and of the paper [16], in which the
Frohlich model was used to study the crossover at T = 0. As will be seen in the boson exchange
model (in contrast with the pure 4F case), the new region exists when n; is rather small,
which allows one to compare this result qualitatively with the underdoped HTSC compounds.
It is actually more interesting to take into account a more realistic situation with an indirect
attraction and some kind of local repulsion, which may in principle correspond to the short-
range (screened) Coulomb interaction between carriers. In general, however, we assume that
4F interaction can be repulsive as well as attractive. Besides, the case of total repulsion allows
one to explore the fermion-antifermion (electron-hole) pairing channel, which, despite physical
difference, can be formally described in the same manner.

2. MODEL AND BASIC EQUATIONS

Let us choose the simplest Hamiltonian density in the form

2
H(z) = -y} (z) (5'% + u) o (2) Hon (0(2))
+gpn ¥} @Ve ()0 (@) — garpl @] @ @)1 (@), (@ =T,1), (1)

where 9,(z) is the fermionic field with an effective mass m and spin ¢ =T, ], p is the
chemical potential of the fermions which fixes ny, ¢(z) is a phonon field operator, and g,n
and g4F are the electron-phonon and the 4F interaction coupling constants, respectively. As
was indicated above, g4r can be positive (fermion-fermion attraction) or negative (fermion-
antifermion attraction); in Eq. (1) we set h = kg = 1.

In Eq. (1) Hp, is the Hamiltonian of free phonons, which can be described by the
propagator
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w

Q2 +wi’

n

D(Q,) = — ()

where Q,, = 2naT (n is an integer) is the Matsubara frequency [17]. As follows from (2), the
propagator D(i€,,) was chosen in a very simple form; here wj is the Einstein (dispersionless)
phonon frequency. This choice was made for several reasons. First, this propagator makes
it possible to integrate the equations which we obtained. Second, the optic phonon and
quadrupolar exciton modes with their relatively weak dispersion are widely considered as
exchange bosons which can contribute to the hole-hole attraction in HTSCs [1, 18, 19]. Third,
the qualitative results concerning retardation effects do not strongly depend on the model
studied. On the other hand, the propagator (2) for the model under consideration can hardly
be used for quantitative description of the cuprates and their spin-wave branches which, as is
wellknown, obey the linear dispersion law.

It is important that the Hamiltonian (1) is invariant under global gauge transformations
of two types [20]:

Yo (2) = Yo (@)™, Pl(z) = Pl (z)e™* 3)
and

PYi(z) = Pr(@)e™, P (@) — P (x)e™™,

Pl(@) - Pl@e™, ¥l@) - p(@)e™, )

which must be taken into account. The phase « in (3) and (4) is real.

To calculate the phase diagram of a system it is necessary to find its thermodynamic
potential. It can be calculated by making use of the auxiliary bilocal field method (see, for
example, Ref. [21]), which is a generalization of the standard Hubbard-Stratonovich method
for the boson-exchange case. The grand partition function Z can then be expressed in terms
of the path integral over the fermionic 1, (z) and the complex auxiliary fields (for example,
#(z,3') ~ (Pl @)]E@))).

In the case of model (1) it is convenient, following Ref. [22], to introduce the bispinor
¥l (@) = @] (@), %] @), %1 (2), ¥, (@) )

and its Hermitian conjugate, which here are the analogs of the Nambu spinors [23]. After
substituting (5) in (1), we can write the Hamiltonian in the form

2
H) = —1¥(@) (% + u) 18 7m.%(@) - 30, ¥ @] © 7. ¥@)olx) -
— 0V @I @ Y@V @] @ T.¥@) + o@D @)p(a), ©)

where I ® 7, is the direct product of the unit I and Pauli 7, 2 x 2 matrices, and D(z) is defined
by (2). In such a representation of the Hamiltonian (6) and the field variables (5) the Feinman
diagram technique is applicable in its ordinary form [22]. Thus, after standard exclusion of the
boson field ¢(z), the Lagrangian of the system can be expressed by the formula
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1 Avgs
L(zy, 91,2, 92) = '2"I’T(1C) [—37- + (% + u) I® Tz] ¥(z) —

1
- Z\P(CUI)\PT(ZII)I ® T. K (21,915 T2, Y2)¥(@2)¥T (1) ] ® 7. )

The kernel K is the effective, nonlocal, particle-particle interaction function which is explicitly
defined in the momentum space below.

In order to explore the pairing possibility in the system we introduce the bilocal auxiliary
field or OP,

d(@1,91) = . K (@1, 91 T2, p)¥ (@)Y () @ 7, =
=i+ ® Ty¢:h(xl7yl) —IT_Q® Ty¢ch(xlayl) —T:® I¢ins(zlayl)a (8)

where 7+ = (1, +i7y)/2, T = (1, —iTy)/2, and the integration over x, and y; is assumed. Here
Peh ~ (Q/JI'I,DD and ¢;n, ~ (d)}wT) are the electron-electron (charged) and the electron-hole
(insulating) spin-singlet OP, respectively (we ignore the nonzero spin pairing). The auxiliary
fields ¢, and ¢;,, are responsible for the dynamic symmetry breaking (in accordance with (3)
and (4), respectively).

Adding to (7) a zero term,

1 ) _
7 [$@Ly) — K1, 915 i, Y)Y DI ® 7.] K~ (@1, y1; 22, 1) [8(x2, 92) —
—K (22,923 75, 1) ¥(@5) ¥ () ® 7],

to cancel the 4F interaction, we obtain the Lagrangian in the form

1 V2 1
L(z1,y1522,1) = E‘PT(x,) [—37 + (ﬁ + IL) I®T, — §I®Tz¢($1,y1) Y(y1) +

1 _
+ Z¢($1,y1)K @1, 915 22, 12) (@2, 12). )
Let us transform the expression for the kernel K; in the momentum space it then is

K(zy,y1;702,92) =

- d3Pd3p1d3p2
@my

Tty Taty

Kp(p1;p2) exp | —iP( 5 >

) —ipi(x; — Y1) — ipaxs — yz)] )

where p; = (p;,w;) (2 = 1,2) and P = (P,w) represent the relative and the center-of-mass
momenta, respectively. According to the definition, the kernel K p(p;; p,) is in fact independent
of P (we can therefore omit the index P below) and acquires a simple form

K(pi;p2) = g5 D@1 — p2) — g4, (10)

which is used in (9). The last expression evidently demonstrates that the total character of the
effective particle-particle interaction, as it always takes place in such a situation [23,24], is
defined by a possible competition between the first (retarded) and second (nonretarded) terms
in (10) or, in other words, by their common action.

" The partition function can be written as
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Z= / DY DY D D exp [-,@ / Lyt v, ¢*,¢)dacdy] =
= [ @694 exo-patz, =1,
where Q[<] is the thermodynamic potential which in the «leading order» is
BQIF] = -Tr [Lng—l + %(¢K-‘¢)] , | (11)

where Tr includes 2D spatial r and «time» 0 < 7 < [ integrations, as well as the standard
trace operation. The full Green’s function of the system is

1 1 V2
G =—|0,—|—t+tplI®r,—¢|. (12)
2 2m
From (11) and (12) we obtain to the ¢-equation (the Schwinger-Dyson equation)
6Q d*kdw
_— = — - . k =(.
55 =0 [ G Kok 0Tk w) =0 (13)

Substituting (13) into (11), we obtain the expression for Q(F):
BUF) = —TriLnF ' + —;-Tr?Kg.

This expression is the wellknown Cornwell-Jackiw-Tomboulis formula for the effective action
in the one-loop approximation [25]. Using (13), we can rewrite this expression in the form

BF) = —Tr |LnF + %[ggo—l -1]. (14)

As was shown by Thouless et al. [26] (see also Ref. [15]) in the 2D case it is more natural
to use a new parametrization of the charge OP (Eq. (8)) — its absolute value (modulus) and
the phase. In other words?:

ben(T,Y) = pen(@, y) exp [—i (B(z) + 6(y)) /2] , (15)

where p.p, is real. As for p;,s, it corresponds, as can be seen from Eq. (8), to a one-component
OP and therefore does not characterize the phase factor.

As will be shown below, with the given kernel (10) only one (¢.s or ¢;,,) OP can arise.
Therefore, it is necessary to make, simultaneously with (15), the spinor transformation (in
accordance with (3) and (4))

¥i(z) = x!(z) exp(i6(z)] ® 7,/2), (16)

Y Tt should be noted that Efetov and Larkin, in fact, were the first to use such a parametrization. They
studied [27] the effect of interchain hopping and OP phase fluctuations on the superconducting transition
temperature in 1D superconductors.
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¥i(z) = x'(z) exp(i0(z)T, ® T, /2) (17)

(the spinor x(z) is real and formally corresponds to chargeless fermions). Below we shall
obtain the #-corrections for the ¢., case only, but the equations for p;,s are the same up
to the substitution p., — pins. The reason is that when K(p;,p;) describes the attraction
(charge pairing channel), the symmetry of the Lagrangian under operations (3) proves to
be crucial for the representation (16); while when K(p;,p,) corresponds to the repulsion
(chargeless, or electron-hole, pairing channel) the symmetry (4) is already important and the
representation (17) must be used as a «working» representation. With this difference, the rest
of the calculations for p’s are almost identical but the «phase effects» persist for the charge
channel only. This channel, the most interesting one for metallic (superconducting) systems,
we shall therefore consider in detail.
In the variables (16) the Green’s function (12) transforms to

1 V2 .
g ——5 8,—I®‘rz -2—m—+p, +1’TI®T'ypch—

2 2
—Ten(6.0+Y8) irer (Y0 + YN | 2 6oy — z08).  (19)
2m 2m m

Using (18) under assumption that the 6 gradients are small (the hydrodynamic
approximation) and taking them into account up to the second order, we can divide the effective
potential (14) into two parts: Q = Qgin(pch, VO)+Qp0t(pcr), Where in the (V6)? approximation

BQrin(pen, VO) = Tr [Gz —Goz + %G):Gz -
- %GOZGOE +7, ® I%ipchG(GZ + GxGy)| . (19)

Assuming by analogy with Ref. [27] (see also Ref. [28]) that p.,(z,y) is homogeneous? after
rather tedious but otherwise straightforward calculation, we obtain from (19) the expression

B
T
Quinlpen,8) = 5 [ dr [ &I, pontu, THCOSY, 20)
0

where

J(IL, T’ pCh(ﬂ') T)) =

NEYS
=%(\/p2+pzh+p,+2Tln 1 +exp (____ﬂ' pCh):|—

T
T P28 ] 7 2+ p)2T
B Y S — d 21
= [ 4T? 3(p%, J4TY) e AT @)

—u/2T

2 Equations for p., and pin, are obtained below and, as was shown in Ref. [16], it is an admissible
approximation to put in them the value p. (and pin,), which is independent of spatial and time variables.
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plays the role of the neutral OP stiffness. Note that in comparison with the retardation-free
4F model [15], the last expression contains one more term: the term with the derivative.
The equation for the temperature T of the BKT transition can be written after direct
comparison of the kinetic term (20) in the effective action with the Hamiltonian of the 2D
XY model, which formally has the identical form [29]. It is therefore easy to conclude that

7r
EJ (4, TBrT) per(t, TBKT)) = TBKT. (22)

The basic difference between this equation and the one for the XY model is the inherent
dependence of the former on p (or n¢) and pcp.

To complete the set of self-consistent equations, which allow one to trace an explicit
dependence of Tgr on ny, we also give the equations for p.), and p. In particular, a simple
equation for p.p(iw,) is Eq. (13) with V@ = 0, i.e., the Green’s function G of the neutral
fermions substitutes &, so that (13) in the frequency-momentum represantation takes the form

perliwn) \ _ o= [ @k ([ —pen(iwn) K Wn,Wm)
(Pins(iwn)) Tm;w/ Q2n)? (+pins(iwm)> w2, +&(K)+p2, ((wm) 02, ,(Gwm)’ (23)

ins

where w, = (2n + 1)nT is the Matsubara fermionic frequency [23], £(k) = k?/2m — u, and
the kernel K (w.,,wy) is defined above.

We gave the final equations for both OPs, p.;, and p;,,, in order to show that they indeed are
the same but alternative if the kernel K changes sign. The analytic solution of these equations,
as well as obtaining Eq. (22) and the number equation needed, can be done by assuming that
pen(iwy,) does not depend on the Matsubara frequencies (see the footnote on page 6).

Making use of this approximation, the equation which follows from the ordinary condition
V=10Q[Z]/0p = —ny (V is the volume of the system) and which is crucial for the crossover
description must be added to Egs. (22) and (23) for self-consistency. We thus obtain

T+
\J12 + o+ p+ 2T |1+ exp (—%ﬁ)] = 2, (24)

where ep = wns/m is the Fermi energy of free 2D fermions with a simple quadratic dispersion
law. Thus, in the case under consideration all unknown quantities, p.p, i, and Tgg T, are the
explicit functions of ny.

3. ANALYSIS OF THE SOLUTIONS

In contrast with the standard (with the T-independent unit vector) XY model, in the
superconducting model two characteristic temperatures can be introduced: T),, where formally
the complete OP given by (8) arises but its phase is a random quantity ¥, i.e., (¢(z,y)) = 0
and another temperature, Tgx7 < T,, where the phase of the OP becomes ordered, so that
(¢(z,y)} # 0. In other words, we define the temperature T, as the temperature of a relatively
sharp change in the neutral OP, which does not break any real symmetry. Therefore, this

» Because pen and pin, cannot exist simultaneously (see Eq. (23)), the index p is the only OP, which
appears at a definite sign of the kernel (10).
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Fig. 1. The T-n; phase diagram of the 2D metal with 4F fermion attraction. The lines correspond
to the functions T, (ny) (the dotted curve) and TpkT(n ) (the solid curve) at garm/2m = 0.5. Figures
I, II, and III show the regions of the normal, pseudogap, and superconducting phases, respectively

Fig. 2. The T-njy phase diagram of the 2D metal with indirect intercarrier attraction for A = 0.5.
Similarly to Fig. 1, the curves correspond to the functions T,(nys) and Tk T ) and separate the same
regions

temperature (unlike T’z i1 is not the phase-transition temperature. Nevertheless, it gives (see
Refs. [27,28]) a convenient scale for the description of the neutral OP temperature behavior.
Recall that according to the equations obtained above both these temperatures directly depend
on the carrier density in the system.

The «critical» temperature T, can be found, for example, from Egs. (21)-(24) by setting
pcr = 0 (in accordance with the derivation of these equations, it corresponds to the mean-field
approximation®). As a result, with a decrease in temperature, a 2D metal (similarly to a
1D metal [27]) passes from the normal phase (T' > T,) to another phase, where the average
homogeneous (charged) OP (@(z, y)) = 0 or, equivalently, the superconductivity is absent, but
chargeless OP p.;, # 0. It is evident that the pseudogap is formed just in the temperature region
Terr < T < T,, because, as follows from the formulas cited above (see, e.g., Egs. (21)—(24)),
Peh = pcn(T) acquires all the spectral characteristics of a 2D metal in the same way as the
superconducting gap A(T') enters into corresponding expressions for ordinary superconductors.
It justifies why this region can be called «the pseudogap phase». The density of states near
er in the pseudogap phase is definitely lower than that in the region of the normal phase with
pcr = 0, but does not equal zero as in the superconducting phase. The latter must be checked by
direct calculation of the one-particle fermion Green’s function, which is most likely a separate
problem that is not considered here.

The phase diagram of a system can be found from Egs. (21)-(24). The quantities T, (ny)
and Tgxr(nys) behave differently for different correlations between interaction constants.

1) gar > 0, gpr = 0 (an unretarded interaction).

This case has been partly analyzed in Ref. [15]. It corresponds to fermion-fermion pairing
due to the local attraction. Note (see Eq. (23)) that in this case (or in the case of attraction

9 Despite the fact that the temperature T, is not identical to the BCS critical temperature T{;”CFS, they
coincide for the large carrier density only (see below).
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between carriers) the fermion-antifermion (insulating) pairing channel is absent, i.e., p;ns = 0.
The corresponding phase diagram is shown in Fig. 1. We see that the pseudogap phase exists
at any carrier concentrations, that the temperature width of this phase region weakly increases
with increasing ns, and that the BKT phase always begins to form when p.,(Tg k) is finite,
which means that fluctuations of the latter near and below Ts T are not essential.

As e — 0, the temperature of the BKT phase formation is defined by the equality Tg g =
=¢€r/8, and T, as a function of ny can be found from the equation

T,In(T,/ep) = W exp(—4n/gspm) = —e' 0 /2,

(4F) is the two-fermion bound

which follows from (23) (W is the conduction band width, and ¢;
state energy, which is always different from zero in the 2D case)

2) gar =0, gpn 7 0 (a pure indirect interaction).

This is one of the most interesting cases because it corresponds to the widely accepted
electron-phonon (or the BCS-Bogolyubov-Eliashberg) model of superconductivity. The
numerically calculated phase diagram is shown in Fig. 2. It shows that a comparatively large
region with the pseudogap phase exists at rather low carrier concentrations only, and that its
temperature area shrinks when ny — oco. Such a behavior qualitatively agrees with that which
takes place in real HTSCs [5-8] and demonstrates that a pseudogap (and also a spin gap) is
mainly observed in underdoped HTSC samples.

It is not difficult to conclude that the asymptotic behavior of T,,(ns) and Tgxr(ny) has
the following forms:

i) when the ratio ep /wy < 1 (very low free fermion density or the local pair case) the first

one satisfies the equation
T, In(T,/eF) = woexp(—4n/g2,m) = —e™ /2,

which immediatedly results in 0T,(ns)/0n¢|n, .0 — oo (here similarly to the 4F case it is
convenient to introduce the bound state energy s(” ) for the phonon attraction). At the same
time, the temperature Tpgr in the limit ny — 0 has identical dependence on the carrier
density and, as above, TgxT = €r/8. This simply means that here again it is proportional to
the number n/2 of composite bosons; in this density region T, /Tgxr > 1 (this inequality
is also satisfied for the pure 4F interaction).

ii) in the opposite case er /wy > 1 (very large fermion density or the Cooper pair case)
we easily obtain the standard BCS value:

T, = 2ywy/7) exp(—27r/gzz,hm) = ng’; = (2y/7)Apcs

(ABcs is the usual one-particle BCS gap at T = 0). In other words, in this limit the temperature
T, becomes equal, as it should be, to the BCS value”. The T asymptotic behavior here
is not so evident and requires a more detailed consideration.

First of all, it is natural to assume that for large ny the temperature T — T,. It is
then necessary to check the dependence of p on T as T' — T,,. For this purpose Eq. (23) can
be transformed to

 Being equal (m the mean-field approximation only), these temperatures (T, and T BC’S) are in fact
different: if TBC s immediately decreases to zero as the fluctuations ¢ and ¢* are taken into account, T,
does not decrease and is renormalized only when p fluctuates.
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gphm

thy/22+ gL /4T _ thy/a2+ gL, JAT2 — thwn/2T)
VT + P2, [4T? 222+ p2,, [4T% — wy[2T)

th \/x2 + p2,, [4T7 + th(wo/2T)
222+ p2, JAT2 +wy[2T) )

(Here it was assumed that in the concentration region under consideration the ratio /T, ~
~ ep /T, > 1 because p ~ e [10-12,16].)

Since usually wy/T, > 1, only very small = give the main contribution to the integral (25)
(this is seen from the limit p/T, — 0, when e /wy — 00). Therefore, it takes the approximate

form
T [thy/zZT 22, JaT? 1
n / dm( 2+ pen/4T? ) 26)

Gpn™ o2+, [4T?  ©+wo/2T

On the other hand, the accepted condition p.»(T},) = 0 in (26) directly results in the simple

equation
2 T /th 1
™ thz
= el 7
gzhm /dw ( z x+w0/2Tp) 27)
0

for T,,. Comparing (26) and (27), we obtain

]od:z thz th\/:z:2+p2h/4T p
J z Val+ pl, [4T?

(25)

Now from the expansions

th\/aZ+ g, a7 [ 137" [+ 0L /4T7], z <1
VEE+ L [ATE | g - P2, /8T%23, z>1

we obtain the expression which we need

pen(T) ~ 2.62T,+/T,/T — 1. (28)

Recall that the well-known 3D result is Apcs(T) = 3.06TAF o1 /TME /T — 1 (Ref. [17]) and
the small difference can be explained by the above approximation,which is suitable for the
qualitative discussion below (see Sec. 4).

The dependence (28) must be substituted in Eq. (22); because po/Texr =~ €r/TorT > 1
and pr(Texr)/TerT < 1 when Tt — T, this equation can be written as

)

F_|1- Lo 0 ]/dx (——1 -
4TkT 4T} r 0(p24 /4T k) J ch’z

=1. 29)

1
o’ vVt + pch/4TBKT)
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Finally, using the expansion in p.n(TerT)/2TBKT in integral (29), the latter can be
transformed to

aer [Pch(TBKT)J4 -1, (30)

8Tprr | 2TBKT

where the numerical constant

th’z —z~!thz + 1
a= /dac 722cha ~ 1.98.

0

Combining now (28) and (30), we obtain the final simple relation between T, and Tgx for

the large carrier density
TBKT ~ Tp (1 - 2-341/Tp/5F) .

In other words, Tpyr as a function of ny (see Fig. 2) actually approaches T, (or Tg’fcffg).

With regard to the crossover region defined by the equality p ~ 0, it is easy to see from
Egs. (21)—(24) and Fig. 2 that the former corresponds to the densities when the temperatures
T, and T are essentially different; otherwise, the pseudogap phase really exists here. It is
important that because of the relatively, low for the phonon case, the value of the energy
of state of the bound pair eiph) and the very small region of negative u (Ref. [16]), the
behavior TpgT(ns) ~ er hardly corresponds to the Bose-Einstein condensation and, in fact,
is consistent for carrier densities when p > 0 (although probably i # ep).

3) gar 7 0, gpn 7 0.

This general case contains the boson exchange and unretarded interactions. The situation
closest to the real systems corresponds to the case g4 < 0 (or to some sort of short-range
repulsion) but total interaction has attractive character; this means that at least gf,h > |gar|
There are two qualitatively different cases again: i) low and ii) high carrier densities.

i) e /wo < 1. For this inequality we see that T, satisfies the same equation T}, In(ep /T,) =

= —¢3/2, where now
MA=pE)
- _ wo _ 2
€p 2W(W+wo) exp( A"#E’)

is the two-body bound state energy, and A = g;hm /2m and pf = —gapm /27 are the ordinary,
effective, electron-phonon (attractive) and Coulomb (repulsive) constants; the difference A—p7,
should be positive. We see that ¢, equals to €§4F ) or sg” k) (if W > wy) for the previous limiting
cases. Here Tgxr = €r/8 and 0T,(ns)/Ony — oo as ny — 0.

ii) ep/wo > 1. In this limit the expression for T}, has the form

NS
T, = %\/w0|sb| (ZFJ) ) (31)

It follows from this expression that the dependence on ny is still weak, which results in an
increase (for g4 > 0) or decrease (for g4 < 0) of T, when e > wo(A — pg)/ ne, which is
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direct consequence of the model with unretarded 4F interaction. The temperature Ty is
described by Eq. (30) with T, defined by (31).

It must be noted, however, that with more realistic assumptions about Coulomb repulsion
u&» which can be initially represented (see, for example, Ref. [22]) by the matrix elements

Ve, [E®)],[6Q)] < |ul
0, e, &) > [p|

it acquires the wellknown Tolmachev logarithmic correction or turns out to be screened at large
ng. At low carrier densities such effect (screening) does not take place, so the local repulsion
model can be considered as a good approximation in the physical cases in which the Fermi
energy of free fermions is less than or not much greater than the characteristic boson frequency.

Vi, k') = {

4. CONCLUSIONS

The model proposed to describe the possible two-stage superconducting phase transition in
2D (and quasi-2D) metallic systems was greatly very simplified in order to investigate their most
typical and general features. Surprisingly, it gives some essential details which are characteristic
of underdoped HTSC copper oxides. In particular, the experimental data show [30, 31] that
i) the critical temperature 7T for low n ¢ indeed is proportional to n ¢ (which is simply er), ii) T
«becomes saturated» when n; approaches «optimal doping» (i.e., carrier concentration when
T, as a function of ny reaches its highest possible valur for the given compound), iii) the ratio
T, /e in these and other «exotic» superconductors is as high as 10~2—10~! which independently
points to rather low Fermi energy, etc. (for details see Ref. [31]). In addition, the standard ratio
(see Ref. [23]) 2A(0) /T, can be roughly estimated as 2p(0)/Tpg; this value always exeeds its
canonical BCS value and increases approximately ~ n;l/ 2 at small values of n £

One would think that the pecularities mentioned above receive their natural interpretation
on the basis of the model for the metal with indirect fermion-fermion interaction if the
temperature T'g g is the critical temperature T, (this is justifiable for pure 2D systems [13]).
In a quasi-2D model the third spatial direction and the phase fluctuation stabilization give
rise to the true temperature 7T, of an ordinary homogeneous ordering arises [31, 32] (see also
Ref. [11]), but the region where T, # T, (or TZ¢5) can be conserved [11].

As regards the other temperature (here esimated as T},), it is usually determined empirically
as some temperature point 7, where the observable spectral (or magnetic) properties of HTSCs
begin to deviate appreciably from their standard for normal metallic state-behavior [5-9]. As
a rule, such a deviation is attributable to the appearance of fluctuating (short-lived) pairs. We
showed, however, that a finite number of these pairs does exist or begins to be formed (rapidly)
below some definite (in the mean-field approximation) temperature T, which, as indicated
above, does not correspond to a phase transition. Additionally, because of the fluctuations
(including quantum fluctuations), p(7},) remains nonzero at T' > T,,. In this temperature region
the number of pairs is exponentially small, and the fluctuations, which are superconducting
(developed in the 2D case) can contribute to the temperature behavior of different observables
(even at large ny (Ref. [33])). The only difference from the supposed dependence 7 on the
density of doped holes is the decreasing asymptotic behavior at ny. We have found that this
collective temperature also decreases, while (see, for example, Ref. [31]) T™* is usually plotted
as one that increases with decrasing ns. It seems that such a behavior still has no satisfactory
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explanation, especially for the 2D case, where the bound states do not demand, as in the 3D
case a strong coupling. Nevertheless, it must be stressed that the above limit, T,(ns) — 0
when ny — 0, cannot be considered as sufficiently regular because of the growth of the neutral
OP fluctuations; their role was disregarded, and they become very important at small values
of ny, when, for example, any collective behavior cannot exist.

The model under consideration qualitatively correctly describes the explicit narrowing of
the pseudogap area as the carrier density increases [such a narrowing results in a rather rapid
confluence of the temperatures (T;, and T, and their experimental confluence, rendering them
indistinguishable) in the BCS limit]. On the other hand, recent angle-resolved photoemission
spectra unexpectedly showed [2,3] that, unlike T., the superconducting gap even in the
underdoped samples is essentially independent of doping. Such a difference to some extent
also follows from the superconducting transition scenario proposed by us: Indeed, one-particle
spectrum gap as a function of ny is simply defined by the value p(ny) (it was calculated in
Ref. [16]), which is proportional to T,,(ny), and the latter (see Fig. 2) very quickly becomes
equal to Agcg, or a constant, although T (and T,.) not quite yet reach this point. This
behavior is a direct consequence of the evident smallness of the negative x (local pairs and/or
strongly developed fluctuations) region for the indirect fermion-fermion interaction model in
which the bound states prove to be extremely subtle.

Some important problems still remain unresolved and must be investigated. These problems
are: more complete and deep development of the model, which must consider different kinds of
dispersion laws for the intermediate bosons; more careful taking into account of the Coulomb
repulsion; neutral OP fluctuations, especially for low nf; generalization of the approach to the
case of nonisotropic pairing. On the other hand, high-T, compounds must be studied in the
frame of more realistic models, which include such pecularities of HTSCs as the magnetism of
cuprate layers, non-qudratic free carrier dispersion relation with possible van Hove singularities
in the hole density of states, and, of course, spatial quasi-two-dimensionality. One of the most
interesting problems is to obtain doping and temperature dependent effective action, which is
equivalent to the Ginzburg-Landau potential, because in many cases the phenomenology is
more preferable.

We would like to thank V. P. Gusynin, S. G. Sharapov, and 1. A. Shovkovy for extremely
interesting and useful discussions concerning the questions rised in this study.
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