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Recent experiments on the compression of liquid hydrogen in reverberating shock waves
indicating the transition into a metallic state at about nine times liquid-H, density [4] have
been interpreted by a microscopic percolation in a virtual molecular structure with a continuous
spectrum of the electron excitations. The scaling dependence of the electron mobility on the energy
above the percolation threshold has been used to qualitatively describe the electrical conductivity
of fluid molecular hydrogen in the vicinity of the insulator-metal transition point.

Metallic hydrogen, the simplest element in the periodic system and the most abundant in
the Universe, has been extensively studied as the prototype of the insulator-metal transition
for over half a century [1]. The current research is mainly motivated by the significance of
metallic hydrogen in astrophysics, especially for the magnetic-dynamo models of Jupiter and
Saturn [2]. Although in this field the disordered phases are actually interesting, the insulator—
metal transition is traditionally considered in solids, and most experiments have been done
in diamond anvil cells at very low temperatures. At ninefold compression a phase transition
indicated by the appearance of a strong infrared absorption band has been recovered, but the
onset of metallization because of the band gap closure in solid molecular hydrogen is still a
subject of controversy [3]. Recently, Weir, Mitchell, and Nellis [4] have reached almost the
same densities in a fluid phase at much higher but still moderate temperatures by strongly
compressing liquid hydrogen in reverberating shock waves. Under these conditions, a qualitative
change of the electronic structure is revealed by strongly changing electronic properties, despite
the thermal excitations which play a masking role. In the density range (1.7-2.1)-10% cm™3, at
temperatures in the range 2000-4000 K the electrical conductivity of shock-compressed fluid
hydrogen increases by more than three orders of magnitude to 2000 Q~!-cm™!, a value cha-
racteristic of metals. When the densities are lower, there is activation energy, which goes to
zero at approximately 1.9 - 102 cm—3, marking the onset of metallization.

If even solid hydrogen is nonmetallic, the liquid can be metallic as is the case of silicon.
Therefore, analysis of the insulator-metal transition in fluid hydrogen is based on the theory of
disordered electron systems [5, 6] rather than on the theory of crystalline solids. Recently,
Ross [7] has proposed the metallization of H-atom subsystem in partially dissociated fluid
hydrogen. We show that more naturally molecular hydrogen is metallized wholly.

‘Strong electron—ion interaction makes the structure near the insulator—metal transition
in fluid hydrogen close to the neutral molecular fluid. Therefore, analysis can be based on
a microscopic percolation model [8] which has been applied to expanded fluid mercury [9],
sodium-ammeonia solutions [10], and doped semiconductors Si : P [11]. The underlying idea is
a virtual atomic-like structure which is retained in such systems in the transition region where
atoms are in mixed states described by the density matrix. Since classically accessible spheres of
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Fig. 1. Classically accessible region of

the molecular orbital of hydrogen on the

atomic unit scale. The mean sphere of the
same volume is also shown

valence electrons of neighboring atoms overlap, screening leads to admixing of free-like electron
states. In the microscopic percolation model a sharp change of the electrical conductivity
below the insulator-metal transition is governed by a high coupling parameter, namely, the
ionization potential of atoms in expanded metals, or admixture states in ammonia solutions
and semiconductors to the temperature. Applying this model to hydrogen, which consists of
strongly bound two-atomic molecules, we assume a virtual molecular structure. Otherwise,
near the insulator-metal transition point we consider fluid hydrogen a molecular metal with
partially free electrons in bonding quasimolecular orbitals admixed with free electron states (in
contrast, nearly free metallic electrons could not bound the molecules). Two electrons of H,
quasimolecules in a virtual molecular structure are equivalent and contribute equally to the
conductivity. We show that the percolation model of the insulator-metal transition is capable
to qualitatively describing the electronic properties of such a virtual molecular structure. The
model of a virtual molecular structure can also shed light on a plasma phase transition, whose
existence in hydrogen is still strongly questionable [12].

Presumably, a virtual molecular structure exists at temperatures much lower than the
ionization or dissociation energy of molecules and at moderately high densities, at which the
molecular orbitals are not strongly overlapped. In such a structure, the transition point can
be identified with a percolation threshold of the classically accessible regions of electrons in
the ground-level molecular orbitals. Since electrons are mainly localized within the classically
accessible region, the effective one-electron potential near the boundary of this region is close
to the molecular ion potential. Thus, the boundary surface is determined by the equation

—om = o =], [®

where e is the electron charge, r; and r, are the distances of an electron from the nuclei,
J = 16 eV is the vertical ionization potential of the molecules. This surface, which is close
to the prolate ellipsoid with half-axes 1.55a¢ and 1.95a,, where aq is the Bohr radius (Fig. 1),
bounds almost the same volume as a mean sphere of radius

2
Rn = =. V)

The upper limit for the percolation threshold corresponds to ellipsoids with the parallel
rotational axes, which coincides with that of spheres of the same volume. Furthermore, for the
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strongly correlated fluids like hard spheres with very thin overlapping shells [13], the percolation
threshold corresponds to the random close packing fraction,

47
—R}, nm = Gens 3)

3
where n,, is the molecule number density, and (;;, ~ 0.64. We note that Eq. (3) can
be rewritten as the Edwards-Sienko correlation for the insulator-metal transitions in doped
semiconductors [14]:

enlf?

=0.534.
- = 0.53

From Egs. (2) and (3) we obtain the number density of hydrogen molecules at the insulator—
metal transition point:

T & 2.1 x 102 cm™3,

which corresponds to the mass density 0.7 g/cm?®. This value agrees within the experimental
uncertainty with the above-mentioned estimate from the disappearance of the activation
energy [4].

The Coulomb interaction in a strongly coupled plasma above the insulator-metal transition
point is characterized by the coupling parameter

2.2
z'e” _ 1/3z2i (4)

= =
R,T thT T

where z = 2 is the total charge number of tightly bound protons, and R, = (47n,,/3)" /3
is the Wigner-Seitz radius of the molecular cell. Although the classical Coulomb parameter
is higher than 102, it does not necessarily strongly influence the structure of compressed fluid
determined by the repulsion between quasimolecules. Evidently, strongly repulsive exchange
interaction between quasimolecules in the dense hydrogen plasma precludes a plasma phase
transition, which is induced otherwise by the Coulomb attraction.

The overlap of the classically accessible regions of electrons in neighboring molecules
qualitatively changes the electronic states. The number of electrons screening the nuclei
can fluctuate; i.e., the nuclei are virtually screened by electrons of neighboring molecules.
Therefore, in mixed quasimolecular states electrons are partially free, and the spectrum of
excitations is continuous. According to the variational principle of quantum mechanics, an
internal energy spectrum of a quasimolecule (i.e., without the energy of the intermolecular
interactions) is bound from below by the ground energy level of the free molecule. Using
molecular orbitals, we write the one-electron energy spectrum in a form

Ey=—J+ep, &,=p'/2m, ()

where ¢, is the electron excitation energy, p is the momentum of an electron far from the
virtually screened nuclei, and m is the electron mass. On the other hand, the mean internal
energy of the quasimolecule in a mixed state is

Ep = —anJ t appep, ©)
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where a,, and aq are the diagonal elements of the density matrix normalized by the condition
app T ag = 1. From Egs. (5) and (6), it follows that the admixture of free motion in the
quasimolecular orbitals, which is determined by the ratio of the matrix elements, is

app/aoo = €p/J. ™

Therefore, low-lying quasimolecular states, which are preferably occupied, contain only a small
admixture of free motion. The lifetime and the extension of the quasimolecular states, which in
neighboring molecules can overlap, are bound by transitions of electrons between molecules [8].

In the vicinity of the insulator-metal transition point the electric current is carried
by electrons which transfer between overlapping, classically accessible spheres in a virtual
molecular structure. Although below the transition point the electrons in the ground-level state
are localized in finite clusters, classically accessible regions of electrons excited over a mobility
gap could form an infinite cluster. At still higher energies practically the entire volume becomes
classically accessible, and the electron mobility increases to the minimal gas-kinetic value. By
definition, the absolute mobility gap A; is determined by the appearance of the mobility, and
soft mobility gap A, is determined by its increase to the gas-kinetic value. This two-parameter

gap is
A =T — € (4mnn/3G) ", k=1,2, 8)

where (; ~ 0.64 is the percolation threshold equal to the random close packing fraction, and ¢,
(> (;) is an accessible volume fraction of the same order of magnitude. The latter parameter
is of less importance since it does not lead to the exponential dependence of the conductivity.
One can use the regular close packing fraction {; = 0.74. In the scaling theory, the mobility
is a power function of the distance from the threshold [15]:

14
N(Ep) = e—n:' (H) y Ep < Ay, (9)
where v = 0.9 is the critical exponent, 7 = [ /vr is the relaxation time, | ~ R, is the minimal
free path length, and v = /8T /7m is the mean thermal velocity. Below and at the transition
point the Boltzmann statistics of the quasiatomic excitations has been shown to apply even at
very low temperatures [11]. By averaging with the density of states corresponding to free motion
in a major part of the quasimolecular-state volume, we obtain the electrical conductivity

ze*n, ™9
0 _ e———
m

, (10)

where the factor ¢ < 1 describes the partial localization of the electrons. This factor is expressed
by the following combination of the incomplete gamma-functions I'(m, z),:

2 5A A 3 A
r-2r(37) -7 (7))

Below the insulator-metal transition point the localization factor is

T(F, — F) 2 VAT ( Al)
9= T Y exp|-—=],
Ay — A VT (8 = Ay) T (11)
Ay > A > T,
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which is exponentially small. On the metallic side
' _3T)2-a0-TF, _3T/2-4

A — A D=4y (12)
A <0, A>T '

0}

Taking into account the electron degeneracy above the insulator-metal transition point, the
thermal energy 37'/2 in the last formula must be substituted by a renormalized Fermi-energy

elp = W kL 9?/2m, (13)

where the prime indicates the difference from the electron gas, and kr = (61r2nm) 13 is the
Fermi wave-vector. In practice, the localization factor in this case goes to unity. Moreover,
this factor drops out in the expression of conductivity. Indeed, for the degenerated electrons
the relaxation time is

T =1/vF, vp = vFpY, (14)

where v}, is a renormalized Fermi velocity, and v is the Fermi velocity of the electron gas.
By substituting Eq. (14) into Eq. (10) we reduce the localization factor. Therefore, we obtain
the minimal metallic conductivity

_ el
mvgp '

(15)

In fact, for the degenerated electrons the electric cbnductivity can be described in gas-
kinetic terms. We use the Ioffe-Regel criterion for the minimal free path length

I ~h/Ap, (16)

where Ap is the quantum uncertainty of the electron momentum. At high temperatures the
momentum uncertainty can be substituted by the thermal momentum mwvz. The minimal free
path is then the thermal wave length. From Eq. (10) we then obtain

e*n. en.R,

o~ ~ ) a17)
kaUT mur

Except for a numerical coefficient of the order of unity, this expression is the same as it would
be in the case of Boltzmann statistics if the free path length were equal to R,. With such an
accuracy, Egs. (10)—(12) for the percolation conductivity can also be directly extrapolated for
the degenerated electrons on the metallic side of the transition.

In the case of strong degeneracy the momentum uncertainty can be only expressed by the
Fermi momentum

Ap = ymur,
where « is a coefficient, and the free path length is

| ~ 1/kp.
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Fig. 2. Electric conductivity of dense fluid
£4000 K hydrogen in the insulator-metal transition
I range. Experimental dots from Ref. [4] and
solid lines by the microscopic percolation
theory are shown. The estimated insulator—
metal transition point is shown by the
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Matching it to the extrapolated Boltzmann formula on the metallic side of the transition (at
the point at which v = yvp), we obtain

I=R,/v, (18)

i.e., the parameter ~ is the inverse free path length of the intermolecular spacing. For a
rough estimate of the parameter v, applying the v = yv equality to the transition point, we
obtain v ~ 0.1. Of course, the uncertainty of this parameter does not influence the Boltzmann
conductivity below the insulator-metal transition point.

The percolation conductivity of dense molecular hydrogen in the insulator-metal transition
region is shown in Fig. 2 to qualitatively agree with the experiment. Thus, an idea of a
microscopic percolation can be actually instructive for understanding of the insulator-metal
transition in the strongly compressed dielectric liquid. Obviously, the theory based on a virtual
molecular structure is limited to the vicinity of the transition point, in particular, because deep
into metallic state hydrogen molecules dissociate. While the metallic state is reasonably well
understood [16], the transition is still a subject of study.

In conclusion, we apply a microscopic percolation theory for the description of the
insulator-metal transition in dense fluid hydrogen with a virtual molecular structure and show
that molecular bonding can still be consistent with the metallic properties.
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