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1. INTRODUCTION

The EINSTEIN, EXOSAT and ROSAT observatories measured surface temperatures of
certain neutron stars and put upper limits on the surface temperatures of others (see Ref. [1]
and further references therein). Data on the supernova remnants in 3C58, the Crab, and
RCW103 indicate rather slow cooling, while the data for Vela, PSR 2334+61, PSR 0656+14,
and Geminga point to significantly more rapid cooling. In the so-called standard scenario
of neutron star cooling, the most important channel up to temperatures T < 108-10° K
corresponds to the modified URCA process nn — npe. Rough estimates of its emissivity
were first made in Ref. [2]. Friman and Maxwell [3] recalculated emissivity of this process in
a model, in which the nucleon-nucleon interaction is treated with the help of slightly modified
free one-pion exchange. Their result for emissivity, sf M proved to be an order of magnitude
higher than previously obtained. The value £ was used in various computer simulations
resulting in the standard cooling scenario; see Ref. [4], for example. Subsequent works [5-7]
took in-medium effects into account in N N -interaction, showing that emissivity of the modified
URCA process depends heavily on neutron star mass. For stars of more than one solar mass,
the resulting emissivities turned out to be substantially higher than the values given by ef M

These and other in-medium effects were recently incorporated in the computer code [8]
leading to a new scenario of neutron star cooling. For low-mass stars numerical results of the
new and standard scenarios more or less coincide. In the present work, we continue to look
for enhanced reaction channels. To demonstrate the efficiency of new reaction channels, we
compare the results with emissivity af M which dominates cooling in the standard scenario
over the temperature range under consideration.

Besides the modified URCA process, the standard scenario numerical codes also include
neutron and proton bremsstrahlung processes nn — nnvv and np — npvy, which in
all models lead to a somewhat smaller contribution to emissivity than the modified URCA
process [3, 5, 6,9]. Also included are processes that contribute to emissivity in the neutron star
crust. These are plasmon decay v,; — v v [10, 11], electron bremsstrahlung on nuclei e A —
e Avv [11-13], electron-positron annihilation eet — v [14,15], and photon absorption
by electrons ve — ewvp [15-17]. Numerical simulations show that the latter two processes
contribute only negligibly to the crust neutrino emissivity at the temperatures under discussion
in this paper and they always contribute negligibly to the full neutron star’s emissivity; see Fig. 7
of Ref. [11].

When the temperature decreases, it is energetically favorable for neutrons to pair in the
neutron star interior and inner crust and for the protons to pair in the star’s interior. In a
system with nucleon pairing the emissivity of the modified URCA process is suppressed by a
factor exp[—(A, + A,)/T1] [3], where A, and A, are the respective neutron and proton gaps,
defined by

a0 = 80 " Lo~ 1)
c,t
(here A(z) is the Heaviside step function, ¢ = {p,n}, and T, ; is the corresponding critical
temperature for nucleon pairing). At temperatures T < T ,,T. n the process becomes
marginal. Nevertheless, this star’s interior process still dominates those of crust cooling up
to temperatures T' ~ 108-10° K, depending on the values of the gaps; see Fig. 7 of Ref. [11].
For T < (1-3) - 10® K cooling in the standard scenario is largely dominated by the photon
emission from the neutron star surface.
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In the present work we look for more efficient cooling processes at T' < T p, Tt ,. We
analyze photon decay into neutrino-antineutrino pairs. The related processes ye — e v and
~vp — p vy turn out to be suppressed by several orders of magnitude compared to those under
discussion, due to the lack of free final states in degenerate fermionic systems, and are therefore
not considered here. The contribution of photon decay via electron—electron-hole intermediate
states for the case of a normal electron plasma in white dwarfs and neutron star crusts has been
calculated by several authors (see Ref. [10] for further references). In an ultrarelativistic electron
plasma, a photon acquires an effective in-medium plasmon dispersion law with a gap equal to
the electron plasma frequency wy; ~ 2e g,/ V/3x, where e is the electron charge and 1t denotes
the electron chemical potential (we employ units with i = ¢ = 1). Therefore, the contribution to
emissivity of the cited process is suppressed by a factor exp(—wy;/T'). Nevertheless, in white
dwarfs and neutron star crusts, the electron density is not too high, and the process is still
effective. In neutron star interiors, the electron density p, is equal to the proton density p, by
virtue electrical neutrality, and along with [ stability one obtains a relation for the total density

2
pe = pp = 0.016 py (ﬁ) , D
Po

where py ~ 0.17 fm—3 denotes the nuclear saturation density, and we use the values of
the neutron and proton Fermi momenta [3], pr, =~ 340(p/ po)'/? MeV and DFp = He ™
=~ 85(p/po)*/> MeV. Thus, at typical densities for neutron star interiors p 2 po, the value of
the electron plasma frequency is high, e.g., wp(po) =~ 4.7 MeV for p ~ py, and at temperatures
T < T¢pn,Tep < wp the process v, , — ee~! — v, where the superscript —1 denotes the
hole, is strongly suppressed. We therefore seek another process that can contribute to rapid
cooling.

We exploit the fact that, contrary to a normal electron plasma, in superconducting proton
matter, due to the Higgs—Meissner effect, the photon acquires an effective mass that is small
compared to the plasmon frequency. In the region of proton pairing at T' < T, ,, we therefore
find that new decay processes of massive photons (v,,) via electron—electron-hole (ee~!) and
proton-proton-hole (pp~') intermediate states to neutrino-antineutrino pairs, v,, — ee~'+
+pp~! — vy, | = {e, u, 7}, can dominate neutron star cooling at certain temperatures. These
processes are determined by the diagrams

v v v
. S — + -
v v v

In the first diagram, the solid lines in the loop are related to Green’s functions of nonsuperfluid
relativistic electrons. In the second and third diagrams, the solid lines in the loops correspond
to superconducting nonrelativistic protons. The distinct orientations of arrows indicate that the
second diagram is calculated with so-called «normal» Green’s functions ——, which become
the usual Green’s functions for normal Fermi liquids in the limit A, — 0. In contrast, the
third diagram is built up with the «anomalous» Green’s functions +—— and ———, which are
proportional to the proton gap. Therefore the contribution of the third diagram vanishes for
A, — 0. The fat vertices in the second and third nucleon diagrams include nucleon-nucleon
correlations.
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The contribution to neutrino production matrix elements of the third diagram and terms
proportional to the gap in the second diagram is as small as (A, /ef,)? < 1 for T < T, < €Fp
(here ep, is the proton Fermi energy), compared to the contribution of the second diagram
calculated with the Green’s functions of the normal Fermi liquid. To this same accuracy, we
drop the third diagram and use the Green’s functions of protons for the normal Fermi liquid? in
the second diagram. We thus calculate emissivity according to the first two diagrams, assuming
A, = 0 in the second diagram but taking into account that the photon dispersion relation is
changed due to proton superconductivity.

Our paper is organized as follows. In Sec. 2 we show that in the region of proton
superconductivity due to the Higgs—Meissner effect, the photon spectrum is rearranged, and
instead of the plasmon gap the photon acquires a mass, which is now determined by the density
of paired protons. In Secs. 3 and 4 we demonstrate the efficiency of these new processes in the
course of neutron star cooling. The emissivity corresponding to the above diagrams is calculated
and compared with emissivity of the standard URCA process and photon emissivity from the
neutron star surface. In Sec. 5 we detail our conclusions.

2. PHOTON SPECTRUM IN THE SUPERCONDUCTING PHASE

As is well known [18], the photon spectrum in superconducting matter and in a normal
plasma are substantially different. In the superconducting matter considered here, we deal with
two subsystems. The normal subsystem contains electrons and nonpaired protons and neutrons,
which are present to some extend at finite temperatures. The superfluid subsystem contains
paired protons and neutrons. In the presence of a superconducting proton phase, normal
currents associated with both electrons and residual nonpaired protons are fully compensated by
the corresponding response of the superconducting current [18, 20, 21]; otherwise there would
be no superconductivity. What remains after this compensation is a part of the superconducting
current. The resulting photon spectrum is thereby determined by the inverse of the London
penetration depth (due to the Higgs—Meissner effect [18]), but not by the plasma frequency,
as in the normal system.

In convential superconductors, which contain positively charged ions, paired electrons,
and normal electrons at 7' # 0, the photon spectrum is determined by the relation between the
vector potential A and the current j, which is proportional to A; see Egs. (96.24) and (97.4)
of Ref. [20]. The analogy with the present case is straightforward. From the latter equation,
for sufficiently low photon momenta we immediately obtain the relation 47j ~ —m?Y(T)A
between the Fourier components of the current and the vector potential, where the effective

photon mass is
4re2px(T
oYy bt U )
My

Here m;, denotes the effective in-medium proton mass, and pj(T) = p,(T, —T)/Te,p denotes
the paired proton density. The choice of a linear temperature dependence for pj, corresponds

Y Note that in conventional nuclear physics one usually employs particle-hole diagrams even at zero
temperature, thereby considering nuclear matter to be normal. Small effects of pairing can be neglected,
since the typical energy in a nucleonic particle-hole diagram is of the order of the Fermi energy er, and
er > A holds [7,18, 19].
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to the Ginzburg-Landau approach. A small complex contribution ~ €2 f(w, k)exp(—A, /T)A,
where f(w,k) is a function of the photon frequency w and momentum k, has been neglected
in the above relation between j and A. More realistically, for T near T, ,, one must take
into account this off-shell effect for the photon. At lower temperatures, correction terms are
exponentially suppressed. Below we take the photon spectrum to be

w=y/kR+ml, ©)

thus neglecting the aforementioned small polarization effects.

Note that external photons cannot penetrate far into the superconducting region. The
photons that we deal with are thermal photons with foregoing dispersion law, governed by the
corresponding Bose distribution. In considering neutrino reactions below, we integrate over the
photon phase-space volume, thus accurately accounting for the distribution of these photons
in warm neutron star matter.

To illustrate more transparently the most important facets of the reconstruction of the
photon spectrum in the superconducting region, we consider a two-component, locally neutral
system consisting of charged fermions (i.e., the normal subsystem) described by the Dirac field
1, and a charged condensate (i.e., the superconducting subsystem) described by a condensate
wave function

Y= P e 4

The real quantity o, is the order parameter of the system, i.e., (,0,2; ~ n., where n. is the number
density of particles in the condensate, and the real value @ is a phase. In a fermionic system
with pairing, the density n. is proportional to the pairing gap A.

The equation for the electromagnetic field A, in such a system reads

OA,=4rj,, )
where the current is
Ju = €y — ei(@*Oup — 9Bup*) — 2629 A,.. (6)
Substituting Eq. (4) into Eq. (6), we obtain for the electromagnetic current
Ju = Gi + 8, ™

where the first term j;' = —ZechﬁA,‘ is the superconducting current, and the second term 63,
contains the normal current j:}” and some response j[f’ from the charged condensate, i.e.,

8 = JuoT + i°° = eipy, ) + 26020, Dy (8)

Due to gauge invariance, the phase ® = &, + @' is not constrained, and ®; can be
chosen in such a way that it cancels the normal current, i.e., §j, = 0; otherwise the
remaining part of the normal current would destroy superconductivity and the ground state
energy would increase. This compensation of the normal current j;°7, which in metals and in
normal plasma is proportional to the electric field E, is a necessary condition for the existence
of superconductivity. Only a diamagnetic part of the fermionic current proportional to the
electromagnetic field A, may remain. The latter may lead only to a minor (~ €?) contribution
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to the unit values of dielectric and diamagnetic constants. The remaining part of the phase
@' is hidden in the gauge field, resulting in the disappearance of the Goldstone field (see the
analogous discussion of the Higgs effect, e.g., in Ref. [22]). The total number of degrees of
freedom does not change, so the disappearance of the Goldstone field is compensated by the
appearance of an extra (third) polarization of the photon. As a result of Egs. (5) and (7), the
electromagnetic field obeys the equation

OA, = -8ne’p’A,, ®

which immediately yields the photon spectrum in the form (3), where the photon mass is now
given by

My = +/ 87 e2p2. (10)

What we have demonstrated is known as the Higgs-Meissner effect: in the presence of a
superconducting component, the photon acquires finite mass. We see that in a two-component
(normal + superconducting) system, the photon is described by the dispersion relation (3), as
it would be in a purely superconducting system, and not by a plasma-like dispersion law, as in
the absence of superconductivity. Another way to arrive at Eq. (3) is given in the Appendix in
a noncovariant formulation. Similar derivations for different specific physical systems, guided
by the general principle of the compensation of the normal currents in a superconductor, can
be found in Refs. [18,20,21,23].

Expressing the amplitude of the condensate field in terms of the paired proton density [18],
one obtains from Eq. (10) the result (2). Taking my(po) ~ 0.8my (with my the free nucleon
mass), with Egs. (1) and (2) we estimate

[T, —T
mo(p = po, T) [MeV] = 1.6y | =2— K wylp ~ po).
c!p

Due to the rather low effective photon mass in superconducting neutron star matter at
T < T, < wp, one may expect a corresponding increase in the contribution of the above
diagrams to neutrino emissivity.

To avoid misunderstanding, we note the following. At the first glance one might suggest that
the photon self-energy is completely determined by the above neutrino production diagrams, but
with neutrino legs replaced by a photon line. If so, the contributions of the electron-loop and
proton-loop diagrams would accurately determine the plasmon spectrum of photon excitations
with energy gap equal to a high plasma frequency (at least if one drops small terms proportional
to the proton gap in the calculation of the proton-proton-hole diagram, now with an incoming
and outgoing photon, as suggested for the corresponding neutrino process). How does this
relate to the massive photon spectrum of superconducting systems? The answer is that in a
system with a charged condensate, in addition to the cited photon propagation diagrams, there
appear specific diagrams for photon rescattering off the condensate given by terms proportional
to e? p? ApA* and 2e »? 0, A* in the corresponding Lagrangian. Their contributions to the
equation of motion for the electromagnetic field are, respectively, the last two condensate terms
in the electromagnetic current in Eq. (6). The specific condensate diagrams responsible for the
compensation of the loop diagram contributions in the photon propagator make no contribution
to neutrino emissivity. Indeed, the neutrino legs cannot be directly connected to the photon line
via such interactions (without invoking the internal structure of the condensate order parameter
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.; this contribution is obviously small compared to what we have taken into account). Thus,
we have argued that in the presence of superconducting protons, neutrino pairs can be produced
in the reaction shown by the above diagrams, where the photons possess rather small masses
generated by the Higgs-Meissner mechanism.

Having clarified of this important issue, we are ready to calculate the contribution of these
processes to neutrino emissivity and compare the result with known emission rates.

3. CALCULATION OF EMISSIVITY

The matrix element of the above diagrams for the :-th neutrino species (2 = {ve,v,, v, }) is

7)a . G a 1 )

HDe = _z\/tﬁemeﬂ (F’Yng Yup _ T,f )M’) L (11)

where
@B = _T d'p biG ) WP iG.(p+ k), = 12
j =-—-1r (27!')47 1 J(p) j ! J(p y J_{eap}a (12)

and
n . 1 _
Gj(p)=(p+mj){m+27rznj(p)6(p2—m?)ﬁ(po)} (13)
J

is the in-medium electron (proton) Green’s function; n;(p) = 6(pr; — p); € is the

corresponding polarization four-vector of the massive photon, with three polarization states
in superconducting matter. The factor I, takes into account nucleon-nucleon correlations
in the photon vertex. The quantity G = 1.17 - 10~3 GeV~2 is the Fermi constant of the
weak interaction. Above, I, denotes the neutrino weak current. The electron and proton weak
currents are

WP =2 = Q) WE =7 (kpp — 9A%p75), (14)
where ¢ = ¢{ = 1+ 4sin* 9y ~ 1.92 and /") = &7 = {7 = 1 — 4sin’ 9y ~ 0.08; I
is the Weinberg angle, and cff{‘) = —cf:"’"’) = 1. Proton coupling is corrected by nucleon-

nucleon correlations, i.e., by the factors x,, and v,, [24].
Integrating Eq. (12) over the energy variable, we obtain for the i-th neutrino species

— i (TOme — TORP) = 1) pe 4 1 pre + 70 ppe, (15)
_ k# kP _ e i
P#P — (g#l’ — T + F#P), Fl‘l’ = m’ Psl‘l’ o ﬁ EP'P k&’lt)‘, (16)

where j* = (k - u)k* — u#k?, (k- u) = k,u¥, k* = (w,k), k* = k,k* = w? — K. The four-
velocity u* of the medium is introduced for the sake of covariant notation. The transverse (1),
longitudinal (7;), and axial (75) components of the tensors in Eq. (15) yield

9 =70 — 1) = 2cP(A. + k?B.) — 2R (4, + k*By), 17)
391
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10 =10 _ 79 = 4 [DB, — R, B,, (18)
Ts(i) = 7'5(2) - T5(:,) = (k2)3/2[c(,i)0e — 947ppChl, (19)

where R, = fe,;p /¢, and

d*p nJ(p) k2
.= + = . .
4 / @ry EY 7! am? | % (20)

&*p n;(p) 1 - (pk)?/ EYK
()’ 2B (w — pk/EY) — k¢ /4B

B, = (1)

2 —1
pk K G) =
€= /(2 )3 J(p)Ema (W—E—g) —W , EF —,/m§.+p2. (22)

Here we note that the contribution of the axial component 75 to the resulting neutrino emissivity
is small (r5/7, ~ m27s/w?n ~ m,/m} for protons and ~ (m,m./p%,)In(pr./m.) for
electrons), so that it will be omitted.

The squared matrix glement (11) for a certain neutrino species, summed over the lepton
spins and averaged over the three photon polarizations, can be cast in the form

Z | AOP2 = szz[ @2 (2w1w2 + 2(k(ll)(l“lz)) B

k2
_ g (wlw2+ gy - 28100 @) 2<kqll)(§qu>)], 23

where (k - ¢12) = wwi 2 — (Kqy,2), and w;, and q; ; denote the frequencies and momenta of
the neutrino and antineutrino. We have also used the fact that Tr{l*I*} = 8[¢}'g¥ + ¢§'qV —
—g" (q1 - @) — KPP gy,

The emissivity of our processes is given by

o7 = Pk dq dq wy tw
v (2m)%2w (27)%2w; (27)32w; expl(w) + wy)/T] — 1
x Y S IAOPeD St - a - o). 24)

1=Ve Wy sVr

Substituting Eq. (23) into Eq. (24), we finally obtain

5 oo 2 )
s, 1] £ 2 (5) (2], e

where a = m. /T, and
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2
- 2 3 2/3 T
7’3(1‘) ~ 4 Z lC(V )R'cfen:_;(\l +z)— cﬁ,) (gpp) (1 + 5) , (26)

1=Ve, Yy, ,Vr

2
3 2/3
2(2) ~ 4z? Z (—)Kpp B )
71 (z) T cy R 2m,, 87rpp 27

1=Ve, Vp,Vr

Some numerically small terms have been dropped in Eq. (26).
The integral I in Eq. (25) can be calculated analytically in the two limiting cases, a < 1
and o > 1:

Ia> 1)~ ‘/22_ 32 (1+%) Bl OREAOF (28)
Ia < 1)~ 2(3) [n(0) +72(0)], ¢(3) ~1.202. (29)

Thus, combining Egs. (1) and (25)-(28), we obtain an estimate for emissivity of our reactions
(we present here the result for m, > T and for three neutrino species):

&1 [ erg ] 26 1025T93/2 exp( m-,) ( My )7/2 (ﬁ)w (1 + ; 77%) [1+7], (30)
Y

cm?-s T MeV Po
N 4/3 m 2/3
n = 0.0003 R (—ﬂ) (ﬁ) ~0.035 R, —=2 (ﬂ> : 31)
my Po m, \Po

Here Ty denotes temperature measured in units of 10° K. The unity in square brackets in
Eq. (30) corresponds to the electron-electron-hole diagram, whereas the factor 7 is related to
the proton-proton-hole (first term in Eq. (31)) and the interference diagrams (second term in
Eq. (31)).

Emissivity given by Eq. (30) varies with temperature as T°/?exp(—m.,/T), whereas
emissivity of the modified URCA process varies as T exp[—(Ap+A,)/T] in the region of proton
(A, 7 0) and neutron (A,, 7 0) pairing. Hence, one can expect that the process v, — vv will
dominate at comparatively low temperatures, when A, (T) +A,(T) —m~(T) > 0and T < T .

4. NUMERICAL ESTIMATES

To obtain quantitative estimates we need the values of the nucleon-nucleon correlation
factors kpp, and I',. According to Ref. [24], we can exploit

Kpp = CV 2fanO nnr(fnn), (32)

where f,, ~ -0. 75 and f,, =~ 1.25 are the constants in the theory of finite Fermi

systems [19, 24]; C’0 = mXpr,/w? is the density of states at the Fermi surface; A, is the
neutron-neutron-hole loop,

CoAn —icy [ ZP (0 +k)Gn(p) ~ Prnk” (33)
0 Ann 0 (27[')4 n nP m;w27
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for values of w > |k|prn/m}, of interest, and T (fnn) =1 = 2fnnCoAnn.

We note that the second term in Eq. (32) is not proportional to a small factor c(V"), because
the nucleon-nucleon correlations also allow for emission of v-pairs from the nn~! loop.
Numerical estimates of the ratio R, are as follows: for o >> 1, we have R, ~ 1.6 for p = pq,
mk(po) ~ 0.8m,, and R, ~ 2.1 for p = 2py, m},(2p0) =~ 0.7m,; for a < 1, we obtain
R, ~ 1 and correlation effects are negligible. The in-medium renormalization of the proton
electric charge included in the factor Ty can be also expressed in terms of the constants in
the theory of finite Fermi systems and the proton-proton loop factor (A4,,); see Ref. [19]. The
latter is suppressed at relatively low proton densities. We can therefore take I, ~ 1. With these
estimates, we observe that the main contribution to neutrino emissivity comes from electron-
electron-hole processes.

The ratio of emissivity €] (30) to emissivity sf M of the modified URCA process, Rpp =
=Y [eFM s

_ A, +A, — /2
Rpym = 1.5 10'T; 13/zexp( P m.,) ( My ) X

T MeV
2 03
» (1+ E_T_) (ﬁ) D0 1 + 7). (34)
2m, po) myimy

For further estimates we need the values of the neutron and proton gaps, which
are unfortunately model-dependent. For instance, the evaluation in Ref. [25] yields
An(0) ~ 84T, , ~06 MeV, T, ~ 0.07 MeV for 3P, neutron pairing at p = pgy, and
Ap(0) ~ 1.76T,, ~ 3 MeV, T, , ~ 1.7 MeV for 1S proton pairing, while Ref. [26] uses
An(0) ~ 2.1 MeV, T, , ~ 0.25 MeV and A,(0) =~ 0.7 MeV, T, ~ 0.4 MeV for p = py.
Employing these estimates of the zero-temperature gaps, its temperature dependence, and the
photon effective mass, we obtain from Eq. (34) the temperature dependence of the ratio Rp .

In order to find the lower temperature limit at which the processes v,, — v are still
operative, we need to compare the value ¢ with photon emissivity at the neutron star surface,
e = 30T} /R, where o is the Stefan-Boltzmann constant, T, denotes the surface temperature
of the star, and R is the star’s radius. By employing a relation [27] between the surface and

interior temperatures, we obtain for R, = ¢] /e5

Ry~ 12 10T ep (-2 (12 )7/2 3T ()7 [1+7] (35)
' ’ T / \MeV 2my ) \ po ’

where the star radius and mass are taken to be 10 km and 1.4Mg, with M, the solar mass
and p some averaged value of the density in the neutron star interior.

The ratios Rpas and R, are plotted as a function of the temperature in Figure for both of
the foregoing parameter choices. We see that our new processes are operative in the temperature
range 1-10° K < T < 8-10° K for the parameter choice of Ref. [25], and 1. 10° K< T < 4.10°K
for the parameters of Ref. [26]. As one observes in Figure, within these intervals the new cooling
channel might exceed known cooling processes by up to a factor 10°.
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Temperature dependence of the ratios Rr s
and R, at nucleon density p = po. Solid
curves correspond to the parameter choice
of Ref. [25], whereas the dashed curves
depict results with parameters of Ref. [26].
Shaded bars indicate the temperature regions
in which cooling via massive photon decay is
more efficient than standard cooling processes

5. CONCLUDING REMARKS

As mentioned above, for T' > T ,, T, ,, i.€., in a normal plasma region of the star crust
and star interior, photons with approximately the electron plasma frequency” wp can decay
into neutrino pairs, as has been shown in previous estimates [10]. At T' < T, ,, however, we
are already dealing with massive photons in the region of proton pairing, and our new reaction
channels can significantly contribute to cooling.

Our processes can also occur in a charged-pion (or kaon) condensate state but they are
suppressed due to the high effective photon mass? my =~ \/8me?p? ~ 6 MeV for the condensate
field ¢, ~ 0.1m, ~ 14 MeV. i

In deriving the value of '™ used above, one describes the nucleon-nucleon interaction
essentially by free one-pion exchange. In reality, however, at p > (0.5-1)p, the total
nucleon-nucleon interaction does not reduce to free one-pion exchange, because of the
strong polarization of the medium, whereby a significant part comes from in-medium pionic
excitations [5-7,24]. Occurring in intermediate states of the reaction, the in-medium pions
cah also decay into ew, or first into a nucleon-nucleon-hole, which then radiates e, thereby
substantially increasing the resulting emissivity. Other reaction channels such as n — npe vV
and p — pPpaeirvv open up in the superfluid phase with paired nucleons [6,24, 28], where
Npair (Ppair) means a paired neutron (proton). All these reaction channels give rise to a larger
contribution to emissivity than that of the modified URCA process estimated via free one-pion
exchange. Above we compared £ with ¢f'M just because the latter is used in the standard
scenarios of neutron star cooling.

As we also mentioned in the Introduction, there are other processes like those considered
above. Emissivity of the process py, — PpairVV is substantially suppressed (at least by a
factor e? and also due to a much smaller phase-space volume) compared to that of the process
P — Ppairv¥. According to simple estimates, e.g., using Eq. (22) of Ref. [16], the process
ey — evi makes a very small contribution to emissivity both in the inner crust and in the
interior of neutron stars, even when one neglects the photon mass. Thus we may conclude that
the process evy,, — evv also leads to a minor contribution to emissivity at the densities and
temperatures under consideration.

-1 A rather small extra contribution also comes from the proton-proton-hole diagram.
U For simplicity, in this estimate the peculiarities of a condensate with nonvanishing momentum [7] are
ignored.
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In summary, the processes v,, — ee~! + pp~! — v might be operative over some

temperature interval T ~ 10°~10'° K, T < T ,, and together with other in-medium modified
processes [8], they should be incorporated into computer simulations of neutron star cooling.
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Science Foundation and N3W300 from the International Science Foundation and the Russian
Government. B.K. and E.E.K. are supported by BMBF Grant 06DR666. E.E.K.
acknowledges the support of the Heisenberg-Landau program.

APPENDIX

We can also achieve the same results that led to Eq. (10) by starting with Maxwell’s
equations (in obvious notation):

ikE = 47p, i[kB] = 4nj — iwE,

kB=0, [kE]=wB,

where the charge density p is the superposition of the density of free charges and the density
of bound charge. Full free charge density being zero in our case due to local electroneutrality.
The current j is a superposition of an external test current and the induced current:

j =je:ct +jind‘

In normal systems, the induced current (i.e., the current of nonpaired charged particles) j»¢ =
= j™°7 s related to E via longitudinal ¢; and transverse ¢; dielectric constants. This connection
results in longitudinal and transverse branches of the electromagnetic excitations, with an
effective photon gap equal to the plasma frequency wy; [10]. In contrast, in a superconducting
system the condensate makes two other contributions to the current, namely j4 = —2e%p?A
and j™** = 2ep2V®. Letting ® = O + Py, we have j™*° = ji5° +ji5°. These two terms are
determined as follows. As we have argued above, superconductivity requires the compensation
of the normal component of the current proportional to E, i.e., we can take j™°" +ji§° =
Only small contributions ~ e’exp(—A,/T)w?A and ~ e’exp(—A,/T)k’A, as well as a small
imaginary contribution ~ ie2F(w,k)exp(—A,/T)A, where F is some function of w and k, can
still remain from the value j*°" (see Egs. (96.24) and (97.4) of Ref. [20]). We neglect these small
contributions. The part of the current ~ V@, can be hidden in j4 by a gauge transformation
of the field A. We then have

i[kB] ~ j* — iwE.
Taking the vector product of this equation with k, we obtain
(w? — k2 — 8meXp?)B = 0.

From this relation we observe that the electromagnetic excitations possess the mass given by
Eq. (10). Hence, we have demonstrated that one can obtain the well-known plasma photon
spectrum for a normal system, and at the same time one can obtain a massive photon spectrum
and the Higgs-Meissner effect in a system with a charged condensate.
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