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А new regime of Amold diffusion in which the diffusion iate has а power-law dependence 
оп the perturoation strength is studied theoretically and in numerical experiments. The theory 
developed predicts this new regime to Ье univerвal in the perturoation intелnеdiаtе asymptotics, 
the width of the latter increasing with the dimensionality of the perturoation frequency space, 
particular!y, in !arge systems with тапу degrees offreedom. The results of numerica! experiments 
agree satisfactori!y with the theoretica! estimates. 

1. INТRОDUСПОN: UNIVERSAL NONLINEAR INSTAВILIТY 

@1997 

Опе of the most interesting phenomena in Hamiltonian dynamics is the so-called 
Arnold diffusion (AD) , а distinctive universaI instabiIity of multidimensionaI nonIinear 
oscillations [1,2]. Tbls gIobal instabiIity was predicted Ьу Arnold [3]; its chaotic nature was 
discovered in Refs. [4,5,1] апд further studied in detail in Refs. [6-11,14,15,17]. 

First, following Ref. [17], we briefly recaII the diffusion mechanism, wblch is related 
to the interaction of nonIinear resonances. Consider а general Hamiltonian describing 
multidimensional oscillations: 

H(I, е, t) = Ho(I) + € 2.: Vnm(I) exp(in . е + itт . О) , (1.1) 
n,т 

where 1, е are N -dimensional vectors of the action-angle variables; О is the М -dimеnsiоnaI 
vector ofthe driving frequencies; n, т are integervectors ofdimensions N апд М, respectively, 
апд € stands for а smalI perturbation parameter. The dot in expressions Шее n . е denotes 
the scalar product. Below we shaII consider the simpler case of а completely integrable апд 
nondegenerate unperturbed system whose Hamiltonian Ho(I) depends оп the fuII set of N 
actions only. 

Hamiltonian (nondissipative) dynamics is always determined Ьу resonances (see, e.g., 
Refs. [1,2]) сопеsропding to particular terms in the perturbation (1.1). The condition for 
а primary resonance with unperturbed frequencies (1.3) reads: 

"-'nт == n . w(I) + т . О ~ О . (1.2) 

In the case oflinear oscilIations al! the frequencies are flXed as parameters ofthe system wblch is 
either in or otТ resonance independent of initiaI conditions. However, for nonIinear oscillations 
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with the action-dependent frequencies 

i..V(I) = aHo(I)/81 , (1.3) 

condition (1.2) determines resonance surfaces (zones) in the phase space, that is, the system is 
always in resonance for воте initial conditions. Оп the other hand, non1inearity stabilizes the 
impact of а (sufficient1y weak) perturbation, ensuring bounded oscillations еуеп for resonant 
initial conditions. This is precisely due to non-isochronous osci1lations (1.3). In опе degree of 
freedom such а nonlinearity is necessary and sufficient to destroy the osci1lation isochronism. 
The generalization of that for several degrees of freedom is the necessary condition for 
determinant to Ье nonzero everywhere, 

(1.4) 

In this case the system is called nondegenerate. ТЫв allows, in particular, the transformation 
from action to frequency space. In the latter, the resonance structure is especially simple and 
transparent, as the resonant surfaces (1.2) Ьесоте planes. 

Another condition for the nonlinear stabilization is the requirement for the quadratic 
form associated with the matrix a2Ho/aI2 to Ье sign--defmite or, geometrically, forsurfaces 
Ho(I) = const to ье сопуех [10]. The latter condition is а weaker опе as it rnay include higher 
polynomial forms. Both conditions are опlу sufficient [10,11]. 

The аЬоуе conditions also ensure the аЬвепсе of strong instability ('" е), due to а quasilinear 
(isochronous) resonance [1], especially when several (Т) independent resonance conditions (1.2) 
are simultaneously satisfied. Тhe latter is саПеd multiple (Т - fold) nonlinear resonance. 
However, а weak instability caused Ьу nonresonant (i..Vnm 'f О for given initial conditions) 
terms in the perturbation series (1.1) is possible, and it is just the AD we are going to discuss in 
detail. Moreover, this weak instability is а typica1 phenomenon of non1inear oscillations, since 
it occurs for almost апу perturbation, particularly опе that is arbitrarily weak, of а completely 
integrable system. The only restriction is the action space dimension da , which must Ье larger 
than that of the invariant torus (da > dt = 1) [3]. The torus is ап absolute barrier for the 
motion trajectory, which сап on1y Ьуравв it but never go through. For а driving pertиrbation 
(М> Oin Eq. (1.1» the rninimum number of degrees of freedom is, thus, Nmin = 2, but in 
the сопвесуаНуе саве (М =0) it is Nmin = 3, since the trajectory is constrained to folIow ап 
energy surface. 

Еуеп these minimal restrictions are not absolute, since they apply to the strong 
nonlinearity (1.4) only when the effect of resonant pertиrbation is втаll (М/I '" vi ~ 1). 
In case of linear Ho(I) (the harmonic oscillator) N min is sma1ler Ьу 1 [12]. 

At least three perturbation terms in the series (1.1) are necessary for AD. We shаП саП 
each of these terms а resonance (for the appropriate initial conditions of the motion). А single 
resonance retains the complete integrability of the unpertиrbed system. The interaction of 
еуеп two resonances results in the formation of narrow chaotic layers around the unperturbed 
separatrices of both resonances [13-15], but, the chaotic motion rernains confined within а 
srnall domain of the layer. Only the combined effect of at least two driving resonances gives 
rise to diffиsion along the layer ofthe first, guiding, resonance if N ~ Nmin holds (see Ref. [1] 
for details). 

In the first approximation (1.2) the driving perturbation terms are nonresonant (wnm 'f О), 
but the final effect is due tothe secondary resonances between the driving perturbation and 
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the sIow phase osciIlation оп the guiding resonance. This is а particular case of the generaI 
ru!e that аН the Iong-term effects in nonIinear oscilIations are due to some resonances. For 
the рroЫет in question the principa! parameter is the ratio 

(1.5) 

where UJg '" (EIVgl)I/2 is the frequency of smаП phase osciIlations at the center of the guiding 
resonance, and where Vg is the Fourier amplitude of the сопеsропdiпg perturbation term. 
For а weak perturbation (Е -; О) the parameter Л » 1 is big, and thus the effect of the 
driving resonances is а high-frequency опе. In fact, this is equivalent to а !ow-frequency 
(adiabatic) perturbation. Непсе we use the term inverse adiabaticity [14]. The symmetry 
between the standard and inverse adiabaticity is especiaHy c!ear in а conservative system, i.e., 
for the interaction of coupling resonances. Indeed, in this case the resonance interaction results 
in energy exchange between the guiding and driving resonances. While for the former the 
perturbation is а high-frequency опе (inverse adiabaticity) , [ог the Iatter it is !ow-frequency 
(standard adiabaticity). 

For ап ana!ytic perturbation the effect in both cases is exponentially smal! in the adiabaticity 
parameter Л (1.5), патеlу [1,14]: 

(1.6) 

where D is the !оса! dimension!ess diffusion rate in the action 1 within а chaotic lауег and 
where W s '" IдНоl/ЕVg stands [ог the dimension!ess !ayer width (for а more accurate estimate 
see Ref. [14]). Notice that the effect (1.6) is ofa nonperturbative nature, since Л '" C 1/ 2 (see 
Eq. (1.5». 

This is the simplest resonant mechanism of AD. In particular modeIs the ассшасу of 
such а three-resonance approximation was found to Ье within а factor of 2, provided that the 
perturbation is not too weak, i.e., the adiabaticity parameter Л is not уегу big [1] (see also 
Section 3 be!ow). 

As Л -; 00 the higher-order resonances with !arge harmonics numbers Inil , Imj I -; 00 

соте into рlау. Еуеп though their amplitudes Vnm '" ехр( -O'k) drop exponentiaIIy, where 
k = I: Inil + I: Imjl ' the detunings IUJnml a!so rapid!y decrease. The operative resonances 
which control the diffusion have Ьееп roughly identified in Refs. [1, 15]Ьу minimizing the 
expression 

- lnD == Е '" k +Л(k) ~ Л~/L (1.7) 

with respect to k. Неге Ла = UJo/UJg, UJo stands [ог а characteristic oscilIation frequency, and 
the fоПоwiпg diophantine estimate was used: 

UJo 
UJnm '" k L - 1 . 

The most important parameter in Eq. (1.7), 

L=N+M-r, 

(1.8) 

(1.9) 

is the number of linear!y independent (incommensurate) unperturbed frequencies оп ап r-fold 
resonance. We shаП саП L the resonance dimension (in frequency space). ActuaIIy, Eq. (1.9) 
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gives the maximum dimension when аН L independent frequencies contribute to the driving 
resonances, which тау Ье termed the fuH resonances. There are also partial resonances which 
depend оп а smaHer number of frequencies i < L. Even though there are опlу а few of the 
latter, they are cruciaHy important for the new AD regime which is the main subject of this 
paper (Section 5). 

The estimate (1.7), which represents another AD mechanism, seems to agree with 
numerical data [7, 14]. Оп the other 11and, Nekhoroshev rigorously proved [10] ап upperbound 
of the form (1.7) but with а different exponent (М = r = О): 

L L - (3N - I)N 2 < N - + - 4 . (1.10) 

Even for the minimum dimensions N = 3 this upper bound L max = 8 considerably exceeds the 
estimate (1.9): L = 2 (г = 1). The difference grows as N --f 00. Even though this discrepancy 
is not а direct contradiction inasmuch as Eq. (1.10) is the upper bound, it constitutes а problem: 
what wou1d Ье the origin of the difference between the two estimates? 

Recent1y, this problem has Ьееп reso1ved Ьу Lochak [11] who rigorously proved а more 
efficient Nekhoroshev-type estimate wit11 the exponent (1.9) (for М = О but апу г). The 
explanation is that Lochak assumed convexity of the unperturbed Hami1tonian нои) given 
above, whereas Nekhoroshev's proof ho1ds under а weaker condition of the so-called steepness 
of Но. From the physical point ofview this difference appears to Ье insignificant. At least, we 
аге not aware of апу ехатр1е of а steep but non-convex Но. 

Both the diffusion rate and the measure of chaotic component (....., W s , see Eq. (1.6» 
are exponentiaHy smaH in the perturbation in the limit Е -+ О, hence the term КАМ 
integrability [14] referring to the Ko1mogorov-Arno1d-Moser theory which proves the complete . 
integrabi1ity for most initial conditions as Е --+ О. This partia1 integrability, or better to say 
almost-integrability, is as good as the approximate adiabatic invariance. Notice, however, that 
the comp1ementary set of initial conditions supporting AD - the so-called Arnold web - is 
everyw11ere dense, as is the set of аl1 resonances (1.2), апу опе of which сап Ье а guiding 
resonance. A1so, the variation is exponential1y slow in action 1 опlу whi1e the variation in 
oscil1atioll constant (for the unperturbed motion) phase Во is much faster, with а characteristic 
time of order the illverse Lyapunov exponent, 80 '" wg /11nws l '" Т;; 1 , where Tw is the 
oscil1ation period in the chaotic 1ayer (see Eq. (2.2) below). 

Both rigorous estimates are valid asymptotically, for sufficient1y small Е 0111у. For example, 
Lochak requires [11] (L ~ 1) 

(1.11) 

where (J is some average decay rate of the perturbatioll amplitudes. This is very small 
perturbatioll, and the problem arises of estimatillg the diffusioll rate ill the illtermediate 
asymptotic region: EL « Е « 1, or 1 « >'0 « >'L .• This problem was first addressed 
in Refs. [14], w11ere а llew regime of diffusioll, called the fast Arnold diffusion (FAD) , was 
conjectured from some pre1iminary resu1ts of numerica1 experimellts. Two characteristics of 
t11e new regime as cOlltrasted to the far-asymptotic AD (1.11) are as follows: 

(i) the depelldence ofthe diffusion rate оп the adiabaticity (perturbation) parameter >'0 (1.7) 
is а power 1aw rather thall ехропепНа1, and 

1135 



В. V. Chirikov, V. V. Vecheslavov . ЖЭТФ, 1997, 112, выn. 3(9) 

(н) the diffusion rate does not depend оп the resonance dimension L, in particular, оп the 
number ofdegrees offreedom N (cf. Eq. (1.7». 

Precisely this behavior has Ьееп observed in пителсаl experiments with another 
multidimensional model [16]. However, the authors of [16] have given а different interpretation 
of their пителсаl results. Instead, we tried to reconcile the same results with our new 
diffusion mechanism [17]. Unfortunately, both interpretations remain somewhat ambiguous 
because the perturbation in those пителсаl experiments was not sufficiently small to reach 
апу asymptotic behavior where the theoretical estimates were expected to hold true. То resolve 
this ambiguity we continued пителсаl and theoretical studies with the same model but using 
а much weaker perturbation. In this рарес we report оп оur first results and present their 
theoretical explanation. 

2. MODEL AND NUMERICAL EXPERIMENТS 

Following Refs. [16,17] we make use here of the same model with Hamiltonian 

_ Ipl2 N+1 

Н(х, р, t) - Т - к L COS(Xi+1 - Xi)81(t) 
i=1 

(2.1) 

and periodic boundary conditions (XN+2 = Х1; PN+2 = Pl) where р, Х are action-angle 
variables, 81 (t) stands for the 8-fиnction of period 1, and К -+ О is small perturbation 
parameter. Notice that this model has N degrees of freedom due to the additional motion 
integral L Pi = const. The unperturbed frequencies !.V; = Pi are equal to the action variables, 
and the energy surfaces Но(Р) = IpI2/2 = const are spheres, and hence are strictly сопуех 
with unit determinant (1.4). The driving perturbation in the form of periodic «kicks» is not 
important for the diffиsion but greatly simplifies пителсаl experiments as it allows the use of 
а (multidimensional) тар rather than differential equations of motion. 

Еуеп though this model does not immediately represent Ьу itself а physical system, it is very 
convenient for the studies of subtle nonlinear phenomena like AD. The emerging theory сап, 
then, Ье applied to сеа1 physical problems, such as the stability of the Solar System [18] or of 
charged particles in magnetic fields in plasma devices, accelerators and соШdiпg beams [15, 19]. 

In previous work the diffusion in multidimensional models like (2.1) was studied only down 
to К ,...., 0.1 [16,9]. For such perturbation levels and large N а considerable part ofphase space 
becomes globally chaotic, which obscures the AD effect. Еуеп though the combined action of 
AD and global diffиsion is ап interesting problem which is important for applications [1,15], 
here we mainly wanted to understand the mechanism of AD itself. То this end we went down 
as far as to К ,...., 10-6 with ир to N = 15 degrees of freedom. Realization of this program 
has required essential modification of the рroЫет itself. This is because direct computation 
of the diffusion rate quickly becomes prohibitively long as К -+ О, especially since а тиШрlе 
computation precision is required for such а small К . То overcome this technical difficulty 
we have taken а different approach [14], namely, computing the chaotic layer width W s and 
recaIculating the diffusion rate [roт а relation like (1.6). Of course, this make sense [ос а 
model with N 2: N min degrees offreedom (Section 1). In this way we have managed to reach 
(for another model) adiabaticity parameter values of >'0 ~ 50 with ап ordinary computer, as 
compared to >'0 ~ 10 опlу for а direct diffиsion caIculation оп а Cray supercomputer [7]. In 
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the model (2.1) this would rough1y correspond to К "" л -2 "" 4·10-4 and 10-2, respectively, 
and N = 2 only. 

In the present work we go further, and give ир the caIculation of the diffusion rate 
altogether. Instead, we are studying numericaIly and developing the theory of the chaotic 
layer only. This proves sufficient to understand the mechanism of АО as well, since both 
are essentially determined Ьу the same higher-order adiabaticity parameter (1.5) and exponent 
in Eq. (1.7). ТЬеп, аН we need in numerical experiments is to compute the oscillation period 
T(ws ) inside the chaotic layer of а guiding resonance, and recaIculate the !ayer width W s using 
the simple re!ations [1]: 

(2.2) 

where Т min, Tav are the shortest and average periods, respectively. ТЬе two values are in а 
reasonable agreement, (ln(wmin/wav)} = 0.31, within the rms t1uctuations L\!n(Wmin/Wav) = 

= ±0.39, and both underestimate the [иll !ayer width. This is because the diffusion at the 
layer edge is уету slow, so that the 100 oscillation periods used in numerical experiments were 
insufficient to reveal the whole layer. А crude estimate [14] yields the expected correction 
factor of order 2. No such correction was introduced into the numerical data, but it will Ье 
discussed below in Section 3. 

А primary coupling resonance WI ::::: W2 with phase oscillation frequency wg = лк 
!1aS Ьееп chosen as the guiding resonance. Correspondingly, РI ::::: Р2 ::::: Pg while otherpi 
(i = 3, ... , N + 1) were taken at random (mod 2п). For the trajectory to Ье inside the layer the 
initial value of the guiding resonance phase was taken to ье approximately 'ФI = ХI - Х2 ::::: п. 

However, for small К the exact position of the layer had to Ье located numerically prior to 
computation of W s Ьу а special searching part of the code. ТЬе computation was performed 
for 7 values of N = 2, 3, 4, 5, 7, 9, 15 with the same initial conditions for а single trajectory. 

ТЬе results are summarized in Figs. 1 and 2. ТЬе Iower bound of W s "" 10-22 was 
determined Ьу the computation precision (about 30 decimal places). ТЬе values ofthe principal 
model parameter - the number of independent unperturbed frequencies, or the . resonance 
dimension L = N + М - r = N - are also indicated. Notice that under the particular 
conditions of the numerical experiments the resonance dimension is equal to the number of 
degrees of freedom of the model because the driving perturbation is periodic (М = 1), and 
guiding resonance is simple (Т = 1). 

ТЬе most striking feature of the empirical data is the quaJitatively different behavior for 
L = 2 which was observed already in [16]. ТЬе rest ofthe data show по systell1atic dependence 
оп L, but rather big t1uctuations which rapidly increase with л. 

3. SМАLL-л LIMIТ: А SIMPLE DYNAМICAL THEORY 

ТО lowest order in the small perturbation parameter К we сап on1y consider the primary 
driving reSOl1al1ces which are explicitly present in the original Hamiltonian (2.1). ТЬеп, the 
problem is уету similar to that studied in Ref. [1] apart from а different expression for the kinetic 
energy. First, we transform the variables for the two degrees of freedom which determine the 
guidil1g reSOl1ance: XI, Х2, PI, Р2 --+ 'ФI, 'Ф2'/1'/2 where 

'ФI = ХI - Х2, 'Ф2 = ХI + Х2, Рl = [1 + [2, Р2 = [2 - [1. (3.1) 
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Fig.l. Summary ofnumerica! data forthe mode1 (2.1). Broken solid lines connecting various symbo!s 
show computed va1ues ofw s as а function ofthe adiabaticity parameter л == I/VК and !he resonance 
dimension L = N indicated Ьу the numbers. Dotted lines represent the theory: (а) smаll-л limit, 
one fitting parameter, Eq. (3.5); (Ь2 ) Iагgе-л 1imit [ог L = 2, two fitting parameters, Eq. (4.9); 

(е) illtermediate asymptotics, three fitting parameters, Eq. (5.8) 

Fig.2. The same data as in Fig. 1, with respect to the theoreticaI dependence Wth(Л), Eq. (5.8) (curve 
е in Fig. 1). Thin solid curves bL represent the first three members ofthe [атilу Ws(Л, L), Eq. (4.9) 

(cf. Fig. 3). Two dashed lines show rms W s f1uctuations (5.11) 

In this approximation the momentum satisfies 12 ~ 7/;2, and аН Pi ~ :1\ [ог i ;::: 3 аге 
constant and determine the frequencies of the driving resonances. The unperturbed motion 
оп the separatrix of the guiding resonance is given Ьу 

(3.2) 

where the frequency of the phase osciIlation is wg = VЖ. As the interaction in the original 
Hamiltonial1 (2.1) is local, only the two degrees of freedom directly coupled to the guiding 
resonance contribute to the driving perturbation in the chaotic layer. The fuH set of driving 
resonances remains [огтаllу infinite because of the external perturbation D\(t) of frequency 
Q = 27г but the efТect of most of them is exponentially small due to the large detuning UJnm 

(see Eqs. (1.5) and (1.6». Consequently, опе сап retain а single driving resonance only with 
mil1imal detul1il1g: 

Wd = min Ipg - Pd + sQI , (3.3) 

where Pd = Рз, PN+] and s = О, ±1. In this approximation the Hamiltonian takes the [огт 
Н = Ho(I] , 'Ф]) + V('Ф] , t), where 

Но = 1~ - J( соs'Ф] , (3.4) 

and Ф is some constant phase. 
Now, we сап apply the standard method [ог deriving the separatrix тар and the layer 

width (see Refs. [1, 13] [ог details): 

Ws = I'1Ho/ J( ~ 41Г f >'5 ехр (-1Г >'0/2) , 
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where t:,.но is the layer width in energy, ло = Wd/Wg = ЛWd/V2, and Л == I/JК. Besides 
the usual approximations for such evaluations ап additional factor f '" 1 shows uр for the 
model (2.1) because the relative perturbation IV / Ноl '" 1 is not small. In the particular 
case N = 1, which reduces to the wel1 studied standard тар, this factor f ~ 2.15 was 
found in numerical experiments [1], and later confirmed with а much better ассurасу in [20]: 
f = 2.255 .... The best theoretical value recently derived is f ~ 2.14 [21]. Uncertainty in this 
factor limits the theoretical ассurасу of relation (3.5). It is partly balanced Ьу ап underestimated 
layer width, and also Ьу а factor of 2 [14] as discussed above. Непсе the factor f = fth/ fn in 
Eq. (3.5) is actually the ratio of а theoretical fth to the correction fn = woo/ws of empirical 
W s value (for 100 osci11ation periods in оur case) to obtain the true value W oo for infinitely 
тапу periods. 

In this smаl1-л region the width W s does not depend оп N (Fig. 1) because the origina1 
interaction is local. However, this region is rather narrow. А comparison of numerical data 
for L = 2 with theory (3.5) (the dotted line а) is presented in Fig. 1. The value of f = 0.64 
was obtained from the three leftmost points in Fig. 1 (1п Л = 1.5 - 2.5) with rms deviation 
from the theory (3.5) дlпws = ±О.53. Assuming the empirical correction fn = 2 [14] gives 
fth = 1.3, which is rather different from that in the standard тар. 

4. LARGЕ-л ЫMIТ: STAТISТICAL ESTIМATES 

For large Л the layer width, as wel1 as the AD rate, progressively exceeds the simple 
estimate (3.5) (Fig. 1). This was noticed a\ready in the first numerical experiments оп AD [1]. 
Apparently, it is somewhat strange, at the first glance, effect of higher-harmonic driving 
resonances, even though they are much weaker. General1y, such resonances are present in 
the original Hamiltonian (1.1), and their amplitudes Vnm are explicitly given. However, in the 
model (2.1) under consideration here this is not the case, and the higher perturbation harmonics 
show uр only in higher orders of the perturbation expansion with respect to sma11 perturbation 
parameter К ~ 1. The mechanism for generating higher-harmonic terrns is related to the 
l1!-0dulation ofeach unperturbed frequency Pi Ьу апу other degree offreedom. In particular, this 
genera\ mechanism transforms the originalloca\ interaction between degrees of freedom in the 
system into а global опе. Approximately, the higher-order amplitudes Vn '" КN = ехр (n ln К), 
and their decay rate (J (per freedom) сап Ье assumed in the form [17]: 

(J = ln(A/ К) (4.1) 

with some constant А depending оп а particular shape ofthe perturbation. In оur model (2.1) 
.the leading higher terms roughly correspond to А '" 2, which we will use below. Notice that 
the amplitudes do not depend оп the external perturbation harmonic т, since it is а 8-fиnction. 

А counterbalance to the weaker higher perturbation terrns is the smaller Л (1.5) due to the 
smaller detuning W nm (1.2). Generally, the dependence wnm(n, т, w) is very complicated, with 
wild fluctuations, and exact evaluation of а higher-order perturbation is practically impossible 
and even useless beyond а few first terms [21]. However, the leading dependence сап Ье found 
as follows (see, e.g., Refs. [22,23] and also Refs. [1,15,17]): 

n 
W nm = Ll Fnm(w), q -

1139 

(4.2) 



В. V. Chirikov, V. V. Vecheslavov ЖЭТФ, 1997, 112, выn. 3(9) 

where q = (!ni!) is average abso1ute уа1ие of the components of integer vector n and now 
the new function Рnт describes the fluctuations оп1у. The 1atter are quite big, which is the 
main obstac1e for re1iable estimates. In some specia1 cases the function Рnт = РО is simp1y 
а constant. For ехатр1е, for the case L = 2 and frequency ratio R = UJ/o. = (VГS - 1)/2 
(<<the most iпаtiопа1» сеа1 number) we have 1/Ро = R+ I/R = VГS. Generally, оп1у а sortof 
statistical estimate сап Ье obtained Ьу setting Рnт (W) ~ Р! ~ const to some average уа1ие to 
Ье fitted [roт numerica1 data. 

Now а particu1ar term of the higher-order perturbation takes а form similar to Eq. (3.4): 

( q'Фl ) Vn '" ехр (-qu(L - 1» cos 2 - wnmt + Фnm , (4.3) 

where the factor L -1 is 1ess Ьу 1 than the fиH number offrequencies because ofthe 8-fиnction 
in the Hami1tonian (2.1), as discussed аЬоуе. Assuming again that the te.rm (4.3) provides the 
main contribution to the formation of the chaotic 1ауес, which seems to ье plausible owing to 
the big detuning fluctuations, we arrive, ana10gous1y to Eq. (3.5), at the following estimate for 
the 1ayer width: 

W s '" (2елn /q)q ехр(-Е(n». 

Неге the principa1 exponent is (cf. Eq. (1.7» 

11'Лn 
Е(n) = qu(L - 1) + Т' 

where ло = o./wg = Ло./../2, and ~ == I/VК (iig, 1). 
The minimum of Е(n) is (о. = 211') 

11'2 
Л = r-; Р! Л, 

у2 

and is reached at q ~ qo, where 

L Л Лn 
qo ~,-, ~ 

u qo 11' 

2и 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The latter re1ation shows that the factor (лn/q) in Eq. (4.4) approximately reduces to а constant 
u -t u L which rепопna1izеs the amplitude decay rate, where 

4 
(L - l)uL ~ (L -1)и -1пи -1п- -1 > О. 

11' 
(4.8) 

The 1atter inequality is а necessary condition for the validity of these approxirnate re1ations. 
This condition is satisfied [ос sufficiently 1arge original и, or small К (see Eq. (4.1». 

Finally, the approximate re1ation [ос the 1ayer width in this limit reads 

lnws ~ А! - b(L)ut Lл1 / L • (4.9) 

This theoretical dependence is a1so shown in Fig. 1 (curve Ь2 ) [ос L 2 and fitted va1ues 
А! = 5.42, and Р! = 0.34 [ос the detuning parameter in Eq. (4.6). The rms deviation for 5 
points (1п Л = 2-4) is д1п W s = ±0.71. While the average detuning Р! has а reasonable уа1ие, 
the factor А! seems too big (see next section). Apparent1y, this discrepancy characterizes the 
ассurасу of оис statistica1 estimates. The additiona1 parameter b(L) = 1 was set equa1 to unity 
for L "" 2, апд will ье discussed in detail in section 5 below. 

For bigger L the behavior is comp1ete1y ditТerent, and this is оur most interesting resu1t 
to ье described in the next section. 
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5. INТERMEDIATE ASYMPТOTICS: FAST ARNOLD DIFFUSION 

The crucia! change in the dependence w s ().) stems from the factor L -1 in the expression 
for the exponent Е(n) (4.5). The effect of this factor was previously missed in Refs. [1,15] (cf. 
Eq. (1.7». Indeed, it !eads to а nonmonotonic dependence ws(L) according to Eq. (4.9). The 
!atter was derived from optimization with respect to the average harmonic number q among the 
driving resonances with the maximal dimensi,?p L = N оп!у (see Eq. (4.2». Meanwhile, there 
are a!so resonances of !ower dimension with L < L. Непсе we need the second optimization, 
now with respect to L, as was first done in [14] (see a!so [17]). First, we exp!ain the idea of 
optimization for а simple ехатр!е (cf. Eq. (4.9» 

(5.1) 

The new factor L decreases the !ayer width as L grows, and thus counteracts the increase in 
w s due to the dependence ).,/ L. For апу pair L, < L 2 there is а certain value of ). = ). * at 
which both W s va!ues coincide, 

(5.2) 

For). < ).* wehave w,(L,) > ws (L2) and vice versa. Thus, for а given). the particular L().) 
should Ье found which maximizes W s • In this way we would obtain а broken Нпе which is 
the envelope of the family of curves ws(л, L). Interestingly, the existence of such а [атНу of 
intersecting curves could already Ье infe!fed (but was missed) from the validity of approxirnation 
(3.5) [1,2,6,7] whichсопеsропdstоL= 1. 

For L » 1 а smooth approximation to the епуеlоре is found from the local condition 

(5.3) 

hence we obtaine the optimal value 

Lo().) = lп л (5.4) 

and 

(5.5) 

where е = ехр (1). Thus, the depen~ence of the layer width оп the adiabaticity parameter 
becomes а power law, provided that L o :::; L, or 

(5.6) 

i.e., for а not-too-weak perturbation. This border is, of course, much higher (in 10) than that 
in the rigorous theory (cf. Eq. (1.11». We term (5.6) the intermediate asymptotic region as 
contrasted to the far asymptotic limit for the reversed inequality. The former is always bounded 
from above but rapidly grows with L, and тау Ье arbitrarily !arge as L -> 00. 

We саП this regime fast Arnold diffusion (FAD). Within the dornain (5.6) the layer width 
(and diffusion rate) does not depend оп L but for апу fixed L and), -> 00, the Nekhoroshev-like 
dependence (4.9) is recovered аsутрtоtiсаПу. 
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Fig. з.' А scheme of the family w.(>', L), 
f,?r Ь = 1· - 5 as indicated, with maximal 
L = L = 5 which form the smooth power-law 
dependence (5.5) shown Ьу dotted straight line 

In Fig. 3 the power-law mechanism is illustrated, for the simple example (5.1), Ьу plotting 
tl1e family ofcurves ln (Ws(Л, L)/wmax ) which are tangent to the liпе ofmaximal wmах(л) (5.5) 
ир to the largest L = L = 5. 

For the more realistic asymptotic relation (4.9) the optimization is more complicated 
because of the additional dependence оп L via ut. That сап Ье partly removed Ьу аррюхimаtе 
renormalization: ло -+ Ло/и. For L » 1 the remaining dependence (4.8) is weak and сап ье 
neglected, at least in evaluating the optimal Lo, which now becomes (cf. Eq. (5.4» 

Lо(л) ~ ln (л/и) . (5.7) 

However, we retain the more accиrate value of (JL (4.8) in the final expression: 

(5.8) 

which is the main result of oцr studies. It is compared with numerical data in Fig. 1 (curve с, 
see also Fig. 2). Besides two fitting parameters previously used in Eq. (4.9) (curve Ь2 in Fig. 1), 
which now take somewhat different values: А j = -1.05, and Р! = 0.4, we have to iпtюduсе 
the third опе: Ь! = 0.29. The fitting of empirical data has Ьееп performed for N = 5, 7, 9, 15 
only. We excluded data for N = 3, 4 as they seem to violate the condition (cf. Eq. (5.6» 

7r2 

Л :::; ЛL = v2 Р! ЛL (5.9) 

for lпл ;::: 5 (see Figs. 1 and 2). Using the аЬоуе fitted value for Р! = 0.4, and Eq. (4.1) for 
и = ln (2/ К) = ln (2л2 ) we obtain fюm Eq. (5.9) ln Л3 ~ 4.2 and ln Л4 ~ 5.5. While the first 
value is close to the empirical опе, the second is too large. The origin of this discrepancy is 
not completely clear, but it тау Ье caused Ьу f1uctuations. Apparently, the latter are mainly 
related to the detuning function Fnm (I.k1) which f1uctuates with both the harmonic numbers 
and the set of frequencies for different L. Interestingly, while the optimal harmonic number 
qo increases with л > ЛL (4.7) it remains аррюхimаtеlу constant, 

qo ~ е ~ 3, (5.10) 

in the whole FAD region (5.9). This fol1ows directly fюm Eqs. (4.7) and (5.7). Surprisingly, 
the аЬоуе asymptotic relations remain reasonably good in spite of the relatively sma11 qo value 
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(Figs. 1 and 2). Notice, however, that the number of resonances '" qto = А/а sti11 increases 
with л. 

Detuning f1uctuations in Р! were calculated [roт the numerical data using the relation 
(see Eq. (5.8» 

d ln Ws 

d lnFj 

which gives for the rms dispersion 

and 

(5.11) 

(д In Fj )6 = 0.25. (5.12) 

The first value is the average over 4 cases with N = 5, 7, 9, 15 as in the main fitting; fot the 
second N = 3, 4 are also included. The latter value is used in Fig. 2 for rms f1uctuations д ln w s 

according to Eq. (5.11). 
The ассшасу of ош theory does not allow for а reasonable estimate of the factor А j ::::::! -1 

in the main relation (5.8), whose value is considerably smaller than А! ::::::! 5 in Eq. (4.9). 
However, the value ofa new fitting parameter Ь! = 0.29, which we had to introduce in Eq. (5.8) 
instead of Ь(2) = 1 in Eq. (4.9), is а рroЫет for the theory. It is impossible to fit the data for 
large L with the latter value or vice versa, i.e., with Ь(2) = 0.3, as in Eq. (5.8) but for L = 2, 
unless опе assumes the value Р! = 3 in Eq. (4.9) instead of 0.3, which seems too big. In апу 
event, something happens in going from L = 2 to L ;::: 3, which is obvious from the data in 
Fig. 1. То reconcile these data with the аЬоуе theory опе needs to assume а drop either in 
the parameter Ь from 1 to 0.3 (with approximately the same Р! ::::::! 0.4) or in the parameter Р! 
[roт 3 to 0.4 (with approximately the same Ь ::::::! 0.3 still to Ье explained anyway). Actual1y, 
the value Р! = 3 for L = 2 would contradict the rigorous upper bound Р! ::; 1 [22]. So we 
have to understand the first possibility аЬоуе. 

In [17], using а somewhat different approach, the following expression has Ьееп derived 
for the parameter Ь in the relation (2.11), similar to Eq. (5.8) аЬоуе: Ь ::::::! 1/1Г..,Ге = 0.19. This 
value is close to the present empirical опе, Ь! = 0.29. However, the former does not fit the 
far asymptotic expression (4.9) for L = 2, as discussed аЬоуе. 

А qualitative explanation ofthe decrease in b(L) with L could Ье related to ап underestimate 
of the perturbation Fourier amplitudes in Eq. (4.3). Indeed, we assumed that the amplitudes 
decay independently for each degree offreedom (factor L -1). However, the higher harmonics 
тау arise in the perturbation series not individuaIly but in groups, thus decreasing the effective 
parameter L or а. The former possibility is excluded Ьу the assumed expression (4.2) for 
detuning. Непсе we guess the effective amplitude decay rate in the form а ---> Ь а with empirical 
b::::::!b j ::::::!0.3. 

А different value of Ь = 1 for L = 2 is also explained in this way because in that case only 
а single osci1lation frequency remains. However, another important question arises: is the new 
factor b(L) а constant for L ;::: 3 or does it change still further with L? In other words, is FAD 
realIy independent of N? Ош empirical data seem to confirm such independence. Еуеп though 
there are quite big f1uctuations for large л they do not reveal апу systematic variation of w s with 
L. This is especially clear from Fig. 2 where the difference between the numerical data and 
the theory is shown. Moreover, the theory explains еуеп а small dip in the dependence w" (л) 
around ln л = 3. This results [roт а deviation of the approximate smoothed envelope (5.8) 
from the family of curves ws(л, L), three of which are shown in Fig. 2 (for L = 2, 3,4, cf. 
Fig. 3) as calculated from Eq. (4.9) with the factor Ь(2) = 1, and Ь(3) = 0.29. 
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Ifthe above hypothesi5 is true а new fitting is required, because the renormalization (т -t Ь (т 

wou1d resu1t in more complicated expressions than just а sing1e factor in Eqs. (5.8) and (4.9). 
Ву doing 50 we have found that Ws(Л) according to Eq. (5.8) changed negligibly after some 
changes in the fitting parameters: А! = -0.88, Ь! = 0.28, Р! = 0.21 which appear to ье 
reasonable a1so. А 1arger change БА! ~ 1 occurs in the [атi1у of curve5 Eq. (4.9) for L > 2, 
and their agreement with the smooth enve10pe (5.8) worsens owing to the approximate relation 
(5.7). То keep the above estimates more se1f-consistent we neg1ect аН these minor changes, 
and retain the above re1ations with а sing1e parameter Ь! = 0.29 for L > 2. In апу event, the 
re1ations, which are approximate anyway, are much simp1er in this form. 

Interesting1y, ha1f of the data in Fig. 1 (1п л ::; 4, L > 2) a1so fit а simp1e power law 
with exponent 6.3, which is very c10se to the va1ue 6.6 obtained in [16, 17] around 1п л ~ 2. 
However, for 1arger 1п л > 4 the deviation from such а simp1e dependence (it wou1d Ье а 
straight line in Fig. 1) progressive1y increases in accordance with the theory (5.8). 

6. DISCUSSION 

We have performed detai1ed investigations into fast Arno1d diffusion, а new regime of AD 
when the diffusion rate depends оп the perturbation strength Е = К, for the mode1s (1.1) 
and (2.1) respective1y, oron the adiabaticity parameter л rv l! vi rv ljVК as а power 1aw (5.8) 
rather than ап exponentia1like Eq. (4.9). 

We made use of а specific mode1 (2.1) which is re1ative1y simp1e and very convenient for 
numerical experiments with arbitrary number of degrees of freedom N but, at the same time, 
is rather difficu1t for theoretica1 ana1ysis. This is because the mode1 represents the limiting 
case of the 10са1 interaction between degrees of freedom. N ot опlу between two degrees of 
freedom, which wou1d mode1 а pair interaction in а broad c1ass of physical systerns, but 
even further restricted to the coupling between two nearest.-neighbor degrees of freedom in 
а сhаiп. Moreover, the coupling is harmonic, so that оп1у three-frequency primary resonances 
(for the two degrees of freedom and for the driving perturbation) with harmonic numbers 
n = ± 1 show uр in the origina1 Hami1tonian (2.1) independent of N. As а resu1t, the higher­
harmonic mu1tifrequency геsопапсеs, which make the principa1 сопtriЬutiоп to AD, arise оп1у 
in higher-order perturbation terms, which makes the theory very difficu1t from the beginning. 
We cirqumvented thi5 difficu1ty Ьу а p1ausible and simp1e conject.ure (4.1) for the decay rate 
of the high-order perturbation amp1itudes. However, to reconci1e the empirica1 data with the 
theory we had, 1ater оп, to futher modify this conjecture Ьу introducing the additional factor 
b(L) into our main re1ations (4.9) and (5.8). Even though we suggest in section 5 а qualitative 
exp1anation for b(L) =1 1, the origin ofthis additiona1 dependence is not yet comp1ete1y c1ear, 
and it constitutes ап ореп question iп our theory. Apparent1y, this is re1ated to the specific 
Наmi1tопiап (2.1) as discussed above. 

The factor Ь = 0.29, a5sumed to Ье constant for L = N > 2, is опе of the three fitting 
parameters in our main theoretica1 re1ation (5.8) for the FAD. As exp1ained in section 2, we 
actuaHy computed and calcu1ated the chaotic 1ayer width W s re1ated to the diffиsion rate via 
estimate (1.6). The second fitting parameter Р! = 0.4, which describes the detuning fluctuations 
(.Vnrn (1.2), a1so cannot Ье eva1uated in the present state ofthe theory but was found numericaHy 
to have а p1ausible va1ue. FinaHy, the third fitting parameter А! remains comp1etely out of 
theoretica1 reach and simp1y characterizes the g1oba1 accuracy ofthe theory. We remind that аН 
our estimates except the simplest опе (3.5) are of а statistical nature, owing to the large detuning 
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fluctuations. Within this accиracy and fluctuations, the agreement between the empirical data 
and the theory as presented in Figs. 1 and 2 сап Ье regarded as satisfactory, especially taking 
into account the big range of W s variation, almost 22 orders of magnitude! 

Surprisingly, аН this huge range corresponds to the intermediate asymptotic region 
(1 « Л « ЛL, see Eq. (5.9» with FAD, starting even at а relatively small L = N ~ 5. Even 
for L = 3 and 4 the F AD range is apparently of а comparable size, andonly for the minimal 
L = 2 does the far (exponential) asymptotic (Л ~ ЛL ) behavior clearly show uр. As already 
discussed in section 5, the sharp change in ws(Л) [roт L = 2 to L = 3 is precisely due to the 
«mysterious» parameter Ь, which drops Ьу а factor of 3. Unfortunately, this does not allow 
us to reach the far asymptotic limit and to confirm the exponential dependence (4.9) оп N 
for Л > ЛL beyond minimal L = 2. Meanwhile, this would Ье important to decide оп the 
different interpretation of N -independent diffusion for large N in [16]. The authors ofthe latter 
conjectured that this independence is а result of the local interac~ion in the model (2.1). This 
is contrary to oиr theory but not as yet to the direct empirical evidence. At the moment we 
сап only remark that their reference to Wayne's theory [24] for the same model is irrelevant. 
Indeed, Wayne proved а long N -independent stability for very special, nonresonant, initial 
conditions (theorem 1.1), whereas AD occurs within chaotic layers опlу, i.e., also for higbly 
specific but resonant initial conditions. Thus, the former theory is related to а global chaos 
rather than to КАМ integrability with its peculiar Arnold web of chaotic layers. 

In the case of а global interaction (1.1) with strong nonlinearity (1.4) and uniform amplitude 
decay rate oиr theory remains valid, and even becomes simpler as (7 = const. However, the 
numerical experiments would Ье much more difficult for large N. Оп the other hand, both the 
FAD range (5.9) and the diffusion rate there depend generally оп the number ofincommensиrate 
unpertиrbed frequencies L = N + М -r (1.9), which тау Ье large if М, the number ofdriving 
perturbation frequencies, is large. 

Fast Arnold diffusion should not Ье confused with the much faster diffusion in degenerate 
systems or those with попсопуех energy surfaces (section 1). In the latter case the diffusion 
mechanism is completely different. Apparently, this sort of diffusion was recently observed in 
numerical experiments with the classical model of the hydrogen atom in crossed electric and 
magnetic fields [25]. 

In the present study we have chosen опе of the strongest primary resonances as guiding, 
with amplitude Vg = V\ ,....., К (section 2). In case of а high-harmonic guiding resonance 
(Vg = Vш n ~ 1) the main effect would Ье а tremendous drop in the diffиsion rate due to the 
exponential rise of the adiabaticity parameter with q (see Eq. (4.5»: 

Лп ,....., ехр (~Lq) ,....., ехр (~Lp\/L), (6.1) 

where р(n) ,....., qL is the density of the guiding resonances in the Arnold web with harmonic 
numbers uр to q (cf. Eq. (4.2». Непсе, the diffиsion rate in the intermediate asymptotic 
region drops exponentially with q or р, Eq. (5.8), and even as а double exponential in the far 
asymptotic limit! 

In conclusion, our present studies confirm the previous conjectиre and preliminary 
empirical data [14,17] concerning а new regime offast Arnold diffиsion. Moreover, we have 
found that in multifrequency systems (L ~ 1), in particular, large ones (N ~ 1), the FAD 
range in the perturbation (5.9) is fairly big, so that this regime appears to ье typical, in а sense, 
and might Ье important in various applications. 
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