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The system energy E as a function of the gauge phase @ has been studied in the two- 
dimensional Emery model, which is applied to the CuO, plane in high-T, superconductors. 
The system energy E(@) has been calculated by exact diagonalization in the two-dimensional 
Cu408 cluster, and also by the slave boson and Monte Carlo techniques. At certain values 
of the Hamiltonian parameters we have observed motion of carriers with a charge of 2e, i.e., 
Cooper pairs, as indicated by a characteristic maximum of E(@) at @=Qo/2, where D o  
is the flux quantum. We have plotted the phase diagram and determined the range of model 
parameters over which electron pairing takes place. The resulting Emery parameters 
(Ud= (2- 10) tpd , E = ( 1 -4) tPd, tp,= [o-( -0.5)] tpd) are close to the values derived from 
experimental data. The density of states has been calculated with the phase taken into account, and 
we have demonstrated that the presence of the gauge phase in a small bounded system leads 
to effective doping, which can transform the original dielectric state into a metallic (and 
superconducting) phase. The effective doping parameter (0.1-0.2) is close to experimental 
values for high-T, superconductors. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

Multiband Hubbard models (especially the Emery 
model' describing the CuOz plane) have been used to de- 
scribe nonphonon mechanisms responsible for attraction 
among current carriers in high-T, superconductors, which 
have recently been an active subject of discussion. In addi- 
tion to the problem of Cooper pairing, the symmetry of the 
superconducting state has been also ~ t u d i e d . ~  The available 
numerical data, however, lead to somewhat controversial 
conclusions. For example, the exact diagonalization3-5 and 
Monte carlo6 techniques applied to two-dimensional Cu-0 
clusters with Cu02 cell dimensions of 2 X 2 and 4X 4 give 
evidence of carrier pairing, in accordance with calculations 
of the binding energy and pair correlations with the predomi- 
nant type of symmetry (s* in Refs. 5 and 7). On the other 
hand, the extrapolation of quantum Monte Carlo data on pair 
correlation functions towards the thermodynamic limit (to 
8 x 8  (Ref. 8) and 16X 16 (Ref. 9) Cu02 cells) leads to a 
total vanishing of anomalous averages (to be exact, to the 
absence of divergence in the Fourier component899), hence to 
the absence of carrier pairing in the two-dimensional Emery 
model. Note that in the first case5 the smallness of the system 
does not allow one to conclude ultimately whether there is 
long-range off-diagonal order, whereas the relatively high 
temperature range (T- 1000 K) in which the calculation was 
performed in the second casegg9 might also cause the negative 
result yielded by the Monte Carlo technique. Nonetheless, 
the Emery model is most popular with theorists attempting to 
describe normal and superconducting properties of HTSC. In 
light of these considerations, it is undoubtedly interesting to 
prove the possibility (or impossibility) of carrier pairing in 
the two-dimensional Emery model regardless of the symme- 
try type and without additional simplifications or assump- 

tions concerning the nature of the ground state. The latter 
condition impels us to use exact numerical techniques with- 
out any approximations. 

There is a criterion that makes it possible to show un- 
equivocally that carriers with charge 2e  (i.e., Cooper pairs) 
are present in the system. According to yang,Io when a 
gauge phase @ is included in a fermion or boson system (this 
corresponds to introducing a magnetic flux or a circulating 
current in the two-dimensional toroidal geometry), the en- 
ergy E of the system becomes a periodic function of the 
phase, so that in the presence of carriers with charge 2e,  we 
have the periodic condition 

E(@l@o)=E(@I@o+ v), v=O,+: I , .  . . , (1) 

where Qo= hc/2e is the magnetic flux quantum. If the car- 
rier charge is equal to e ,  the period is doubled: 

If the system contains both superfluidity and normal 
Fermi liquid (quasiparticle) phases, the situations (1) and (2) 
can coexist, each of the phases contributing a component 
proportional to the respective carrier concentration. The 
point is that in the absence of impurities, both the supercur- 
rent and quasiparticle current flow without dissipation, i.e., 
from this viewpoint, the conditions (1) and (2) are criteria of 
superfluidity, rather than of superconductivity. Thus, in a real 
situation, we expect interference of these two effects (hence 
two periods in the energy versus phase), and the effect in 
question will show up as a peak at @ ~ @ ~ / 2  in E ( @ ) ,  
whereas the quasiparticle peak at @=Qo should remain, in- 
dicating the emergence of a new flux quantum (and a new 
period) corresponding to Cooper pairs. 

Moreover, if the gauge phase is considered in the calcu- 
lation, one can obtain information concerning the superfluid- 
ity phase density D, , which can be expressed as follows:" 
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1 d 2 ~  
D,=;L,L, lim 2, 

a-0 d@ 

where L is the linear size of the system in units of the cell 
period (L = 2 for Cu4O8). 

Equation (3) has the sense of the real superfluidity phase 
density only in the thermodynamic limit; it should therefore 
be considered only in the case of a sufficiently large system. 

The criterion based on the gauge phase was applied to 
the Hubbard model: and one-dimensionalf2 and two- 
dimensional13 Emery models. In the case of a one- 
dimensional Cu-0 chain12 the conditions for the existence of 
carriers with charge 2e were obtained, although the model 
parameters were not very realistic. But Monte Carlo 
 calculation^'^ with the phase analysis in the two-dimensional 
Emery model of clusters with sizes of up to 8 X 8 Cu02 cells 
yielded a negative result, which might be due to the tempera- 
ture at which the calculations were performed not being low 
enough. Another inherent difficulty of this calculation is that 
the effect is weak, which might lead to the negative result 
concerning superconducting pairing. A simple analysis of the 
two-dimensional model suggests that the energy correction 
due to the phase is small but finite, and does not increase 
with the size of the system. Hence, the effect may be unde- 
tectable by the Monte Carlo technique, since the absolute 
calculation accuracy degrades as the size of the system in- 
creases. Therefore, in our opinion, calculations by the exact 
diagonalization technique (whose calculation uncertainty is 
extremely small and should be suitable for detecting the de- 
sired effect) in the two-dimensional case have fundamental 
importance, at least in the case of a small cluster, in order to 
prove the existence of Cooper pairing or its impossibility. 

In this paper we have applied the criterion (1) and (2) to 
investigate a Cu408 cluster at T=O by the exact diagonal- 
ization technique. The calculations have been performed 
over a wide range of Hamiltonian parameters, and we have 
obtained clear evidence of Cooper pairing of charge carriers. 
Calculations based on the slave boson14 and Monte carlog 
techniques in larger systems confirm the results of the exact 
diagonalization. 

2. CALIBRATION PHASE IN THE EMERY MODEL 

The Emery Hamiltonian in the hole representation'-9 has 
the form 

which describes the hybridization between dx2-,2 and p,, 
p ,  orbitals in the Cu02 plane with the overlap integral tPd; 
the hybridization between the p, and p, orbitals of oxygen 
sites closest to each other in the diagonal direction with the 
overlap integral tpp; the energy difference e between the 
copper and oxygen sites; and Coulomb repulsion at the cop- 
per, (U)d and oxygen (U)p sites. Here @ is the gauge phase. 
The vector potential A is introduced only in the direction of 
one of lattice axes (for definiteness along the x-axis, 
A,= @lL), so that the total magnetic flux integrated over the 
length L is @. After every 0-0 hop along the diagonal with 
amplitude r,, , the phase A@ = @/2L is added, just as in the 
case of a copper-to-oxygen hop in the x-direction with am- 
plitude tPd (naturally, in the opposite direction the phase dif- 
ference is subtracted). Note that this way of introducing the 
gauge phase allows one to incorporate a toroidal magnetic 
flux or circulating current into the lattice geometry in the 
most natural manner (as in the Aharonov-Bohm effect), and 
is often used in boson models (Bose-Hubbard model) to 
study superconducting- dielectric  transition^'^ to determine 
the superconducting component. 

Let us estimate the contribction of the gauge phase @ to 
the calculated energy E of the system. Without interaction 
the energy is a function of ~ o s ( k , + ~ / 2 ~ ~ L ) ,  where 
k,= 2 m l L ,  n = 0, . . . ,L - 1. Thus the gauge phase makes 
an additional contribution to the energy, EQ 
cc t p d ~ d ( @ / @ o ~ ) 2 ,  where d is the dimensionality of the 
space. In the one-dimensional case Earn llL, in the two- 

FIG. 1. Energy of the Cu,O, cluster 
ground state (in units of t,,,) vs 
phase in the doped case at I,,= 0: (a) 
N = 3 , U , , = 6 , ( 1 ) ~ = 1 0 , ( 2 ) 5 , ( 3 ) 3 ,  
(4) 0; (b) N = 5 ,  E =  1, ( I )  U,,= 100, 
(2) 10, (3) 6 ,  ( 4 )  2. 
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dimensional case E,paconst(L), and in the three- 
dimensional case E,pxL. Note that although the amplitude of 
the effect is essentially constant with the system size at 
d= 2, further calculations indicate that it is small. Given the 
small amplitude of the effect, the numerical precision must 
be high. From this viewpoint, the exact diagonalization tech- 
nique has clearcut advantages over the Monte Carlo method 
(in addition to the fact that the ground state energy is calcu- 
lated at T =  0). 

3. CALCULATION OF E(@)  IN A Cu408 CLUSTER 

In the case of a Cu408 cluster with twelve atoms and 
periodic boundary conditions, we have studied the following 
range of model parameters: Up= 0 ,  O <  Ud< 100, O<E< 10, 
- 0.5 6 tp,cO (in units of tpd). Most of the calculations 
were performed at three carrier concentrations N: N =  4 (un- 
doped state), N =  3 (electron doping), and N =  5 (hole dop- 
ing). Typical calculations are plotted in Figs. 1-4, which 
show the ground state energy E o  as a function of phase for 
various Hamiltonian parameters. Figures 1 and 2 demon- 

FIG. 3. Ground-state energy o f  a Cu408 cluster vs phase in undoped case at 
N = 4 ,  c: = I ,  and ( I )  U,,=O, (2 )  1, (3)  2.5, (4)  6 .  Asterisks show results o f  
the Monte Carlo trajectory method for the model parameters o f  curve 3. The 
numerical accuracy o f  the Monte Carlo method AE= k0.02. 

FIG. 2. Ground-state energy o f  the Cu,08 
cluster vs phase in the doped case at ( a )  
U d = 6 ,  ~ = 3 ,  and N = 3 ,  and ( b )  N=5 at 
different values o f  diagonal hopping: ( I )  
t,,=O; (2 )  -0.1; (3)  -0.3; (4)  -0.5. 

strate that in the doped state the function Eo(Q) has a period 
of 2Q0, i.e., in this case the condition (2) is satisfied, which 
corresponds to conventional quasiparticle 

On the contrary, in the "undoped" situation (as will be 
demonstrated below, in this case an effective doping takes 
place), maxima at @ = a o ,  3Qo/2, . . . can be seen in 
Eo(@) in Figs. 3 and 4, which indicates that condition ( I )  is 
also satisfied, i.e., Cooper pairing with charge 2e  takes 
place.109" Figures 3 and 4 show that the curve is exactly 
periodic (i.e., the contribution of quasiparticle transport is 
zero and the total current is due to pairs) at Ud=2.5, e = 1 
(Fig. 3) and at Ud= 6 ,  E = 3, tpp= - 0.3 (Fig. 4) (in these 
cases Eo(0) = E0(@,)). As the interaction Ud increases, the 
location of the maximum approaches Q0/2. This can be ex- 
plained by a decrease in the correlation lengths, and, as a 
consequence, an effective increase in system size. We note 
the importance of the oxygen-oxygen hopping amplitude 
tpp , which significantly alters the range of the other Emery 
model parameters at which the effect can be observed. 

4. EFFECTIVE DOPING AND DENSITY OF STATES 

At first glance, the existence of current (and supercur- 
rent) in an initially undoped system looks like a contradic- 
tion. But it can be eliminated easily if we take into account 
the additional contribution of the gauge phase to the one- 
particle spectrum, AE a t  d ( @ l @ O ~ ) 2 .  In the small system . P 
under consideration, t h ~ s  contribution significantly modifies 
the spectrum at @ - a o  by generating an effective hole dop- 
ing, closing or blurring the bandgap, and shifting the Fermi 
level to the conduction band. 

In order to prove this assertion, we calculated the one- 
particle density of states16 using the conventional technique 
in the cluster after generalizing it to include the phase, i.e., a 
complex hermitian Hamiltonian matrix. Note that in the case 
of zero phase, the resulting spectra were identical to those 
given in Ref. 16. The results are shown in Figs. 5-7. 

In the range where the Cooper peak is detected 
(Ud=6,  e =  1, t,,=O), the pattern corresponding to the un- 
doped case (the Fermi level in Fig. 5a is at the middle of the 
band gap) changes, after including the phase, to the state 
with effective doping (the Fermi level in Fig. 5b is at the 
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FIG. 4. Ground-state energy of a 
Cu,O, cluster vs phase in the undoped 
case at different values of diagonal 
hopping I,,: (a) U, /=6 ,  e = 3 ,  and ( I )  
tpp=O, (2) -0.1, (3) - 0.3, (4) -0.5; 
(b) rpp= -0.3, & = 3 ,  and ( 1 )  U,,=2,  
(2) 6 ,  (3) 10. 

peak of the density of states, and the edges of the band gap 
are slightly spread). The Fermi level shift indicates that hole 
carriers are created in the system. 

In order to demonstrate clearly that the system is doped, 
let us compare this situation to the case of real doping, in 
which additional hole is introduced ( N  = 5 ) .  Figure 6a shows 
the density of states at this concentration. The Fermi level 
coincides with the peak, as in the undoped case at phase 

= 0.5Qo (Fig. 5b). Moreover, the Fermi energies are es- 
sentially identical (Fig. 6b shows both these curves near the 
Fermi level in one plot). This means that the effective doping 
x* is about 0.1-0.25 (a more accurate calculation using the 
density of states integral yields x* = 0.13). 

The pattern is different in the range where the tendency 
to transfer to a metallic state (and, naturally, to Cooper pair- 
ing) is suppressed by an initially large dielectric gap (for 
example, at Ud= 10, E = 5 ,  and tpp=O, Fig. 7a). Introduction 
of the gauge phase, also shifts the Fermi level, but it remains 
essentially within the gap and does not reach the band of 
correlated states (Fig. 7b). Nonetheless, weak effective 
doping takes place due to minor blurring of the gap edges, 
and a calculation yields x* = 0.01. 

Thus, at N =  4 the state of a Cu408 cluster is not dielec- 
tric, but metallic (phase Q = Q0/2) ,  with the effective carrier 
concentration x* near its optimal value. The calculation of 
the effective carrier concentration indicates that it increases 

with the decreasing interaction U d  (which corresponds to a 
transition to a normal metallic state in the phase diagram; see 
below). The optimal concentrations, at which Cooper pairing 
takes place, range between 0.1 and 0.2. The effective doping 
decreases as the effect weakens in the dielectric region at 
large E .  

Figure 8 shows curves for x* at various Hamiltonian 
parameters, derived from calculations of one-particle densi- 
ties of states (the effective concentration was derived by add- 
ing densities of states between the initial Fermi level and its 
position shifted introduction of the phase; a Lorentzian ap- 
proximation to the delta function with a smoothing param- 
eter of about 0.1 was used). It is clear that the optimal values 
of x* are obtained at Emery parameters at which the Cooper 
pairing is almost ideal (for example at Ud= 2-2.5, E = 1). 

As for the initially doped states ( N =  3 and N =  5 ) ,  in 
which we observe no pairing, we believe there are two basic 
reasons for the negative result: 

a) an uncompensated spin (S,= -+ 1/2), to which a small 
system is sensitive, and which naturally does not occur in the 
thermodynamic limit, makes pairing impossible; 

b) effective hole doping due to the phase makes the ex- 
cess carrier concentration low at N =  3 (the Fermi level shifts 
towards the dielectric gap), and too high at N =  5 (>0.5), so 
that the total doping is beyond the optimal range of carrier 
concentration for pairing. 

a 
4 

FIG. 5. Density of states of a Cu,08 
8 - 

3 cluster in the undoped case at U, ,=6,  
& = I ,  rpp=O. and (a) @=O; (b) 
@=0.5@,. When the phase is intro- 

2 : EF duced (Fig. 5b), the distonion of the 

4 - I 
spectrum and shift of the Fermi level to 
the conduction band are evident. 

1 

0 ,  A . . - -  0 
-12 -8 -4 0 4 W -12 -8 - 4 0 4 O 
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It seems to us that the more important of the two factors 
is the uncompensated spin. 

We have also studied a system with N = 2 and N =  6, 
S,=O, but have not seen any signs of pairing. The carrier 
concentration at N =  2 is seemingly too low and at N =  6 too 
high, so that the effect cannot be detected even when the 
spins cancel. 

Thus, the optimal conditions for observing Cooper pair- 
ing in a Cu408 cluster obtain in the undoped state with 
N = 4, since in this case S ,  = 0 and the effective carrier con- 
centration x* is close to the optimal value. 

N N 

5. PHASE DIAGRAM OF A Cu408 CLUSTER 

The results of the previous section indicate that Cooper 
pairing, i.e., a maximum of the function E ( @ )  at @-Q0/2, 
is not observed at all values of the Emery Hamiltonian pa- 
rameters. Figure 9 shows a phase diagram of superconduc- 
tive, metallic, and dielectric states for a Cu& cluster plotted 
against E - Ud , where the region of superconducting corre- 
lations is labeled S (this region is characterized by a maxi- 
mum of the function E (@) at 0.4< @I@0< 0.6). The param- 
eters in this region are close to those at which the binding 
energy for carriers in the cluster is negative.4'5"7 Note also 
that when diagonal hopping t p p  is included, the S region 
shifts towards more realistic Emery parameters derived from 
experimental data.I8.l9 

The region of the normal metallic state (Me) is charac- 
terized by a small intensity of interaction at a copper site, 

b 

FIG. 6. (a) Density of states of a 
Cu40, cluster in the doped case ( N  = 5 )  
at Ud=6,  E =  1, tpp=O, and @=O. (b) 

FF Detailed density of states near the Femii 
level in comparison with the case of 
effective doping ( N =  4) :  (I)  N = 5 ,  
@ = 0 ;  (2) N =  4, @ =0.5@,. Femi lev- 
els of the two cases are essentially iden- 

8 .  

6 .  

4 -  

this interaction being too weak for Cooper pairing. The ef- 
fective doping is greatest in this region (Fig. 8a). Note that 
the effect vanishes in our ideal system (in the sense that it 
does not contain impurities) because the effective correlation 
length increases to the system's linear size, so the transition 
to the normal metallic state is somewhat uncertain (it is 
shown as a dashed curve in Fig. 9). 

The region of the insulating state (I) corresponds to large 
values of E (the charge-transfer regime) and is characterized 
by a wide dielectric gap of the order of E .  The effective 
doping falls abruptly in this region (Fig. 8b) and the condi- 
tions are unfavorable for a metallic (much less a supercon- 
ducting) state. 

Note also that at large E the Emery model can be treated 
as a two-dimensional Hubbard model for the copper sublat- 
tice. No pairing has been detected in the two-dimensional 
Hubbard mode1.2a*20 This is in agreement with the phase dia- 
gram in Fig. 9, where the superconducting region is abruptly 
curtailed at large E .  

Note that the S region only approximately outlines the 
boundaries within which the effect takes place, and in a 
larger system its shape may be somewhat different. More- 
over, the phase diagram depends on additional factors, since 
the doping level also changes with the system parameters. 

a 

6. EFFECT OF SYSTEM SIZE. PHASE DIAGRAM OF A 
C U ~ ~ ~ ~ ~  CLUSTER 

2 .  

0,  

We now discuss the effect of cluster size on the energy 
of a system as a function of phase. The thermodynamic limit 

tical. 

. A  . . 

FIG. 7. Density of states of a Cu408 

-12 -8 -4 0 4 w -2 -1 0 1 2 o 

cluster in the dielectric case at U,,= 10, 
& = 5 ,  tpp=O, and (a) @=0;  (b) 
@=0.5@,. At nonzero phase (Fig. 7b) 
the Femii level is shifted, but remains 
within the band gap. 
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FIG. 8. Effective doping x *  derived from 
the density of states of Cu,08 cluster in the 
undoped case at t,,= 0 and d, = 0.5@,: (a) 
(I) E =  1, (2)  2, (3) 3; (b) U d = 6 .  

may be considered only when the correction to the one- 
particle spectrum due to the phase is small: AEQ4tPd.  
Hence follows a condition on cluster linear size at @-Qo: 
L - ~ <  1. This condition is of course hard to satisfy in a 
Cu408 cluster (as demonstrated by additional hole doping - 
the finite-size effect). Nonetheless, the absolute contribution 
to the (calculated) system energy due to the phase is small: 
[E(@) - E(O)]/E(O)- lop2,  and there is hope that the ob- 
served Cooper pairing is not purely a size effect. 

In order to detect the effect in larger clusters, we per- 
formed calculations using the slave boson method14 for a 
system with 4X 4 and 8 X 8 Cu02 cells. Figure 10a shows 
calculations for a 4 X 4 cluster at various doping levels (real, 
not effective, as in the 12-atom cluster). One can see a clear 
maximum at Q - Q0/2 both electron and hole doping (hence 
the effect also occurs in electronic HTSC). 

In the insulating phase at a carrier concentration n =  1 
the function E(@) is rather flat, which indicates that the 
effective doping is essentially negligible in such a large sys- 

FIG. 9. Phase diagram of Cu,08 cluster: S )  region of Cooper pairing (the 
niaximuni of E ( @ )  is in the range 0.4<d,/d,,<0.6); I )  insulator; Me) 
mctal; thick lines correspond to the case of t1,,,=0; thin lines are for 
tI,l,= - 0.3. 

tem (in the 8 x 8 cluster, the energy E is completely inde- 
pendent of @ at n = 1 ). Furthermore, in calculating the size 
of the 8 x 8  cluster, the position of the superconducting 
maximum in the E(@) curve is quite close to Q0/2 for all 
model parameters, which must be the case in the thermody- 
namic limit. 

Figure lob shows the phase diagram of a C U ~ ~ ~ ~ ~  cluster 
at a doping level x= 1.25. The boundary of the supercon- 
ducting region was defined as the line where the density 
D ,  (Eq. (3)) of the superconducting state vanishes. As might 
be expected, there is no upper boundary on the transition 
between superconducting and insulating states, which is 
natural when the doping is real, since initially the system is 
always in the metallic state. 

Unfortunately, the accuracy of the slave boson approxi- 
mation deteriorates as the carrier concentration deviates from 
being half full ( n =  1),  which does not allow us to fully 
demonstrate the dependence of the effect on the real carrier 
concentration in large clusters (recall that the effect remains 
finite in the two-dimensional configuration, and does not 
grow with system size). Here we are probably facing the 
same problem as in the Monte Carlo ca lcu~a t ion ,~~  where the 
effect could not be identified (we believe) because of an 
inevitable increase in the statistical error with cluster size. 

This problem has also significally complicated our 
Monte Carlo calculations. For example, we have used the 
effective trajectory Monte Carlo technique developed in Ref. 
9 (modified for the complex Hamiltonian of Eq. (4)) in cal- 
culations of Cu408, C U ~ ~ ~ ~ ~ ,  C U ~ ~ ~ ~ ~ ~ ,  and CU 1000200 clus- 
ters with parameters (Id= 6, E = 1 -3, and r,, = - 0.3, 0, for 
which, according to our data, pairing should occur. 

For Cu408 and C U ~ ~ ~ ~ ~  clusters we have reproduced to 
within the numerical errors the results given by exact diago- 
nalization and slave boson calculations, i.e., we have ob- 
tained a maximum at @-@o/2 (Figs. 3, 1Oa). The assumed 
temperature was reduced to rPl,/100, i.e., about 100 K. In a 
small Cu408 cluster, the effect was observed at a temperature 
as high as T- tPdllO, whereas in the 48-atom C U ~ ~ ~ ~ ~  cluster 
it could be seen only at T-t,,/40, i.e., the critical tempera- 
ture for this cluster is T,.-250, K which is closer to the 
experimental value. 
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FIG. 10. (a) Ground-state energy of 
C U ~ ~ ~ ~ ~  cluster vs phase. calculated by 
the slave-boson technique at E =  1, 

This result for the C U ~ ~ ~ ~ ~  cluster is very important be- 
cause it attests to superconducting pairing in a large system 
using a method with no approximations. Note that unlike the 
Monte Carlo technique, the slave boson method is a combi- 
nation of variational and mean-field methods,I4 and its re- 
sults might be questionable in a large system. The Monte 
Carlo technique, whose absolute error is directly controlled, 
is free of this flaw. But the necessary accuracy (=O.Oltpd in 
energy absolute units) would require 5 X  lo6 Monte Carlo 
steps. 

For the remaining clusters, we naturally could not per- 
form so many steps, and therefore could not distinguished 
between E(@) and E(0 )  to be within the numerical errors. 

7. CONCLUSION 

We have presented evidence for Cooper pairing and su- 
perconductivity in the two-dimensional Emery model. The 
values of model parameters and effective doping at which 
the effect can be observed are close to the experimental data, 
and in agreement with the values at which attraction among 
carriers was obtained in earlier ca~cula t ions .~"~ We stress 
that the exact diagonalization and slave boson techniques 
were applied to the ground state at T=O. In our opinion, 
regardless of the critical temperature measured in experi- 
ments, the critical temperature in these models and within 
the range of parameters studied may be somewhat higher 
than O.O1tpd- 100 K, and there is hope that Monte Carlo 
techniques can be used to test for superconductivity. The 
proof of carrier pairing in the 48-atom CuO cluster obtained 
by the trajectory Monte Carlo technique is a clear manifes-. 
tation of this. We suggest that the negative result of the 
search for coupling by Assaad et a1.I3 is due both to the 
narrow range of Emery model parameters and too high a 
temperature scale, as well as difficulties in detecting the ef- 
fect of a small amplitude, which is typical of two- 
dimensional systems. 

The authors are indebted to B. V. Svistunov, V. F. 
Elesin, L. A. Openov, and A. V. Krasheninnikov for helpful 
discussions of the results. This work was partially supported 
by the International Science Foundation and Government of 
Russia (Grant No. M67300). It was also supported by the 

Ud=8, and camer concentration (I)  
n= I ;  (2) n = 0.75; (3) n = 1.25. Aster- 
isks mark calculations by the Monte 
Carlo trajectory technique at n =  1.25. 
The Monte Carlo numerical error is 
AE = 2 0.025. (b) Phase diagram of the 
Cu16032 cluster: S) region of Cooper 
pairing (D,>O); Me) metal. 

Russian State Program on High-Temperature Superconduc- 
tivity (Project No. 90431) and the Russian Fund for Funda- 
mental Research (Project No. 94-02-05755). 

V .  J. Emery, Phys. Rev. Lett. 58,2794 (1987). 
'a) D. J. Scalapino, Phys. Rep. 250, 329 (1995); b) V .  J. Emery, Nature 
370, 598 (1994). 

3 ~ .  F.  Elesin, V. A. Kashurnikov, L. A. Openov, and A. I. Podlivaev, 
Physica C 195, 171 (1992). 

4 V .  F .  Elesin, V .  A. Kashurnikov, and A. I. Podlivaev, Zh. ~ k s ~ .  Teor. Fiz. 
104, 3835 (1993) [JETP 77, 641 (1993)l. 

' v .  F .  Elesin, A. V .  Krasheninnikov, and L. A. Openov, Zh. ~ k s ~ .  Teor. 
Fiz. 107, 2092 (1995) [JETP 80, 1158 (1995)l. 

6 ~ .  T. Scalettar, D. J. Scalapino, R. L. Sugar, and S. R. White, Phys. Rev. 
B 44,770 (1991). 

7 ~ .  V. Krasheninnikov, L. A. Openov, and V .  F. Elesin, JETP Lett. 62, 59 
(1995). 

'M. Frick, P. C. Pattnaik, I. Morgenstern et al., Phys. Rev. B 42, 2665 
(1990). 

9 V .  A. Kashurnikov, Zh. ~ k s ~ .  Teor. Fiz. 108, 1796 (1995) [JEW 81,984 
(1995)l; V .  A. Kashumikov, Phys. Rev. B 53, 5932 (1996). 

'ON. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961); C. N. Yang, Rev. 
Mod. Phys. 34, 694 (1962). 

I'D. J. Scalapino, S. R. White, and S. Zang, Phys. Rev. B 47, 7995 (1993). 
''A. S u d b ~ ,  C. M. Varma, T. Giamarchi et (11.. Phys. Rev. Lett. 70, 978 

(1993). 
I3F. F .  Assaad, W. Hanke, and D. J. Scalapino, Phys. Rev. B 50, 12835 

(1994). 
14 V .  F .  Elesin, L. A. Openov, E. G. Kholmovskii et ul., JETP Lett. 61,965 

(1995). 
l 5  W. Krauth, Phys. Rev. B 44, 9772 (1991); V. A. Kashurnikov and B. V .  

Svistunov, Phys. Rev. B 5 3  (14). (1996). 
16v. F. Elesin, V .  A. Kashumikov, A. V. Krasheninnikov, and A. I. Podli- 

vaev, Physica C 222, 127 (1994); P. Horsch, Helv. Phys. Acta 63, 345 
(1990); J. Wagner, W. Hanke, and D. J. Scalapino, Phys. Rev. B 43, 
10517 (1990); C. A. Balseiro, M. Avignon, and E. R. Gagliano, Sol. St. 
Commun. 72, 763 (1989); E. R. Gagliano, C. A. Balseiro, and M. 
Avignon, Europh. Lett. 12, 259 (1990). 

17v. F .  Elesin, V .  A. Kashurnikov, L. A. Openov, and A. I. Podlivaev, Zh. 
Eksp. Teor. Fiz. 99, 237 (1991) [Sov. Phys. JETP 72, 133 (1991)l; Zh. 
Eksp. Teor. Fiz. 101, 682 (1992) [Sov. Phys. JETP 74, 363 (1992)l. 
A. K. McMahan, J. F. Annett, and R. M. Martin, Phys. Rev. B 42,6268 

(1990). 
1 9 ~ .  Rushan, C. K. Chew, K. K. Phua, and Z. Z. Gan, J. Phys.: Cond. Matter 

3, 8059 ( 199 1). 
"E. Dngotto, Rev. Mod. Phys. 66, 763 (1994). 

Translation was provided by the Russian Editorial office. 

1043 JETP 83 (5). November 1996 V. A. Kashurnikov and E. G. Kholmovskii 3043 


