ТОЧНЫЕ НЕРЕЛЯТИВИСТСКИЕ ВЫРАЖЕНИЯ ТЕНЗОРА РАССЕЯНИЯ СВЕТА АТОМАМИ

М. А. Преображенский

Воронежская государственная архитектурно-строительная академия 394000, Воронеж, Россия

Поступила в редакцию 7 июня 1996 г.

Получены точные нерелятивистские аналитические выражения дипольных двухфотонных переходов между произвольными мультиплетами атома водорода и положительных водородоподобных ионов. Результат выражен через одну гипергеометрическую функцию Гаусса и полиномы, степень которых линейно растет с ростом числа узлов связанных состояний квантовой системы. В качестве примера приведены сечения упругого рассеяния света K - и L-оболочками атома водорода. Показано, что разложение волновых функций дискретного спектра по гиперсферическим полиномам позволяет получить аналитические выражения сечений двухфотонных переходов также и между состояниями, описываемыми модельным потенциалом Саймонса. Показано, что наилучшим базисом разложения является базис полиномов Чебышева. В широкой области изменения параметров задачи приведены коэффициенты этого разложения. В качестве примера рассчитана поляризуемость *Ss*-состояния атома рубидия. Проведено сравнение полученного значения с результатами экспериментальных и других теоретических работ.

1. ВВЕДЕНИЕ

Как известно [1], матричные элементы C_{ik} дипольного тензора рассеяния света атомом следующим образом выражаются через волновые функции исходного $|1\rangle$ и конечного $|2\rangle$ состояний:

$$C_{ik} = \langle 2|d_i G_{E_1+\omega_1} d_k + d_k G_{E_1-\omega_2} d_i|1\rangle, \tag{1}$$

где d_i — компоненты оператора дипольного взаимодействия, G — функция Грина атома, E_1 — энергия начального уровня, $\omega_{1,2}$ — энергии поглощенного и рассеянного фотонов соответственно. (Здесь и далее используется атомная система единиц.) Применимость дипольного приближения к исследованию процессов взаимодействия связанных состояний атомов с электромагнитной волной обусловливается малостью их линейных размеров r по сравнению с длиной волны λ : $r \ll \lambda$. В оптическом диапазоне частот это условие справедливо вплоть до состояний с главным квантовым числом n < 30 [2].

Через элементы тензора C_{ik} выражаются вероятности упругого и неупругого рассеяний света и сдвиги энергетических уровней в электромагнитном поле. Так, например, для изолированного атомного уровня тензор C_{ik} вырождается в тензор поляризуемости α_{ik} , следующим образом связанный со сдвигом уровня ΔE :

$$\Delta E = -\alpha_{ik} \mathscr{C}_i \mathscr{C}_k / 2, \tag{2}$$

где \mathscr{C}_i — компоненты вектора напряженности электрического поля. Состояния атома с орбитальным квантовым числом l > 0 не могут быть изолированными и вырождены, по крайней мере, по проекции M полного момента J. Зависимость C_{ik} как от M, так

и от индексов i, k может быть найдена по теореме Вигнера–Эккарта в общем виде, что позволяет определить зависимость ΔE от магнитных квантовых чисел [3]. При этом для изолированного уровня более удобным оказывается выражение ΔE не через тензор α_{ik} , а через пропорциональные его компонентам скалярную и тензорную поляризуемости.

Водородоподобные и ридберговские состояния вырождены кроме того и по l. В этом случае, вообще говоря, вклад в сдвиг атомного уровня вносят не только квадратичные по напряженности поля члены α_{ik} , но и члены, линейно зависящие от \mathscr{C} . Именно линейные члены полностью определяют ΔE в статическом пределе. Но в оптическом диапазоне частот ω их вклад в эффект Штарка мал [3]. В поле, достаточно сильном, для того чтобы можно было пренебречь тонкой структурой уровней, задача, вообще говоря, сводится к диагонализации трехдиагональной матрицы квазиэнергии ранга n - |M| (n — главное квантовое число) с элементами пропорциональными (1) [4]. В частных случаях для полей, не полностью снимающих вырождение, расчет ΔE упрощается. Так, в линейно поляризованном поле сохраняется четность уровня и матрица квазиэнергий разлагается в прямую сумму матриц, перемешивающих состояния фиксированной четности [3].

Сложнее описывается эффект Штарка для атомного мультиплета. В этом случае ранг диагонализуемой матрицы зависит от частоты и напряженности поля и не может быть указан заранее. Он определяется числом уровней, для которых сдвиг отдельного уровня имеет порядок ширины мультиплета. Для возбужденных состояний большинства атомов в реальных полях все уровни мультиплета перемешиваются полем, а различные мультиплеты можно считать изолированными.

Поскольку в любом случае, за исключением статического поля, исследование сдвига уровней, вероятностей упругого и комбинационного рассеяния света, двухфотонной ионизации и других двухквантовых фотопроцессов включает как обязательный этап расчет тензора рассеяния, эта задача привлекала к себе большое внимание. Для ее решения использовался большой арсенал методов. Для основных состояний сложных атомов использовались нестационарная теория возмущений в методе Хартри-Фока [5], многочастичная теория возмушений [6] и метод случайных фаз с обменом [7]. Применение этих методов к возбужденным вырожденным состояниям наталкивается на большие технические трудности. В этом случае физически оправданным является кулоновское приближение. Но и в его рамках удалось получить точные аналитические выражения элементов тензора рассеяния лишь для основного и первого возбужденного состояний атома водорода [3, 8]. Прямое суммирование членов, порождаемых штурмовским разложением функции Грина, возможно только при закрытом канале однофотонной ионизации [4]. Метод, основанный на решении неоднородного дифференциального уравнения [9], в явном виде использует сферическую симметрию S-состояния. Но и в этом случае значительные технические трудности позволили исследовать лишь два нижних состояния. Использование спектрального разложения или интегрального представления [10] функции Грина приводит к громоздким численным расчетам, сложность которых быстро растет с ростом n.

Если *n* превышает два, в расчетах C_{ik} при произвольной частоте внешнего поля ω даже для уровней атома водорода и водородоподобных ионов использовались дополнительные приближения. Ряд авторов использовал разложение C_{ik} по обратным степеням ω [11]. При этом удалось получить лишь небольшое число членов разложения. Его слабая сходимость и неаналитический характер поведения мнимой части C_{ik} ограничивают область применимости данного приближения.

Слабо сходится также и квазиклассическое разложение по обратным степеням главного квантового числа n [12]. Технические трудности позволили выполнить его лишь с точностью до членов n^{-2} , а неаналитичность ширины уровня по энергии привела к невозможности получения в этом приближении мнимой части ΔE .

Методы, основанные на суммировании конечного числа сил осцилляторов, рассчитанных в приближении Крамерса [13], также обладают весьма узкой областью применимости. Поскольку в этом случае полностью отброшен вклад в α_{ik} непрерывного спектра, приближение неприменимо для частот ω , превышающих потенциал ионизации возмущаемого уровня. В этом случае, как показано в [3], для основных состояний атомов виртуальные переходы в непрерывный спектр определяют значения поляризуемости на 50–90%. Для возбужденных состояний вклад меняется в широких пределах и при значениях орбитального квантового числа l > 1 может оказаться существенным даже и при закрытом канале ионизации. С другой стороны, приближение несправедливо и при малых ω . Связано это с тем обстоятельством, что в приближении Крамерса силы осцилляторов не зависят от l. Это не позволяет учесть перемешивание вырожденных по l уровней, которым нельзя пренебречь при малых ω .

Все это приводит к необходимости разработки методов получения точных аналитических выражений C_{ik} . Решению этой задачи в дипольном нерелятивистском приближении посвящена данная работа.

2. ТОЧНЫЕ АНАЛИТИЧЕСКИЕ ВЫРАЖЕНИЯ КОМПОНЕНТ ТЕНЗОРА РАССЕЯНИЯ СВЕТА НА ВОДОРОДНЫХ УРОВНЯХ

Стандартные методы теории углового момента [14] позволяют в общем виде выполнить в (1) интегрирование по угловым переменным и определить зависимость C_{ik} от магнитных квантовых чисел исходного M, виртуального m и конечного M_f состояний атома. Применяя к (1) теорему Вигнера–Эккарта, выразим C_{ik} через коэффициенты Клебша–Гордана и приведенный составной матричный элемент теории возмущений:

$$C_{ik} = (-1)^{J-M+j-m} \begin{pmatrix} J & 1 & j \\ M & q_i & m \end{pmatrix} \begin{pmatrix} j & 1 & J_f \\ M & q_k & M_f \end{pmatrix} (2 \parallel dG_{E_1+\omega_1}d + dG_{E_1-\omega_1}d \parallel 1), \quad (3)$$
$$q_{i,k} = 0, \pm 1.$$

Расчет (3) для различных схем связи угловых моментов проводился неоднократно и не представляет трудности (см., например, [3, 15]). Приведем сразу необходимое в дальнейшем конечное выражение C_{ik} в схеме *LS*-связи через радиальный составной матричный элемент *T* и коэффициенты Рака *W*:

$$C_{ik} = (-1)^{J-M-m-j+2S-L-L_1} \begin{pmatrix} J & 1 & j \\ M & q_i & m \end{pmatrix} \begin{pmatrix} j & 1 & J_1 \\ M & q_k & M_1 \end{pmatrix} (2j+1) [(2J+1)(2J_1+1)]^{1/2} \times W(LSlj;S1)W(ljL_1J_1;S1)L_{max}L_{1max} [T(nL,\nu+l,n_1L_1) + T(nL,\nu+l,n_1L_1)].$$
(4)

Здесь L, l, L_f — орбитальные квантовые числа исходного, виртуального и конечного состояний соответственно; L_{max} — большее из чисел L, l; S — спиновое квантовое число; эффективное главное квантовое число виртуального уровня определяется как

$$\nu_{+,-} = [2(-E \pm \omega)]^{1/2}, \tag{5}$$

а радиальный составной матричный элемент теории возмущений T есть

$$T(n_f L_f, \nu l, nL) = \langle nL | r^3 g_l(\nu, r, r_1) r_1^3 | n_f L_f \rangle,$$
(6)

где $\langle nL|, |n_f L_f\rangle$ — радиальные части волновых функций исходного и конечного состояний атома, $g_l(\nu, r, r_1)$ — радиальная часть функции Грина. Именно расчет T и составляет единственную трудность задачи.

Общий алгоритм расчета двухфотонных дипольных радиальных матричных элементов для водородных состояний изложен в [15]. Получим, следуя этой работе, элементы тензора рассеяния. Подставим в (6) штурмовское представление радиальной части кулоновской функции Грина [3] через полиномы Лагерра L_k^{2l+1} [16]

$$g_l(\nu, r, r_1) = \frac{4}{\nu} \sum_{k=0}^{\infty} \frac{(rr_1)^l \exp(-r/\nu - r_1/\nu)}{k!(k+2l+1)!(k+l+1-\nu)} L_k^{2l+1}(2r/\nu) L_k^{2l+1}(2r_1/\nu)$$
(7)

и явное выражение для волновой функции связанного состояния

$$|nL\rangle = \frac{2^{L+1}}{n^{L+2}} \left[(n+L)!(n-L-1)! \right]^{1/2} \sum_{\alpha=0}^{n-L-1} \left(\frac{-2r}{\nu} \right)^{\alpha} \frac{1}{(n-L-1-\alpha)!(2L+1+\alpha)!\alpha!}.$$
 (8)

Матричный элемент (6) выражается через трансформанту Лапласа для L_k^{2L+1} . Используя ее выражение через гипергеометрическую функцию [16], имеем

$$T(n_f L_f, \nu l, n_i L_i) = C_i C_f \sum_{k=0}^{\infty} \frac{(2l+k+1)!}{k!(k+l+1-\nu)} \left[\frac{\nu - n_i}{\nu + n_i} \frac{\nu - n_f}{\nu + n_f} \right]^k \times I(n_i L_i, \nu, lk) I(n_f L_f, \nu, lk).$$
(9)

Здесь введены обозначения

$$C_{i} = \frac{\left[(n_{i} + L_{i})!(n_{i} - l_{i} - 1)!\right]^{1/2}}{n_{i}^{L_{i}+2}\nu^{l+1/2}(2l+1)!} \left(\frac{\nu n_{i}}{\nu + n_{i}}\right)^{l+L_{i}+4},$$
(10)

$$I(n_i L_i, \nu, lk) = \sum_{\alpha=0}^{n_i - L_i - 1} \frac{(l + L_i + \alpha + 3)!}{(n_i - l_i - \alpha - 1)!(2L_i + \alpha + 1)!\alpha!} \left(\frac{-2\nu}{\nu + n_i}\right)^{\alpha} \times F\left[-k, l - L_i - \alpha - 2, 2l + 2, 2n_i/(\nu - n_i)\right],$$
(11)

где F — гипергеометрическая функция Гаусса, представляющая собой в данном случае конечный полином переменной $2n_i/(\nu - n_i)$, степень которого равна меньшему из чисел $k, L_i - l + \alpha + 2$. С другой стороны, F можно рассматривать как полином степени $L_i + \alpha + 2 - l$ параметра k.

Это свойство позволяет провести аналитическое продолжение $T(n_f L_f, \nu l, n_i L_i)$ в область мнимых ν , в которой разложение (9) расходится. Физически эта область соответствует открытому каналу однофотонной ионизации исходного состояния атома. Представим $I(n_i L_i, \nu, lk)$ в виде полинома $Q_{j_i}^{x_i, y_i}(k)$ переменной k с коэффициентами, зависящими от

$$x_i = n_i / (\nu - n_i), \quad y_i = \nu / (\nu + n_i).$$
 (12)

Степень j_i этого полинома определяется старшим членом разложения F с максимальным $\alpha_{max}^i = n_i - L_i - 1$ и равна $j_i = n_i + 1 - l$, вследствие чего степень j произведения $P_{if}(k)$ полиномов Q_i и Q_f определяется суммарным числом узлов волновых функций n_{r_i}, n_{r_f} исходного и конечного состояний и равна

$$j = n_{r_i} + n_{r_f} + 2 - 2l; \tag{13}$$

 $P_{if}(k)$ представляют собой полиномы переменной k, коэффициенты которых зависят от параметров x_i, y_i, x_f, y_f . Разлагая $P_{if}(k)$ по полиномам

$$R_m = \prod_{\gamma=0}^m (k+2l+2+\gamma), \quad m = 1, \dots, j, \quad R_0 = 1,$$
(14)

получим

$$P_{if}(k) = \sum_{m=0}^{j} b_m(x_i, y_i, x_f, y_f) R_m.$$
 (15)

Поскольку система полиномов (14) не является ортогональной, замкнутые выражения коэффициентов $b_m(x_i, y_i, x_f, y_f)$ разложения (15) не могут быть получены. Это разложение может быть проведено стандартными методами: либо последовательным делением $P_{if}(k)$ на R_m (m = 0, ..., j) по схеме Горнера, либо решением системы j + 1 линейных уравнений, получаемых путем сравнения коэффициентов при одинаковых степенях переменной k в правой и левой частях равенства (15). Тот факт, что старшие коэффициенты всех полиномов системы (14) равны единице, позволяет построить более экономную рекуррентную процедуру получения $b_m(x_i, y_i, x_f, y_f)$, являющуюся обобщением техники подвижной полосы [17, гл. 1] на случай несимметрических функций. Вычитая из $P_{if}(k)$ полином R_j с весом, равным старшему коэффициенту $P_{if}(k)$, мы имеем в остатке полином систему коэффициентов b_m . Данный алгоритм содержит только операции вычитания полиномов с целыми коэффициентами, свободен от вычислительных ошибок и легко поддается программированию.

Учтем теперь, что

$$(k+2l+1)!R_m = (k+2l+m+1)!,$$
(16)

и приведем (9) к виду

$$T(n_f L_f, \nu l, n_i L_i) = C_i C_f \sum_{m=0}^{j} b_{i,l,f,m}(x_i, y_i, x_f, y_f) \times \\ \times \sum_{k=0}^{\infty} \frac{(2l+k+1+m)!}{k!(k+l+1-\nu)} \left[\frac{\nu - n_i}{\nu + n_i} \frac{\nu - n_f}{\nu + n_f} \right]^k.$$
(17)

Поскольку внутренняя сумма по k выражается через гипергеометрический ряд [16]

$$\sum_{k=0}^{\infty} \frac{(2l+k+1+m)!}{k!(k+l+1-\nu)} \left[\frac{\nu-n_i}{\nu+n_i} \frac{\nu-n_f}{\nu+n_f} \right]^k = \frac{(2l+1+m)!}{l+1-\nu} {}_2F_1 \left[2l+m+1, l+1-\nu, l+2-\nu, \frac{\nu-n_i}{\nu+n_i} \frac{\nu-n_f}{\nu+n_f} \right], \quad (18)$$

(17) представляет собой конечную сумму смежных гипергеометрических функций Гаусса:

$$T(n_f L_f, \nu l, n_i L_i) = \sum_{m=0}^j d_{i,l,f,m}(x_i, y_i, x_f, y_f) F_{if}(m).$$
(19)

Здесь введены обозначения:

$$d_{i,l,f,m}(x_i, y_i, x_f, y_f) = C_i C_f \frac{(2l+1+m)!}{l+1-\nu} b_{i,l,f,m}(x_i, y_i, x_f, y_f),$$

$$F_{if}(m) = {}_2F_1 \left[2l+m+1, l+1-\nu, l+2-\nu, \frac{\nu-n_i}{\nu+n_i} \frac{\nu-n_f}{\nu+n_f} \right].$$
(20)

Данный алгоритм позволяет описывать поведение тензора рассеяния не только в области аналитичности, но и дает правильное положение полюсов: $\nu = l + n + 1$ при $n = 0, 1, ..., \infty$.

Изложенный выше алгоритм получения аналитических выражений компонент тензора рассеяния через гипергеометрические функции содержит только процедуры деления полиномов с рациональными коэффициентами и приведения подобных по переменным x, y и легко поддается программированию. Реализующая данный алгоритм программа содержит только целочисленные операции и свободна от вычислительных ошибок.

В качестве примера приведем явные выражения для диагональных по главным квантовым числам ($x_i = x_f = x, y_i = y_f = y$) переходов из основного и первого возбужденного состояний атома водорода:

$$T(1s, \nu 1, 1s)/2^8 3^2 = F(0)(1 - 4x + 4x^2) + xF(1)(4 - 9x) + 5x^2F(2),$$

$$T(2s, \nu 1, 2s)/2^{11} 3^3 5 = F(0) \left[(1/5 - 2y + 5y^2)/8 + x(-1/5 + 3y - 10y^2)/2 + 2x^2(1/5 - 6y + 300y^2) + 16x^3y(1 - 10y) + 160x^4y^2 \right] + F(1)x \left[(1/5 - 3y + 10y^2)/8 + x(-9/10 + 26y - 130y^2) - 56x^2y(1 - 10y) - 800x^3y^2 \right] + 2x^2F(2) \left[(1/4 - 7y + 35y^2) + 32xy(1 - 10y) + 728x^2 + y^2 \right] - 64x^3yF(3) \left[(1 - 10y + 48xy) \right] + 336x^4F(4)y^2,$$

$$T(2p,\nu 1,2s)/2^{10}3^{2}5 = F(0) \left[(1-5y)/16 + x(-3+20y)/4 + 3x^{2}(1-10y) + + 4x^{3}(-1+20y) - 80x^{4}y \right] + xF(1) \left[(3/4-5y) + 13x(-1/2+5y) + 14x^{2}(1-20y) + + 400x^{3}y \right] + x^{2}F(2) \left[(7/2-5y) + 16x(-1+20y) - 728x^{2} + y \right] + + x^{3}F(3) \left[6(1-20y) + 576xy \right] + 168x^{4}F(4)(-1+y) \right],$$
(21)

$$T(2p, \nu0, 2p)/2^{7}3 = F(0) (1/24 - x + 10x^{2} - 160/3x^{3} + 160x^{4} - 256x^{5} + 512/3x^{6}) + xF(1) (1 - 23x - 208x^{2} - 928x^{3} + 2048x^{4} - 1792x^{5}) + 16x^{2}F(2)(13/16 - 16x + 116x^{2} - 368x^{3} + 432x^{4}) + 16x^{3}F(3) (19/3 - 98x + 496x^{2} - 824x^{3}) + 160x^{4}F(4)(3 - 32x + 84x^{2}) + 640x^{5}F(5)(2 - 11x) + x^{6}F(6)4480/3,$$

$$T(2p,\nu 1,2p)/2^{9}3 \cdot 5^{2} = F(0)\left(1/16 - x + 6x^{2} - 16x^{3} + 16x^{4}\right) + xF(1)(1 - 13x + 56x^{2} - 80x^{3}) + x^{2}F(2)(7 - 64x + 738x^{2}/5) + 24x^{3}F(3)(1 - 24x/5) + 168x^{4}F(4)/5,$$

$$T(2p, \nu 2, 2p)/2^{12}3^25^3 = 3F(0)(1/8 - x + 2x^2) + xF(1)(3 - 13x) + 7x^2F(2).$$

В формальном статическом пределе $\nu = n_{i,f} + l_{i,f} + 1$ исходный ряд (17) может иметь лишь полюс первого порядка при $n_{r_{i,f}} = l - l_{i,f}$, что возможно только при $\Delta l = 0, -1$. В остальных случаях (17) стремится к конечному пределу. Легко убедиться, что и в конечных суммах (21) все члены $x_{i,f}^{j}$, содержащие полюсы более высокого чем (17) порядка, сокращаются. Так, например $T(1s, \nu 1, 1s)$ имеет конечный статический предел: T(1s, 1 - 1, 1s) = 27/4, что дает правильную статическую поляризуемость основного состояния атома водорода: $\alpha_{1s} = -9/2$.

Изложенный выше алгоритм позволяет выразить тензор рассеяния света произвольным водородоподобным состоянием атома через конечную сумму смежных гипергеометрических функций Гаусса. Трехчленные рекуррентные соотношения Куммера позволяют свести любые смежные гипергеометрические функции к двум функциям. Тот факт, что второй и третий аргументы $F_{if}(m)$ отличаются на единицу, позволяет свести (20) к одной гипергеометрической и элементарным функциям. Докажем это утверждение.

Применяя соотношение Куммера

$$F(a+1,b,c,z) = [F(a,b,c,z) + bF(a,b+1,c,z)]/a$$
(22)

к $F_{if}(m)$ и учитывая, что F(a, b, b, z) есть элементарная функция:

$$F(a, b, b, z) = (1 - z)^{-a},$$
(23)

получим

$$F_{if}(m) = \frac{l+m+1+\nu}{2l+2+m}F(m-1) + \frac{l+1-\nu}{2l+2+m}Q^{2l+2+m}.$$
(24)

Здесь введено обозначение

$$Q = \frac{(\nu + n_i)(\nu + n_f)}{2\nu(n_i + n_f)}.$$
(25)

Последовательное применение (24) позволяет выразить $F_{if}(m)$ с произвольным m, а следовательно, и сумму (20) через $F_{if}(0)$ и элементарную функцию:

$$F_{if}(m) = \frac{l+m-1+\nu}{2l+2+m} P_m F_{if}(0) + (l+1-\nu) \sum_{j=0}^{m-1} \frac{P_j Q^{2l+2+m-j}}{2l+1+m-j},$$
(26)

где

$$P_j = \prod_{k=0}^{j-1} \frac{l+j+\nu-k}{2l+1+j-k}.$$
(27)

В качестве иллюстрации приведем два примера выражения радиальных составных матричных элементов через одну гипергеометрическую функцию F(0):

$$T(1s,\nu 1,1s) = \frac{3}{2} \left(\frac{2\nu}{1+\nu}\right)^{10} \frac{(7\nu^2 - 18\nu + 12)F(0) + (2-\nu)\left[(3\nu - 8)Q^4 + 4Q^5\right]}{\nu^3(\nu - 1)^2(2-\nu)},$$
$$T(2p,\nu 2,2p) = \frac{2^7 15^3}{\nu^5(\nu - 2)^2} \left(\frac{2\nu}{2+\nu}\right)^{14} \left\{\frac{(49\nu^2 - 162\nu + 324)F(0)}{24} + (3-\nu)\left[\frac{(5\nu - 24)Q^6}{3} + \frac{(3\nu - 32)Q^7}{4}\right]\right\}.$$
(28)

Пользуясь соотношениями между смежными гипергеометрическими функциями, можно доказать и более общее утверждение: не только отдельная компонента тензора рассеяния света атомной оболочкой, но и весь тензор может быть выражен через одну гипергеометрическую функцию. Это свойство позволяет значительно упростить как суммирование и усреднение по компонентам атомного мультиплета, так и диагонализацию матрицы квазиэнергии.

В соответствии с правилами отбора в дипольном приближении угловой момент виртуального состояния $l = L_i$, $L_i \pm 1$, вследствие чего $F_{if}(0)$ следующим образом выражается через угловое квантовое число исходного состояния:

$$F_{if}^{+}(0) = F(2L_i + 4, L_i + 2 - \nu, L_i + 3 - \nu, z),$$

$$F_{if}(0) = F(2L_i + 2, L_i + 1 - \nu, L_i + 2 - \nu, z),$$

$$F_{if}^{-}(0) = F(2L_i, L_i - \nu, L_i + 1 - \nu, z).$$
(29)

Выразим $F_{if}^+(0)$ через $F_{if}(0)$. Приведение первого параметра функции $F_{if}^+(0)$ к значению $2L_i+2$ проводится двукратным применением преобразования (22). Одновременное уменьшение второго и третьего параметров на единицу может быть осуществлено одним преобразованием Куммера:

$$F(a, b, c+1, z) = c \left[F(a, b-1, c, z) - (1-z)F(a, b, c, z) \right] / z(a-c).$$
(30)

Вследствие того что в (29) c = b, F(a, b, c, z) в соответствии с (23) представляет собой элементарную функцию, и окончательный результат имеет вид

$$F_{if}^{+}(0) = \frac{L_i + 2 - \nu}{2L_i + 3} \left\{ Q^{2L_i + 3} + \frac{L_i + 1 + \nu}{(2L_i + 2)z} \left[Q^{2L_i + 2} - F_{if}(0) \right] \right\}.$$
 (31)

Двукратно применяя к $F_{if}^-(0)$ преобразование

$$F(a-1,b,c,z) = \left[bF(a,b+1,c,z) / z - (c-b-a)F(a,b,c,z) \right] / (c-a)$$
(32)

и учитывая, что F(a, b+1, c, z) есть элементарная функция, можно свести первый параметр функции $F_{if}^{-}(0)$ к величине $2L_i + 2$. Преобразование Куммера

$$F(a, b, c-1, z) = \left[bF(a, b+1, c, z) / z + (c-b-1)F(a, b, c, z) \right] / (c-a)$$
(33)

М. А. Преображенский

позволяет выразить $F_{if}^{-}(0)$ через $F_{if}(0)$ следующим образом:

$$F_{if}^{-}(0) = \frac{Q^{2L_i}}{L_i + \nu} (2L_i Q - L_i + \nu) - \frac{z 2L_i (2L_i + 1)}{(L_i - \nu)(L_i + \nu + 1)} F_{if}(0).$$
(34)

В частности, для Р-состояний имеем

$$F_{if}^{+}(0) = \frac{3-\nu}{5} \left[Q^{5} + \frac{2+\nu}{4z} \left(Q^{4} - F_{if}(0) \right) \right],$$

$$F_{if}^{-}(0) = \frac{Q^{2}}{\nu+1} (2Q - 1 + \nu) - \frac{6z}{(1,-\nu)(2+\nu)} F_{if}(0).$$
(35)

3. АНАЛИТИЧЕСКИЕ ВЫРАЖЕНИЯ ЭЛЕМЕНТОВ ТЕНЗОРА РАССЕЯНИЯ СВЕТА ВОДОРОДОПОДОБНЫМИ СОСТОЯНИЯМИ СЛОЖНЫХ АТОМОВ

В тех случаях, когда для описания поведения оптического электрона сложного атома можно использовать одноэлектронное приближение, для построения волновой функции и функции Грина может быть использован метод модельного потенциала. Единственным позволяющим получить аналитические результаты и поэтому наиболее часто применяемым в многофотонных расчетах является модельный потенциал Саймонса [3]

$$V(\mathbf{r}) = -Z/r + \sum_{l} B_{l}(E)P_{l}/r^{2}.$$
(36)

Здесь $B_l(E)$ — параметр, определяемый из условия совпадения полюсов функции Грина и экспериментального спектра атома, P_l — оператор проектирования на подпространство собственных функций углового момента с данным l. Так же, как и все одноэлектронные методы, он неверно описывает область атомного кора, в которой сильно сказывается корреляционное взаимодействие. Однако при расчетах вероятностей фотопроцессов оператор дипольного взаимодействия d уменьшает относительный вклад этой области в интеграл (6).

Потенциал Саймонса имеет неверную асимптотику и в противоположном пределе больших r. Однако волновые функции и функция Грина в области больших r экспоненциально малы и, кроме того, нелокальность потенциала по утловым переменным позволяет соответствующим выбором его параметров $B_l(E)$ отчасти скомпенсировать и этот недостаток [3]. Как показывают многочисленные расчеты, существует широкая область частот излучения и энергий уровней, для которых в этом потенциале хорошо описываются фотопроцессы на возбужденных состояниях атомов щелочных, щелочноземельных металлов, благородных газов и других элементов. Кроме того, он описывает также и фотопереходы из основных состояний атомов с одним валентным электроном. Это позволяет использовать приближение модельного потенциала Саймонса в расчетах тензора рассеяния света сложным атомом [3].

Волновая функция $|\nu_i \lambda\rangle$ и функция Грина оптического электрона $g_{\lambda}(\nu, r, r_1)$ в этом потенциале имеют вид [3]

$$|\nu_{i}\lambda\rangle = \frac{2^{\lambda+1}}{\nu^{\lambda+2}} \left[(\nu_{i}+\lambda)!n_{r}! \right]^{1/2} \sum_{\alpha=0}^{n_{r}} \left(\frac{-2r}{\nu_{i}} \right)^{\alpha} \frac{1}{n_{r}!(2\lambda+1+\alpha)!\alpha!},$$

$$g_{\lambda}(\nu,r,r_{1}) = \frac{4}{\nu} \sum_{k=0}^{\infty} \frac{(rr_{1})^{\lambda} \exp(-r/\nu - r_{1}/\nu)}{k!(k+2\lambda+1)!(k+\lambda+1-\nu)} L_{k}^{2\lambda+1}(2r/\nu) L_{k}^{2\lambda+1}(2r_{1}/\nu).$$

$$(37)$$

Здесь n_r — радиальное квантовое число. Эффективное главное квантовое число связанного состояния $\nu_{i,f}$ определяется как $\nu_{i,f} = (-2E_{i,f})^{-1/2}$, а параметр λ есть функция энергии оптического электрона E и углового квантового числа l. Он выбирается так, чтобы обеспечить совпадение экспериментальных снергий связанных состояний с полюсами функции Грина. Необходимым условием применимости метода модельного потенциала Саймонса к расчетам вероятностей фотопроцессов является гладкость функции $\lambda(E)$:

$$\left|\frac{\partial\lambda}{\partial E}\right| \ll 1$$

Подставляя (37) в (6), получим обобщение выражений (9)-(11) на случай сложных атомов:

$$T(\nu_f \lambda_f, \nu \lambda, \nu_i \lambda_i) = C_i C_f \sum_{k=0}^{\infty} \frac{F(2\lambda + k + 2)!}{k!(k + \lambda + 1 - \nu)} \left[\frac{\nu - \nu_i}{\nu + \nu_i} \frac{\nu - \nu_f}{\nu + \nu_f} \right]^k \times I(\nu_i \lambda_i, \nu, \lambda k) I(\nu_f \lambda_f, \nu, \lambda k),$$
(38)

где

$$C_{i} = \frac{\left[\Gamma(n_{i} + L_{i} + 1)n_{ri}!\right]^{1/2}}{n_{i}^{\lambda_{i}+2}\nu^{\lambda_{i}+1/2}\Gamma(2\lambda_{i} + 2)} \left(\frac{\nu n_{i}}{\nu + n_{i}}\right)^{\lambda + \lambda_{i} + 4},$$

$$I(n_{i}\lambda_{i}, \nu, \lambda k) = \sum_{\alpha=0}^{n_{ri}} \frac{\Gamma(\lambda + \lambda_{i} + \alpha + 4)}{\Gamma(n_{ri} - \alpha)\Gamma(2\lambda_{i} + \alpha + 2)!\alpha!} \left(\frac{-2\nu}{\nu + n_{i}}\right)^{\alpha} \times F\left[-k, \lambda - \lambda_{i} - \alpha - 2, 2\lambda + 2, 2n_{i}/(\nu - n_{i})\right].$$
(39)

Частный случай (37), (38) для диагональных по главному квантовому числу переходов получен в [10].

Разложение (37) сходится только при действительных ν , что физически соответствует закрытому каналу однофотонной ионизации. Непосредственное применение изложенного выше алгоритма аналитического продолжения $T(n_f L_f, \nu l, n_i L_i)$ в область мнимых ν невозможно, вследствие того что $F[-k, \lambda - \lambda_i - \alpha - 2, 2\lambda + 2, 2n_i/(\nu - n_i)]$ при нецелочисленных значениях параметра $\lambda_i - \lambda$ не является конечным полиномом переменной k. Для того чтобы использование алгоритма аналитического продолжения стало возможным, необходимо свести $I(n_i\lambda_i, \nu, \lambda k)$ с нецелыми λ , λ_i к сумме многочленов $Q_{j_i}^{x_i, y_i}(k)$. Разложим для этого $r^{\lambda_i+2-\lambda}$ по целым степеням переменной r:

$$r^{\lambda_i+2-\lambda} = \sum_{\delta=0}^{\delta_{max}} h_{\delta}(\lambda-\lambda_i)r^{\delta}.$$
 (40)

Одна и та же функция может быть бесконечным числом способов разложена в степенные ряды по ортогональным полиномам Якоби, отличающимся друг от друга весовой функцией, относительно которой имеет место их ортогональность. Приводя подобные при одинаковых степенях r, мы получим степенные разложения (40). При $\delta_{max} \rightarrow \infty$ все они в области сходимости точны и равнозначны. Однако, если целью разложения является достижение заранее заданной на конечном отрезке точности при

минимальном числе членов разложения δ_{max} , их сходимость будет различной. Вследствие того, что погрешность расчета сечения фотопроцесса на сложном атоме во всяком случае ограничивается снизу одноэлектронным приближением модельного потенциала, нет необходимости стремиться к абсолютной точности разложения и именно эта ситуация имеет место в нашем случае.

Базис разложения необходимо выбирать так, чтобы обеспечить наиболее экономичное для данной точности описание подынтегральной функции в (6) в области изменения переменной $0 > r \ge \nu$, вносящей основной вклад в интеграл. Для этой цели, вообще говоря, максимально неэффективны локальные разложения Тейлора или Маклорена, в которых используется только информация о поведении функции в одной точке. Намного эффективней процедура разложения по ортогональным полиномам, из которых наилучшим в интегральном смысле является разложение по ультрасферическим полиномам [17].

При различных значениях параметров задачи вклад разных частей области интегрирования в (6) неодинаков. Этот факт может быть учтен соответствующим выбором весового коэффициента ортогонального разложения, а следовательно, и вида ультрасферического полинома [17]. Равномерную оценку относительного максимального отклонения Δ_{max} аппроксимационного полинома от разлагаемой функции во всем интервале изменения r обеспечивает базис полиномов Чебышева $T_k(x)$. Это свойство полиномов Чебышева и определяет их преимущество при аппроксимации функции в широком интервале изменения параметров. Такой выбор базиса позволяет определить вид степенного разложения вне зависимости от вида атома и параметров поля. При этом относительная ошибка интеграла Δ ограничена Δ_{max} сверху. На интервале -1 < r < 1полиномы $T_k(x)$ определяются рекуррентными соотношениями

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x), \quad T_0(x) = 1, \quad T_1(x) = x.$$
 (41)

Коэффициенты разложения a_k функции f(x) по полиномам Чебышева определяются равенством

$$a_k = \int_{-1}^{1} f(x) T_k(x) (1 - x^2)^{1/2} dx.$$
(42)

Подставляя (40) в (6), получим

$$I(n_{i}\lambda_{i},\nu,\lambda k) = \sum_{\delta=0}^{\delta_{i}} h_{\delta}(\lambda-\lambda_{i}) \sum_{\alpha=0}^{n_{ri}} \frac{\Gamma(\lambda+\lambda_{i}+\alpha+4)}{\Gamma(n_{ri}-\alpha)\Gamma(2\lambda_{i}+\alpha+2)\alpha!} \left(\frac{-2\nu}{\nu+n_{i}}\right)^{\alpha} \times F\left[-k,-\delta-\alpha,2\lambda+2,2n_{i}/(\nu-n_{i})\right].$$
(43)

Поскольку теперь второй параметр функции F есть целое отрицательное число, аналогично (15), имеем

$$P_{if}(k) = \sum_{m=0}^{j} B_m(x_i, y_i, x_f, y_f) R_m,$$
(44)

где $B_m(x_i, y_i, x_f, y_f)$ есть просто линейная комбинация определенных ранее величин $b_m(x_i, y_i, x_f, y_f)$ с весами, определяемыми коэффициентами аппроксимации (40):

$$B_m(x_i, y_i, x_f, y_f) = \sum_{\delta=0}^{\delta_i} h_{\delta}(\lambda - \lambda_i) \sum_{\delta_i=0}^{\delta_f} h_{\delta_i}(\lambda - \lambda_f) b_m(x_i, y_i, x_f, y_f).$$
(45)

ЖЭТФ, 1997, 111, вып. 3

	δ								
ρ	0	1	2	3	4	5	6	7	8
0.6	1	4	-7	8.7	-8	4.541	-1.788	0.506	-0.1059
0.7	-2	3.5	-7	6.5	-4.9	2.83	-1.09	0.309	-0.06482
0.8	-1	2.1	-3.5	2.8	-2.7	1.5	-0.59	0.167	-0.03455
0.9		2.6	-1.227	1.339	-0.99	0.594	-0.233	0.06621	-0.01385
1.0		1							
1.1	0.1	0.5	0.95	-0.733	0.67	-0.3712	0.145	-0.04077	0.008526
1.2	0.5	0.2	1.4	-1.464	1.07	-0.595	0.225	-0.0629	0.01308
1.3	-0.4	1.2	1.2	-1.272	1.15	-0.64	0.253	-0.0705	0.0147
1.4	0.05	0.31	1.08	-0.6713	0.344	-0.1241	0.3142	-0.00569	0.7485/4
1.5	0.1	0.3	0.9655	-0.3927	0.14148	-0.03759	0.006787	-8.585/4	0.7659/4
1.6	-0.027	0.274	0.903	-0.2188	0.05504	-0.009698	0.001162	-0.9382/4	0.502/5
1.7	0.033	0.215	0.9106	-0.1463	0.02905	-0.004056	0.3778/3	-0.2293/4	0.8688/6
1.8	0.041	0.16	0.9234	-0.8634	0.01314	-0.001406	0.9748/4	-0.4156/5	0.9878/7
1.9	-0.038	0.12	0.9851	-0.02804	0.002309	-0.1252/3	0.3728/5	-0.4612/7	
2.0			1						
2.1	-0.0089	-0.11	1.056	0.03913	-0.00291	0.1528/3	-0.445/5	0.548/7	
2.2	0.085	-0.18	1.089	0.09076	-0.00634	0.3261/3	-0.947/5	0.1153/7	
2.3	0.074	-0.27	1.092	0.1561	-0.0101	0.5089/3	-0.146/4	0.1772/6	
2.4	0.438	-0.36	1.063	0.2362	-0.01392	0.6851/3	-0.195/4	0.2347/6	
2.5	0.01	-0.29	0.993	0.3315	-0.01736	0.8334/3	-0.234/4	0.2806/6	
2.6	-0.02	-0.4	0.883	0.4421	-0.01985	0.9261/3	-0.257/4	0.3061/6	
2.7	1.73	-0.5	0.746	0.5667	-0.02056	0.9294/3	-0.255/4	0.3013/6	
2.8	0.95	-0.5	0.6835	0.6572	-0.01173	0.3128/3	-0.391/5		
2.9	0.39	-0.1	0.3815	0.8213	-0.008	0.2049/3	-0.252/5		
3.0				1					
3.1	-0.096	0.8	-0.708	1.243	0.008875	-0.9342/4			
3.2	-0.4	0.8	-0.936	1.1375	0.03685	-0.8004/3	0.9357/5		
3.3	-1	1.1	-1.483	1.547	0.07107	-0.001431	0.1638/4		
3.4	1	1.8	-1.893	1.687	0.1205	-0.002209	0.2471/4		
3.5	-10.1	5	-2.451	1.766	0.1894	-0.003086	0.3366/4		
3.6	-11	3	-2.821	1.763	0.2825	-0.003948	0.4186/4		

Таблица 1

Задача вычисления элементов тензора рассеяния сложным атомом сводится, таким образом, к определению энергетической зависимости параметров модельного потенциала λ , $\lambda_{i,f}$ и вычислению коэффициентов $h_{\delta}(\lambda - \lambda_{i,f} + 2)$. Первая часть этой задачи для каждого атома легко решается аппроксимацией рассчитанных по экспериментальному спектру [19] значений λ . В качестве примера на рисунке приведена использованная ниже для конкретных расчетов энергетическая зависимость параметров λ для атома рубидия.

Решение второй части задачи уже не зависит от специфики конкретного атома. В табл. 1 приведены значения младших, а в табл. 2 — старших коэффициентов разложения $h_{\delta}(\rho)$, обеспечивающих точность аппроксимации $\Delta_{max} = 10^{-4}$ для 0 < r < 40. Эти данные позволяют рассчитать вероятности фотопроцессов, в которых $\nu, \nu_{i,f}, \nu \leq 40$. Интервал изменения параметра ρ описывает все переходы между уровнями щелочных,

Энергетическая зависимость параметров модельного потенциала λ атома рубидия. Кривые *l*-5 соответствуют *s*-, *p*_{1/2}-, *p*_{3/2}-, *d*-, *f*-состояниям. Энергии выражены в см⁻¹. Приведенные значения λ_l нормированы условием $\lambda_l = \lambda - a_l$, где $a_s = 0.8$, $a_{p_{1/2}} = 1.3$, $a_{p_{3/2}} = 1.2$, $a_d = 1.68$, $a_f = 2.98$

щелочноземельных металлов и благородных газов. Нулевые для данной точности аппроксимации значения коэффициентов опущены. Запись c/n означает $c \cdot 10^{-n}$. Из таблиц видно, что кроме тривиальных случаев окрестностей целых значений ρ , в которых достаточно одного члена суммы (40) с $\delta = \rho$, разложение быстро сходится при $\nu \approx 10^0$, а при произвольном ν также и при $\rho > 1.5$. В этом случае необходимую точность обеспечивает небольшое число членов с $\delta \leq 5$ даже при больших ν . При малых ρ для высоковозбужденных состояний число необходимых членов δ_{max} в (40) растет и становится необходимым учет старших членов разложения (табл. 2), что значительно усложняет применение данного метода к расчету тензора рассеяния света.

В этом случае базис ультрасферических полиномов и, в частности, полиномов Чебышева, дающий равномерную для всего интервала аппроксимации оценку погрешности, уже не является адекватным задаче. Для различных интервалов параметров область r, вносящая определяющий вклад в (6), будет различной. В этом случае более экономичным оказывается не базис ультрасферических полиномов, а базис полиномов Якоби с несимметричными весовыми коэффициентами, подчеркивающими именно эту область r. Естественно, при таком выборе базиса разложение (40), выигрывая в экономичности, проигрывает в общности. Существует важный предельный случай резкой асимметрии подынтегральной функции, для которого базис Чебышева может быть использован в том числе и при больших ν и малых ρ .

Как показано в [10], с ростом энергии связанных состояний атома и частоты электромагнитной волны область r, дающая вклад в интеграл (6), уменьшается. Вследствие того что модельный потенциал неверно описывает поведение волновых функций при $r \leq r_c$ (r_c — радиус атомного кора), этот факт накладывает ограничения на применимость модельного потенциала Саймонса, а следовательно, и данного метода, к расчету тензора рассеяния электромагнитного излучения ридберговскими состояниями. Для высоковозбужденных состояний сужается также и область применимости дипольного приближения. Все это значительно усложняет теоретическое изучение взаимодействия света с такими уровнями. В то же время в области применимости данного метода для

	δ									
ρ	9	10	11	12	13	14	15	16	17	
0.6	0.01668	-0.2/2	0.183/3	-0.128/4	0.677/6	-0.267/7	0.7567/9	-0.15/10	0.172/12	
0.7	0.01016	-0.12/2	0.111/3	-0.778/5	0.412/6	-0.162/7	0.46/9	-0.89/11	0.104/12	
· 0.8	0.00545	-0.65/3	0.6/4	-0.417/5	0.221/6	-0.869/8	0.2465/9	-0.48/11	0.56/13	
0.9	0.00218	-0.26/3	0.238/4	-0.166/5	0.88/7	-0.346/8	0.982/10	-0.19/11	0.223/13	
1.0										
1.1	-0.00134	0.16/3	-0.146/4	0.1017/5	-0.54/7	0.2121/8	-0.6/11	0.116/11	-0.14/13	
1.2	-0.00205	0.245/3	-0.224/4	0.156/5	-0.825/7	0.3247/8	-0.92/10	0.178/11	-0.21/13	
1.3	-0.0023	0.275/3	-0.251/4	0.175/5	-0.235/7	0.3648/8	-0.103/9	0.2/11	-0.23/13	
1.4	-0.748/3	0.505/5	-0.256/6	0.913/5	-0.217/9	0.307/11	-0.2/13			
1.5	-0.479/5	0.205/6	-0.574/8	0.943/10	-0.7/12					
1.6	-0.17/6	0.332/8	-0.28/10							
1.7	-0.19/7	0.173/9								
1.8	-0.1/8									

Таблица	2
1 uonuuu	~

состояний с главным квантовым числом $n \cong 10^1$ с ростом $n_{i,f}$ и ω и с уменьшением области аппроксимации необходимая точность обеспечивается меньшим числом членов разложения (40). Это позволяет использовать базис полиномов Чебышева для расчета тензора рассеяния сложным атомом в этом случае в том числе и при малых ρ .

Проиллюстрируем применение данного метода к расчету тензора рассеяния на конкретном примере. Рассчитаем исследованный недавно теоретически и экспериментально [18] сдвиг основного 5*S*-состояния атома рубидия на частоте неодимового лазера $\omega = 9434 \text{ см}^{-1}$. Поскольку расстройка до ближайшего уровня превышает 0.1 ат.ед., в реальных лазерных полях справедливо приближение изолированного уровня и, в соответствии с (4), поляризуемость α_{5S} следующим образом выражается через радиальные матричные элементы (6):

$$\alpha_{5S} = -\left[T(5,0,\nu_{+}1,5,0) + T(5,0,\nu_{-}1,5,0)\right]/12. \tag{46}$$

Энергии виртуальных состояний равны $E_1^{+,-} = \pm \omega_n$. Экстраполяция данных рисунка дает $\lambda_0 = 0.8236$, $\lambda_1^+ = 1.26124$ и $\lambda_1^- = 0.945$, вследствие чего $\rho^+ = 1.5624$ и $\rho^- = 1.8786$. Интерполяция по табл. 1 дает

$$r^{1.5624} = -0.22 + 0.3128r + 0.914r^{2} - 0.27r^{3} + 0.09r^{4} - 0.024r^{5} + + 0.0061r^{6} - 0.00012r^{7} + 0.00084r^{8} - 0.000045r^{9}, r^{1.8786} = -0.03235 + 0.1335r + 0.9196r^{2} - 0.038r^{3} + 0.0088r^{4} - - 0.00015r^{5} - 0.0003r^{6} + 1.6 \cdot 10^{-4}r^{7} - 2.9 \cdot 10^{-5}r^{8} + 4.8 \cdot 10^{-6}r^{9}.$$
(47)

Поскольку ν исходного и виртуальных состояний (а следовательно, и область r, вносящая вклад в интеграл (6)) имеет порядок ≈ 2 , в (47) нет необходимости учитывать старшие по δ члены из табл. 1, 2. Отброшенные члены вносят относительную поправку меньше 10⁻⁴. Подставляя (47) в (45) и учитывая (20), имеем $\alpha_{5S} = 707$ ат.ед., что

М. А. Преображенский

находится в хорошем согласии с другими теоретическими $\alpha_{5S} = 692$ [3] и экспериментальными $\alpha_{5S} = 769 \pm 61$ [18] значениями.

Литература

- 1. А. И. Ахиезер, В. Б. Берестецкий, Квантовая электродинамика, Наука, Москва (1969).
- 2. М. А. Преображенский, Опт. и спектр. 77, 559 (1994).
- Л. П. Рапопорт, Б. А. Зон, Н. Л. Манаков, Теория многофотонных процессов в атомах, Атомиздат, Москва (1978).
- 4. В. И. Ритус, ЖЭТФ 51, 1544 (1966).
- 5. I. Epstain, J. Chem. Phys. 53, 1881 (1970).
- 6. H. P. Kelly, Phys. Rev. 182, 84 (1969).
- 7. М. Я. Амусья, Н. А. Черпаков, С. Г. Шапиро, ЖЭТФ 63, 889 (1972).
- 8. M. Gavrila, Phys. Rev. 163, 147 (1967).
- 9. M. Marinescu, H. R. Sadeghpoure, and A. Dalgarno, Phys. Rev. A 49, 5103 (1994); V. L. Yakhontov and K. Jungmann, in *Europhys. Conf. Abstracts*, (1996), p. 74.
- 10. N. L. Manakov and V. D. Ovsiannikov, J. Phys. B 10, 569 (1976).
- 11. Н. Л. Манаков, В. А. Свиридов, А. Г. Файнштейн, ЖЭТФ 95, 790 (1989).
- 12. В. М. Вайсберг, В. Д. Мур, В. С. Попов, А. В. Сергеев, Письма в ЖЭТФ 44, 9 (1986).
- Н. Б. Делоне, В. П. Крайнов, ЖЭТФ 83, 2021 (1982); И. Л. Бейгман, ЖЭТФ 100, 125 (1991);
 I. L. Beigman, L. A. Bureyeva, and R. H. Pratt, Phys. Rev. A 49, 5833 (1994).
- 14. И. И. Собельман, Введение в теорию атомных спектров, Физматгиз, Москва (1963).
- 15. M. A. Preobragenskii, Laser Phys. 3, 688 (1993).
- 16. Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции, Наука, Москва (1973).
- 17. К. Ланцош, Практические методы прикладного анализа, Физматгиз, Москва (1961).
- 18. K. D. Bonin and M. A. Kadan-Kelly, Phys. Rev. A 47, 999 (1993).
- 19. C. E. Moore, in National Bureau of Standards, Circular № 488, Washington (1950).