XOT®D, 1997, mom 112, eun. 1(7), cmp. 304-312 ©1997

INFLUENCE OF AN ISOLATED MAGNETIC IMPURITY ON AN UNCONVENTIONAL
SUPERCONDUCTING STATE

Yu. S. Barash®, A. G. Grishin®, M. Sigrist

@ P. N. Lebedev Physics Institute of Russian Academy of Sciences
117924, Moscow, Russia
b Theoretische Physik, ETH-Honggerberg, 8093 Ziirich, Switzerland

Submitted 6 November 1996

The effect of the moment of a magnetic impurity on the order parameter of an
unconventional superconductor is examined. The coupling of the magnetic moment to the order
parameter induces a locally time-reversal symmetry-breaking state which generates a magnetic
field distribution in the vicinity of the impurity. The magnetic field can cause precession of the
magnetic moment. The case of a spin polarized muon injected into the superconductor is discussed.

1. INTRODUCTION

Some heavy-fermion superconductors possess complex phase diagrams with various
superconducting phases [1]. These phase diagrams provide strong evidence for unconventional
superconductivity, because the different phases should be distinguished by symmetry. The
two examples of such heavy Fermion superconductors are U,;_,Th,Be;; and UPt;, which
both show two consecutive transitions with high- and low-temperature superconducting states.
The minimal requirement for such behavior is that the order parameter has more than one
component. Considerable effort from theoretical and experimental side has been invested in
determining the symmetry of the order parameter in both systems. So far no unambiguous
identification of their order parameter symmetry has been achieved. Nevertheless, there is
convincing evidence that the 16w-temperature states in both systems break the time-reversal
symmetry 7. This fact occurs very naturally in most of the phenomenological theories
explaining the phase diagram. 7 -violating states have particular magnetic properties which
can be observed in experiment. The zero-field relaxation rate of injected muons shows an
increase when the material enters the low-temperature state [2, 3], though the magnitude of
this increase may substantially depend upon the sample quality [4]. This rate is a measure of
the internal field distribution and its increase indicates additional magnetization o¢curing in
connection with the lower transition.

The additional magnetic fields are due to spontaneous supercurrents flowing in the vicinity

of inhomogeneities of the time reversal symmetry breaking superconducting order parameter,
- for example, around (non-magnetic) impurities [5-9]. The net magnetization of an isolated
impurity vanishes. There are two length scales involved, the London penetration depth A and
the coherence length £. While screening currents usually affect the magnetic field over a length
A, the spatial modulation of the currents can lead to an effective canceling of the magnetization
on a shorter length comparable with ¢ rather than . At the same time the possible existence
of supercurrent decreasing over a characteristic scale greater than £(7") with distance from the
impurity, in this approach may be associated with the existence of the continuous degeneracy
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of the superconducting state, which is lifted due to the interaction with an impurity [5, 8].

In this work we consider the problem of spontaneous currents for the time-reversal
symmetric phase above the lower transition in the presence of a static magnetic «impurity».
This impurity could be an injected muon whose spin can be considered as static on the relevant
time scales of the superconductor. The magnetic moment of the impurity couples to the
superconducting order parameter. As we will show, the basic effect is the appearance of a
locally 7 -violating order parameter. By analogy with the case mentioned above, spontaneous
supercurrents will be generated. The aim of this paper is to investigate the spatial distribution of
these currents and the field pattern. Of particular interest is the magnetic field generated at the
impurity site, as it would cause precession of the impurity spin. The essential coupling between
impurity and order parameter originates from the combined scattering from the hyperfine and
nonmagnetic (and/or spin-orbit and spin-spin) impurity potentials.

2. GINZBURG-LANDAU THEORY

Our discussion is based on a generalized Ginzburg-Landau (GL) functional. To be
concrete, we use the example of a two-component order parameter as introduced in theories
of the phase diagram of UPt;. Thus the order parameter ) = (1, 7;) belongs either to the
irreducible representation E, or E; of either parity (singlet or triplet pairing) [10]. The general
free energy functional is identical for both cases and has the following form

F= /dV {t11|771|2 +ay|ml? + Bu(Im|? + |ml*)? + Baln} + m3|? +

+ Kis(lpem|* + lpym?) + Ki(lpamal® + [pym|?) + K203} pym2 + pemplns) +

2
E * ok ! VA
+ Ks@imspym + pampint) + Ka(lpm* + |p.ml?) + [ 87r] }, 1
where p = —iV — (2e/c)A (A is the vector potential), a; = (T — T,;) and the coefficients
are real numbers in the standard notation. We assume T.; > T, so that in the temperature
range T, > T > T™* only the 7,-component of the order parameter is finite. T* denotes the
low-temperature transition point below which 7, appears,

— Tcl +Tc2 Bl

T 7 25

(Tcl - Tc2)- (2)
In order to have a 7 -violating low-temperature phase, it is necessary that 8, > 0.

We introduce now the coupling to an impurity located at the origin. The terms in lowest
order are

Fimp =/dV [Um P+l Fv(m P =m|)+Hy(mns +nf m)+ip(mns —nfm)] 6@).  3)

From the invariance of this expression under the spatial symmetry group for the system of the
crystal and the isolated impurity and from its time-reversal symmetry it follows that v, v and
p are not scalar quantities. The coefficients v and ~ differ from zero for a hexagonal crystal
only for impurity states breaking the symmetry with respect to rotations around the hexagonal
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axis through the angle /3. The last term describes the linear (or odd order) coupling of the
magnetic moment to the order parameter. Note that 7,175 — n{7, is finite only if the order
parameter 7 breaks time-reversal symmetry, i.e. the relative phase between the two components
is not 0 or 7. Hence, the coefficient y differs from zero only for the time-reversal breaking
state of the impurity.

We consider now the effect of the impurity on the order parameter in the high-temperature
phase where ) = 1), = 19(1, 0) choosing 7 real with

2 —ai(T)
™= 26+ By

For simplicity we assume that the coupling is weak so that the distortion of the order parameter
is small. We consider n = 1, +1), where ¢ = 9’ +4%)" is small compared with 7. Since for the
homogeneous phase the vector potential vanishes we can also assume A to be small. Therefore
we analyze the GL equations linearized in 4 and A. This leads to seven coupled equations,
obtained by varying F' + Fi,,, with respect to the order parameter,

()

2019 + K102,9) + K\82 91 + K02, + K202 .95 = (k + v)mob(r),

1 2 / 2 ! 2 ! 2 ! (5)
Aa; — K130yyhy — K10z, — Ku0; 9, — KOz ¥, = —ymoé(r);
2e 2e
Kind. (a o - =P ) + K8, ( W - =R A y) +
2
+ K46 (6 ! ﬂ ) + Kzsazyd) 0,
. (6)
" 2 N 2 // 2 u 26770
au/)z ot K|23ayy1[)2 - Klaz K46 ch')y 6 1/) -
2e
- K. ( - = y) = —umeb(x);
and with respect to the vector potential
6 2 16 .
0, divA — Ad, = 1 m’" K (a P — AI) ’"”70 K>0,9Y, )
8, divA — AA, 16’”3’7" (a oy - 2e"° y) 16“”" K0, )

9,divA — AA, = 16’;”’" (a P — 2e"° ) :

Here the following abbreviations were used: Aa = a;—ay, a. = 2Ba(T—-T.,)/(1+0), B = B2/ Bi.
Note that the first two equations do not couple to the remaining five. The k, v and ~ terms in
Fimp act only on the real part of the order parameter, inducing a finite real 7,-component in
the vicinity of the impurity. We will not discuss these two equations further here, since they
lead to the distortion of the order parameter without interesting effects concerning the magnetic
properties.

Clearly the imaginary part of the order parameter and the vector potential couple in
Egs. (6) and (7). The right-hand sides of the last three equations correspond essentially to
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the components of the supercurrents 47j/c. It is only the last term of F;,,, which enters into
thgse equations. Obviously, the presence of a magnetic moment drives the imaginary order
parameter components. This leads immediately to finite supercurrents and a magnetic field
distribution. ‘ _

‘l A simplification occurs if we take the gauge freedom of the order parameter phase into
account. In first-order approximation the quantity 1;’/n is in fact a common phase of the
order parameter ((no + ¥; + 19}, ¥; +1¢5) =~ (mo + Y1, ¥ + 195) exp(iyy’ /n0)), whose value
is' directly associated with a gauge for vector potential A. Therefore we can choose

¥ =0 ®

as a gauge condition. Furthermore, one can see easily that the first equation in Egs. (6) is
equivalent to the condition divj = 0, and the same condition obviously follows from the Maxwell
equations. Therefore, this equation may be omitted and we reduce the problem with the aid
of Eq. (8) to the following four equations for the unknown quantities A, 3’:

16
B2 A, + A, + (O - 82, — O2)A, = —c’ienoxzang',

- 167 :
6gyAz + B;ZA, + (A ? - 8, - 3Zz)Ay = 'c—eﬂoKsaz%', o)
ag:zAl‘ + 3321sz + ()‘4_2 - 83::: - a;y)Az =0,
anpy — K02, %7 — K03 — Kadl, 0 = —pmod(r) — @(K@,A, + K30:4,).

We have introduced here the notation \;2 = (32re;3/c*) K;. These equations can be easily
solved in momentum space. We use the Fourier transformation

AKk) = % / dVA®r)e™,

- 1 Ny (10)
0= — / AV e,
which leads to
A + k2 + kDA, — kokyAy — kok, A, — 2%%_0 ATk, =0,
\ _k’ky/iz + (’\1_2 + ki + kz)fiy - kysziz - Zl;c%’\;zkzi%' =0,
(11)

—kok, Az — kyk, Ay + A2+ k2 +K2)A, =0,

2ie < = ~
R Kok, Az + Kok Ay) + (L4 662 + €13 + Gk = — £,
The solution of this Equation is straightforward but gives a rather complicated result (see below
Eq. (16) and figure). A good picture of the result can be obtained by solving the last equation
for 14 in the absence of the vector potential and then inserting the latter into the other three
equations. This approximation may be justified, for example, under the conditions K; ~ K3 €
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The spatial distribution of the magnetic field at 2 = 0 is presented for the parameter values K; =
=15K; €« K, = K4, | =10, I, = 0.258, l; = 0.316, I, = 1. The parameters {, ,, I3, I, are defined
as follows: Ay = L2 = l3A; = LAy = I&i(T). All distances are measured in units of §;,(T"), while
the magnetic field is given in units of (K»)/(K1) (u/7a€}(T)) (¢o/27€}(T)). The value of B, (0)

is about 77% of its maximum value

< K, ~ K,. Then the order parameter has the form

Tn — Ko 1
Z(k) a.(T) 1 +£%k£ +£%23k§ +£§k§’ (12)
which corresponds to an anisotropic Yukawa potential-like shape in real space. The induced
imaginary component 2" of the order parameter leads to a local 7 -violation. The length scales
over which v} decays are the anisotropic temperature-dependent coherence lengths ¢ = K /a.
which diverge as T approaches T. Obviously, " is infinite at r = 0 in real space, because the
use of a delta function in Eq. (3) eliminates the lower cutoff-length scale. Within the Ginzburg-
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Landau theory the natural cutoff length is &. Therefore for the qualitative consideration of
quantities at 7 = 0 we need a cutoff which is at least of order the zero-temperature coherence
length of 5. The order parameter modulation yields supercurrents in the form

.;1: = 4,'enoikyK2JJ£’ )
(13)
3y = dengik, Ky

and 3, = ( if we neglect the screening currents for the moment. We use now these currents
as a source and calculate the induced vector potential

. 4r T- =

Ay = 0 (3o Ry R = R + Fikoky(Re + KD

fiy = % r--7:1«(-1'2:1:1‘22 - kiki) +;Zkzky(R' + ki)] ’ (14)
A, = % -5,,.k,.,k,(R,, + k;) +},,lcy1'c,(Rz + ki)] )

where

D =R,R,R, - 22Kk} — R,k2k% — R k2K — R,KE2ZKL

(15)
Ro=AR+R+K, Ry=X+R+k , R,=)\7+K+K .

We consider now the magnetic field distribution around the impurity site. Using B = [VA]
we obtain for the Fourier-transformed magnetic field, B = i[kA],

. 16mengylkok, 2 - PR
B, = ———”e";;b; 222 [Kk (02 = A7) + KsORik2 + A 2R,)]
o
B, = Smemikks | g i1k2 4 A72R,) + KRG - A7), (6

Dc

= 167ren01,l;§‘
B. Dc

The magnetic field distribution has a rather complicated structure, as we show for the B, -
component in figure. We do not analyze this structure further, but concentrate on the magnetic
field at the site of the impurity. For this purpose we have to perform the Fourier transform
from momentum space to real space. At r = 0 this corresponds simply to the k-integral of B(k).
We see immediately that there are no z- and y-components, because the angular dependence
in k-space leads to an exact cancellation. The z-component, however, is finite, if we take the
lower cutoff length into account properly.

As a consequence the magnetic field would lead to precessmn of the magnetic moment
around the z-axis. This precession does not change the z-component of the moment so that
the coupling term with the superconducting order parameter in Eq.(3) is not changed at all.
Therefore the local superconducting state and its field distribution is essentially static despite the
precession of the impurity moment. Regarding the muon as an impurity, one could measure the
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precession in the standard way through the muon decay into positrons. In a very clean material
all muons are usually trapped in crystallographically equivalent (very symmetric) points and,
consequently, have the same environment. If completely spin-polarized muons are injected,
all of them should generate the same local magnetic field distribution and, hence, have the
same precession frequency w. The frequency w depends, however, on the angle 8 between the
expectation value of the muon spin and the z-axis of the crystal. Because B, is proportional
to u the frequency is

w x B,(r =0) < u o coséb. - (17)

Of course, the precession of the muon spin can only be seen if 0 < 6 < 7/2.

On the other hand, in a dirty sample the trapping positions of the muons may be scattered
so that the magnetic field generated at the muons is spread over many values. Then we would
not observe a pure precession, but rather a depolarization for the z-y-component of the spin.
In both cases the effect should become stronger as we approach the transition at 7*.

3. MICROSCOPIC DERIVATION OF THE IMPURITY TERMS

In the following we discuss briefly the microscopic calculations of the coefficient u as well
as k, v and +, assuming for simplicity hole-particle symmetry for the energy spectrum. In
quasiclassical theory the basic equations for the propagators in the presence of the isolated
impurity may be written as follows [6]

[ienTs — 6(kp,R), §(kr,R; €,)] + Ve VRg(kp, R; €) = ‘
= [t(kF" kF: En), gint(kF1 R= Rzmpa En)] 6(R - R1mp) (18)
Here ¢, = (2n + 1)=T is the Matsubara frequency, kr is the momentum direction on the

Fermi surface, vr(kr) is the Fermi velocity, and 7; is the third Pauli matrix in Nambu space.
The normalization condition for the matrix propagator is

§(kp,R;e,) = —7*1. (19)

Equations (18), (19) must be supplemented by the equation for the quasiparticle scattering
t-matrix of the impurity
dzk"

Bk Kpi€a) = 0kr, Kp) + NO) | S 0ke,Kp)Gint (i, R = Rimp; €0 )i Kiri ).

(20)
Here 0(kr,k}) is the matrix of the impurity potential. The auxiliary quantity §;n:(kr,R;€,)
obeys the normalization condition and Eq. (18) without the ¢-matrix impurity term on the

right-hand side.
The impurity potential matrix #(kr, k’ r) may be represented in the form

vkp, k’p) = wkkli + tvgpr T3 + U MS + imy sf'g (21)

Here terms wy, vk, ukk and myy describe the conventional nonmagnetic potential, the
hyperfine interaction, the magnetic spin-spin and spin-orbit coupling respectively. The form
of the spin operator S is defined as in [11].
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The Ginzburg-Landau equations are obtained by expanding the self-consistency equation

2./
ke, 0 = 2INO S /% d—'“—V(kp,k'nf(k'p,q, ) @

in powers of the order parameter and its spatial derivatives. For one-dimensional representations
the contributions from an isolated nonmagnetic impurity to the free energy functional were
considered in [12, 13] for estimation of the vortex pinning potential. Since we are interested
in the terms in Eq. (3), we can put ¢ = 0 in Eq. (22) omitting gradient terms. This equation
is written in the form valid for singlet pairing, A(kr) = ig,¥(kr), and for the particular kind
of triplet pairing (A(kr) = i(d(kr)o)o, with d || z, where z is the hexagonal crystalline axis),
if one makes use of the notations A(p) = 1(p) for the former and A(p) = d.(p) for the latter
cases. Mostly, these types of pairing are discussed for the analysis of experimental data of UPt;
[10]. We consider the pairing potential of the form

Vo) = -5 [0 ®e@) + e @0

and assume the basis functions to be real and normalized according to f dnwf,z(ﬁ) =

The solution of Eq. (20) in the second Born approximation and its substitution into Eq. (18)
are straightforward, since one can use the bulk expression for the quantity g;,, in the case
0 /€% < 1, where o is the quasiparticle cross-section for the impurity potential [5, 6]. From the
solution of the Eilenberger equations in this approximation we obtain the impurity contribution
to the anomalous propagator

m
fimp - (6—) N(O)/ 4r [ (vkk' mik' ¥ Mzuik/ - wlzck')A(le) -
— (W + mpp + MPuly + 0 )AKE) + 2 (Vg Wik — ukk’mkk’M) AKE)].  (23)

Only the last term of this expression for the f-function, substltuted into the self-consistency
equation (22), yields a finite value of u,

p= EM L avpAN?(0) / do / 49 @i — b i (hek!, — Ryl Yor(kp)oa(Ki).  (24)

Here the coupling constant A = gN(0) is expressed in terms of the critical temperature in the
conventional way (7, < exp(—1/])) and the matrix elements for the hyperfine and spin-orbit
interactions are represented in the form

Ve = ([KFKpIM) @prr, Mirr = bwir: [Kpkip].

Note, that for the point-like impurity potential, when wyys, ®xx and ugy do not depend
upon momenta k, k', the coefficient 4 vanishes for singlet pairing. It is not the case for triplet
superconductors due to the different parity properties of the basis functions ¢ ,(kr) for singlet
and triplet superconductors. This result may be justified beyond the Born approximation as well.
Since the expression Eq. (24) is proportional to M,, the coefficient u changes its sign under
the time-reversal operation, which ensures the time-reversal symmetry of the whole expression
w(mng — nim).
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4. CONCLUSION

We have demonstrated phenomenologically that a magnetic impurity can generate a locally
T -violating superconducting phase. This leads to a distribution of supercurrents and magnetic
fields which acts on the magnetic moment. For the two representations F, and E, considered
here, only the z-component of the magnetic moment couples to the superconducting order
parameter and the resulting magnetic field has only a finite 2-component at the impurity site.
We have shown that this fact yields the precession of the magnetic moment without changing the
locally 7 -violating order parameter configuration. Thus, for injected muons this may lead to
precession of the spin. However, it is difficult to estimate whether the generated magnetic field
would be sufficiently large to really give an observable precession. Our discussion may also apply
to other systems besides the UPt; we had in mind here. It is important for the enhancement
of effects considered to be in the vicinity of a bulk transition to a superconducting state with
broken time reversal symmetry.

We are grateful to T. M. Rice and H. Monien for helpful discussions. M. S. would like to
thank the Swiss Nationalfonds for financial support. Yu. S. B. and A. G. G. were supported
by grant Ne 96-02-16249 of the RFBR. Two of the authors (Y. B. and M. S.) are grateful to
the I. S. I. at the Villa Gualino in Torino for hospitality, where this paper was finished.

References

. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).

H. Heffner, J. L. Smith, J. O. Willis et al., Phys. Rev. Lett. 65, 2816 (1990).

M. Luke, A. Keren, L. P. Le et al., Phys. Rev. Lett. 71, 1466 (1993).

D. de Reotier, A. Huxley, A. Yaouanc et al., Phys. Lett. A 205, 239 (1995).

Rainer and M. Vuorio, J. Phys. C: Sol. St. Phys. 10, 3093 (1977).

V. Thuneberg, J. Kurkijarvi, and D. Rainer, J. Phys. C: Sol. St. Phys. 14, 5615 (1981).
. Choi and P. Muzikar, Phys. Rev. B 39, 9664 (1989).

. Choi and P. Muzikar, Phys. Rev. B 41, 1812 (1990).

Mineev, Pis’ma Zh. Eksp. Teor. Fiz. 49, 624 (1989) [JETP Lett. 49, 719 (1989)].
Sauls, Adv. Phys. 43, 113 (1994). )
A. X. Alexander, T. P. Orlando, D. Rainer, and P. M. Tedrow, Phys. Rev. B 31, 5811 (1985).
Thuneberg, J. Kurkijarvi, and D. Rainer, Phys. Rev. B 29, 3913 (1984).

1
2
3
4
5
6.
7. H
8 H
9 P.
0. J. A

1. .

2. V.

3. M. Friesen and P. Muzikar, Phys. Rev. B 53, R11953 (1996).

M
R.
G.
P.
D.
E.
C.
C.
V.
J.

J.

E.
M

1
1
1
1

312





