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We consider a one-dimensional model of the simplest molecular system, H:, via direct 
numerical integration of the time-dependent Schrodinger equation. We consider its evolution in 
an ultrashort laser pulse of high intensity. The probabilities of excitation of different 
electronic and vibrational states, as well as the probabilities of dissociation and ionization are 
calculated as functions of the intensity of the laser field. O 1996 American Institute of 
Physics. [S 1063-7761 (96)00611-71 

1. INTRODUCTION 

The dynamics of atomic and molecular systems in the 
field of intense laser radiation has been the subject of numer- 
ous recent experimental and theoretical papers.1 Such effects 
as above-threshold ionization of atoms and molecules, stabi- 
lization of atoms in ultrastrong fields, the formation of 
multiply-charged ions, Coulomb explosions of molecules, 
and other phenomena have been experimentally observed or 
theoretically The direct numerical integration 
of the time-dependent Schrodinger equation for a quantum 
system in the field of an electromagnetic wave is one of the 
basic approaches to the theoretical study of these 

However, the capabilities of modem computers usually 
forces one to the study of one-electron systems in the one- 
dimensional approximation. The number of papers treating 
three-dimensional systems is not large;5.698-'2 The y have 
considered the dynamics of the ionization of the hydrogen 
atom, the negative hydrogen ion, as well as He and Xe 
treated as one-electron systems, i.e., systems in which all of 
the electrons except one are "frozen." The process of ion- 
ization of the simplest two-electron system, the negative hy- 
drogen ion, has also been considered in the one-dimensional 
approximation.13 

The theoretical study of the dynamics of molecular sys- 
tems in the field of a strong electromagnetic wave is a much 
more complicated problem. Even the simplest molecular sys- 
tem, the hydrogen molecular ion, is a two-particle system 
when the nuclear degrees of freedom are taken into account. 
Such a system can be treated analytically only by resorting to 
a number of approximations. The dynamics of molecular 
systems is usually described using the adiabatic approxima- 
tion in which the motion of the electrons is assumed to be 
much faster than that of the nuclei. The justification of ap- 
plying this approximation to molecules perturbed by ultras- 
trong optical fields, where the energies can be larger than the 
energy of relative motion of the nuclei, has not been made 
clear. In addition, in the case of a numerical solution the 
adiabatic approximation does not lead, in our view, to a sim- 
plification of the problem, since it requires the solution of a 
system of many equations describing the amplitudes for oc- 

cupying a large number of states of the discrete spectrum, as 
well as the electronic and vibrational continua. Hence direct 
numerical integration of the time-dependent Schrodinger 
equation with the total Hamiltonian taking into account the 
interaction with the electromagnetic fieldI4 is a more reliable 
method. However there is an additional difficulty in the nu- 
merical integration of the Schrodinger equation for molecu- 
lar systems because of the presence of the small parameter 
m l p  (m is the mass of the electron and p is the reduced mass 
of the molecule), which, on the one hand, reduces the region 
of localization of the nuclear wave function in comparison to 
the electronic wave function, and hence imposes stringent 
requirements on the spatial computational grid in the nuclear 
coordinate, and on the other hand implies slow motion of the 
nuclei and hence increases the computational time required 
to study the molecular dissociation products. 

In the present paper we consider a one-dimensional 
model of the hydrogen molecular ion taking into account the 
electronic and nuclear motions. The dynamics of the pro- 
cesses of ionization and dissociation of the system in a fem- 
tosecond laser pulse are studied by direct numerical integra- 
tion of the time-dependent Schrodinger equation with the 
total electron-nucleus Hamiltonian. The probabilities of oc- 
cupying the different electronic and vibrational states of the 
molecule and the photodisintegration probabilities are calcu- 
lated as functions of the laser intensity. The possibility of 
observing stabilization of the system against ionization and 
dissociation is discussed. 

2. HYDROGEN MOLECULAR ION H i  IN THE ADIABATIC 
APPROXIMATION 

The simplest molecular system is the hydrogen molecu- 
lar ion, in which the chemical bond between the protons is 
accomplished by a single electron. The total Hamiltonian of 
the system is 

Here nl and M are the mass of the electron and the proton; x, 
R , ,  and R2 are the coordinates of the electron and the two 
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protons. The first three terms in (1) describe the kinetic en- 
ergy of the electron and the first and second protons, the 
fourth term is the energy of the Coulomb repulsion of the 
protons, and the fifth term is the interaction energy of the 
electron with each of the protons. 

In a coordinate system whose origin is fixed at the center 
of mass, and neglecting the rotational motion of the nuclei, it 
is not difficult to obtain from (I) 

where p=M/2  is the reduced mass of the molecule, and 
R =IR, -R21 is the internuclear distance. 

In the one-dimensional model of H: it is assumed that 
the electron can move only along the axis of the molecule. 

of* 

-2 k =  1 

Then the Laplacian operator in (2) can be replaced by the 
second derivative ah2. The potential energy is chosen in FIG. 1. Electronic terms of the one-dimensional hydrogen molecular ion for 

the form the states k =  1 through 4. 

which corresponds to a smoothed, double-well Coulomb po- 
tential similar to that considered earlier for the one- 
dimensional hydrogen atom." 

The parameter a in our calculations was taken to be 
0.943ao, where a. is the Bohr radius. 

The calculation of the stationary states of the Hamil- 
tonian (2) with the potential (3) is a difficult problem. But 
because of the small parameter mlMG 1 we can use the adia- 
batic approximation and represent the total wave function of 
the molecule in the form 

clear distance, corresponding to the minimum of the curve 
Veff, is significantly different for the different electronic 
states. The structure of the electronic terms of the one- 
dimensional H: molecule agree qualitatively with the terms 
of the real hydrogen molecular ion, although the quantitative 
agreement is poor. For example, in our model the potential 
well depth of the ground electronic term is = 1.45 eV, while 
in the three-dimensional system it is -2.65 eV. The equilib- 
rium distance between the nuclei is 2.2 and 1.06 A in the 
one-dimensional and three-dimensional cases, respectively. 
Solution of the stationary problem for the nuclear subsystem 
with the Hamiltonian (6) gives the nuclear stationary states 
and the corresponding wave functions @?)(R) (k= 1,2, ..., 

where @(R) is the nuclear function, which depends on the v =0,1, ... are the electronic and vibrational quantum numbers 

nuclear coordinate as a parameter. of the molecule). The probability density in the ground state 

The electron and nuclear wave functions are solutions of of the molecule is given by the expression 

the time-independent Schrodinger equation with the Hamil- 
tonians H, and H N ,  respectively: \ * ( x , R ) \ ~ = ) @ \ ~ ' ( R > ~ ~ ~ ( x , R ) ~ ~ .  (8) 

where 

(5 )  Note that a wave function of the form (4) is not a solu- 
tion of the time-independent Schrodinger equation with the 
total Hamiltonian (2), 

(6) 
Ho*(x,R)=Eq(x,R), (9) 

is the effective interaction energy of the nuclei (the elec- 
tronic term of the molecule), including the Coulomb repul- 
sion of the nuclei and their effective attraction because of the 
presence of the electron. The quantity E,(R) is the eigen- 
value of the electron Hamiltonian, and it also depends on R 
as a parameter. 

The lowest few electronic terms of the molecule calcu- 
lated with the help of (7) are shown in Fig. 1. The terms 
correspond to even and odd electronic states of the molecule, 
where the odd states do not necessarily guarantee a bound 
state of the molecule. Also note that the equilibrium internu- 

but it is quite close. To test the accuracy of the calculation of 
the wave function of the ground stationary state of H: in the 
adiabatic approximation, a wave function of the form (4) was 
substituted as the initial state into the nonstationary Schro- 
dinger equation with the Hamiltonian (2) 

The time dependence of the square of the overlap integral of 
the wave function obtained from the solution (10) with the 
initial wave function (8) was calculated: 
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The quantity I c lo(t)I2,  describing the probability of occupy- 
ing the ground state of H: in the adiabatic approximation, 
oscillates in time with a period T-33 fs and does not drop 
below the value 0.996. This means that the ground state of 
the system calculated in the adiabatic approximation is close 
to the actual ground state of HZ and nonadiabatic transitions 
can be neglected. Our numerical calculations show that tran- 
sitions inside the vibrational structure of levels belonging to 
a single electronic term are the most important. Therefore the 
adiabatic approximation is even more accurate in calculating 
the population densities of the different electronic states of 
the molecule. 

3. INTERACTION OF Hz WITH AN ELECTROMAGNETIC 
FIELD 

The time evolution of the states of H: in the presence of 
an electromagnetic wave can be obtained from the solution 
of the time-independent Schrodinger equation 

where Ho is given by (1) and ~ ( t )  is the slowly-varying 
amplitude of the electromagnetic wave with frequency w. 

The laser pulse is assumed to have the gaussian form 

where r = 2  fs is the half-width of the pulse and to=6 fs is the 
time of maximum intensity. The total computation time 
t,=20 fs was chosen in order that the dynamics of the sys- 
tem (especially the nuclei) after the passage of the laser dis- 
turbance could be studied. The calculations were performed 
for radiation intensities P =  1 0 ' ~ - 1 0 ' ~  w/cm2 and for the fre- 
quency of the laser field hw=5 eV. 

The numerical integration of (12) with the initial condi- 
tion 

was carried out in a 100 A region in the electronic coordi- 
nates and in a 10 A region in the nuclear coordinates with a 
total number of nodes equal to 675x210. The spatial grid 
was chosen to be nonuniform in order to enhance the accu- 
racy of the calculation in the region of localization of the 
wave functions of the states belonging to the discrete spec- 
trum. An imaginary correction to the potential was intro- 
duced near the boundaries of the region in order to ensure the 
absorption of the wave functions and the absence of reflec- 
tions from the boundary. The integration timestep was deter- 
mined by the parameters of the electron potential V,(x,R) 
and was At2.8.3- 10-"sec, i.e., approximately one one- 
hundreth of the period for hw=5 eV. 

The general principles of the numerical solution of (12) 
are discussed in Ref. 10. 

FIG. 2. Spatial distributions o f  the probability density IY(.~,K)~~ for H: at 
different times for a laser pulse with intensity P =  10' W/cm2. The curves 
correspond to thc following values o f  the quantity IP(x,R)(*: 1 )  0 . 3 , 2 )  0.1, 
3) 0.01, 4) 0.001. 

4. RESULTS AND DISCUSSION 

The results of the numerical simulation of the dynamics 
of H: in a field of frequency h o = 5  eV for different inten- 
sities are shown in Figs. 2 and 3. The spatial distributions of 
the square of the absolute value of the total wave function of 
the system shown in these figures correspond to the times 
t=6,  12, 15 fs measured from the start of the laser excita- 
tion. We see that for comparatively low intensities P S  10" 
w/cm2 (Fig. 2) mainly dissociation is observed in the sys- 
tem; the region of electron localization coincides with that of 
the nuclei during the entire time. For high intensities 
P 2 3 .  1014 w/cm2 (Fig. 3) ionization occurs for practically 
fixed nuclei and then, after the pulse has passed, motion of 
the nuclei due to their Coulomb repulsion is observe. 

These features of the dynamics of ionization and disso- 
ciation of H: in an electromagnetic field are more obvious 
when the motions of the electron and the nuclei in space are 
considered separately. From the known wave function 
lP(x,R,t) of the system the probability densities of the elec- 
tronic pe(x,t) and nuclear pN(R,t) distributions can be cal- 
culated: 
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of wave functions of the stationary states obtained in the 
0 1 2 3 4 5 6 7 R . A  

-201 ' adiabatic approximation 

In our calculations the number of electronic states was lim- 

FIG. 3. The same as Fig. 2, but for the value P = 3 . 1 0 ' ~  w/cm2. 
ited to 20 and the number of vibrational states taken into 
account for the four lowest terms corresponding to an even 
electronic wave function was also equal to 20. Nonzero 

-10- 

0- 

10. 

x, A, 

For P =  1 0 ' ~  w/cm2 the electronic density distribution de- 
pends only weakly on time, while a wave packet moving 
away from the origin is formed on the distribution pN(R,t) 
after the end of the laser disturbance. A similar picture is 
observed in pN(R,t) for P = 1014 w/cm2 (Fig. 4); however, in 
this case the probability of occupying the electron continuum 
is not small. With further increase in the intensity, the elec- 

probabilities are obtained only for transitions between vibra- 
tional states inside the lowest electronic term. For all higher 
terms the probabilities of occupying the states of the discrete 
spectrum are negligibly small, since the corresponding 
Frank-Condon factors are small. 

The probability of observing the molecule in a given 
electronic state can be written in the form 

-20 probability of occupying the corresponding state as a func- 
tion of time. The sum over k and v in (15) is to be under- 

-10 stood as a summation over the states of the discrete spectrum 
and an integration over the states of the continuous spectrum. 

0 As noted above, in the absence of the external electro- 
magnetic field the quantities Ckv are practically independent 

10 of the time because of the high accuracy of the adiabatic 
approximation. 

x, A The probabilities of occupying the different states of the 
-20 discrete spectrum were determined from the formula 

-10 

w k v = ~ c k u ( t ) ~ 2 = I  ** (~ ,R ,~ )Q?) (R)  
0 

10 X cpk(x,R)dx dR . I (16) 

x. A 

I 

I = 6 mfs 

tron passes into the continuum at the leading edge of the 
laser pulse and hence h e  further evolution of the system is Wk = c IckV( t)12 = 1 o k ( ~ , t )  l ' d ~ ,  
controlled mainly by Coulomb repulsive forces. 

(17) 
v 

To interpret the results of the integration of (12), the 
exact wave function of the system was expanded in a series where 

* ( x , ~ , t ) = C  ~ k ~ ( t ) @ p ) ( ~ ) c p k ( x , ~ ) e x p  - - Ekvt , 
k,u ( :  1 

(15) 

where Eku is the energy of the v th stationary state belonging 
to the kth electronic term and Cku is the amplitude of the 

2 Id , arb. units 2 
, arb. units 

FIG. 4. Spatial distribution of the electronic 
(a) and nuclear (b) probability densities for 
H i  at different times: I )  0,  2) 6, 3) 12 fs. 
P = lo i4  w/cm2. 
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FIG. 5 .  Dynamics o f  the population densi- 
ties o f  the four lowest electronic states (a) 
and the four lowest vibrational states be- 
longing to the ground electronic term (b) .  
The number o f  the curve corresponds to the 
number o f  the state. 

* 
: . . , .' I 

b 

4 8 I. fs 4 8 I ,  fs 

ak(R,t)= j t * (x ,R , t )~k(x ,R)dx .  

As an example, the time dependence of the probabilities 
Wk, k=l,.., 4 and W,,, v=0 ,..., 3, averaged over the high- 
frequency oscillations, is shown in Fig. 5 for P = 1014 w/cmZ 
and ho=5 eV. The curves show the typical increase in the 
probability of observing the molecule in the ground elec- 
tronic state after the passing of the pulse. (Fig. 5a), the oc- 
cupation of the excited states of the ground electronic term 
(Fig. 5b), and the formation of an oscillating wave packet on 
the nuclear wave function. In homonuclear molecules such 
as H: direct transitions between vibrational levels belonging 
to the same electronic term are forbidden in the dipole ap- 
proximation. Therefore the only possible channel for the oc- 
cupation of the excited vibrational states of the ground elec- 
tronic term is multiphoton transitions through intermediate 
states belonging to the higher electronic terms of the mol- 
ecule. This nature of the process is illustrated by Fig. 5. 

The distribution of probabilities of observing the mol- 
ecule in different vibrationally excited states at the end of the 
laser disturbance is shown in Fig. 6 for different intensities. 
We see that as the intensity increases the relative probability 
of observing the molecule in states with large values of the 
vibrational quantum number becomes larger. 

The probabilities of photoionization W I  and photo- 
dissociation WD of the molecule as functions of time can be 
calculated using (16) and (17): 

Unlike (15) and (17), here the summation goes only over the 
states of the discrete spectrum. 

The quantity 

W,= W,+ W, 

is the total probability of photodisintegration of the mol- 
ecule. 

The intensity dependence of the probability I c ~ ~ ~ ~  of ob- 
serving the molecule in the ground state and also the excita- 
tion probability C,I ~ , , 1 ~  - 1 ~ , ~ 1 ~ ,  the ionization probability 
W, , and the photodisintegration probability W, are shown in 
Fig. 7. The nonmonotonic dependence of the excitation prob- 
ability on the intensity is easily explained. In weak fields the 
molecule tends to remain in the ground state, while in strong 
fields the excitation probability is also small, since the prob- 

FIG. 6. Distribution o f  the population densities o f  the vibrational states o f  FIG. 7 .  Intensity dependence o f  the probability o f  observing I-1: at the end 
the ground term at the end o f  the laser pulse for dil,lerent intcnsitics: I )  lo", o f  the laser pulse in the ground ( I )  and the excited ( 2 )  states, and also the 
2 )  10'" 33) 3.  l0I4 ~lcncm~. probabilities o f  ionization ( 3 )  and photodisintegration (43). 
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abilities of photoionization and photodissociation increase 
rapidly. More surprising is the nonmonotonic nature of the 
dependence W , ( P ) ,  since it implies that the molecule be- 
comes more stable against photodisintegration at high inten- 
sities (3-6) l0I3 w/cm2. It is evident from Fig. 7 that this 
increase in stability is associated with a decrease in the prob- 
ability of photodissociation at these intensities, whereas the 
quantity W ,  monotonically increases. 

This phenomenon can be interpreted as the stabilization 
of H: in a strong light field against dissociation. But an 
increase in the stability of molecular systems in strong light 
fields (i.e., against ionization of the molecule) is not ex- 
pected for Kramers-Henneberger processes. It is known that 
stabilization in this case is associated with large-amplitude 
oscillations of the electronic wave packet in a superatomic 
field, such that the electron is practically - free and the wave 
function is not seated on the atomic core. Therefore after the 
end of the laser disturbance the electron will be in a bound 
state with high probability.'6v17 When a freely oscillating 
electron wave packet forms in a molecular system, the force 
of Coulomb repulsion between the nuclei dominates, which 
causes them to separate and prevents the electron from going 
back to the initial bound state. 

Finally, we compare the processes of ionization and dis- 
sociation of molecular ions with different isotopic composi- 
tions, in particular, H: and Dl. The D: molecule has twice 
the mass of H i ,  and therefore the frequency of the nuclear 
oscillations is lower and the functions @?)(R) are more lo- 
calized in space. The spatial distributions of the electron and 
nuclear probability densities p , (x )  and p N ( R )  are shown for 
the D: molecule in Fig. 8 at different times for P =  1014 
w/cm2. Comparison of Fig. 8 with Fig. 4 for H: shows that 
the only difference between the two cases is the slower sepa- 
ration of the deuterium nuclei from one another during and 
after the laser disturbance. Because the electronic densities 
p , ( x )  shown in Figs. 4 and 8 are practically the same, the 
dynamics of the ionization process can be considered assum- 
ing fixed nuclei, i.e., assuming that the process can be broken 
into two steps. In the first step (during the laser pulse) ion- 
ization and excitation of the different electronic states of the 
molecule occur, while in the second step (after the laser 
pulse passes) there is motion of the nuclei, which depends on 

FIG. 8. The same as Fig. 4, but for the deu- 
terium molecular ion. 

the form of the different electronic terms. In the limit of an 
ultrashort laser pulse the motion of the nuclei can be ne- 
glected, and one can treat the ionization and dissociation of 
the system assuming frozen nuclei (during the passage of the 
laser pulse). In this case the total wave function is repre- 
sented as 

where &x,R, t )  is the electron wave function and @ ( R )  is 
the nuclear wave function characterizing the position of the 
nuclei up to the start of the laser disturbance and remaining 
constant during the passage of the pulse. The electronic wave 
function satisfies the equation 

where V , ( x , R )  is given by (3). 
At the end of the laser disturbance the system may be 

found with a certain probabilities in different electronic 
states of the discrete spectrum or the continuum, and these 
probabilities are determined by the appropriate coefficients 
in the expansion of the exact solution q ( x , R ,  t )  in a series of 
eigenfunctions of the electron Hamiltonian: 

The sum over k is to be understood as a summation over the 
states of the discrete spectrum and an integration over the 
states of the continuum. 

The time dependence of the expansion coefficient 
C k ( R , t )  of (21) is obtained using the numerical solution of 
(20): 

Using the population densities of the different states, the 
ionization probability as a function of time for tixed R can be 
calculated from 
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FIG. 9. Probability of ionization as a function of the inter-nuclear distance 
for f io=5 eV and different intensities: 1 )  lo", 2) 1014, 3)  10" w/cmZ. 

From the calculations we conclude that the probability of 
ionization depends sharply on the internuclear distance. This 
may be because ionization by a photon with hw=5 eV oc- 
curs from several of the higher states, which are occupied to 
different degrees depending on R .  

Figure 9 shows the dependence of the ionization prob- 
ability on R  for three different values of the laser intensity. 
The observed nonmonotonic dependence W l ( R )  may also be 
due to interference between the electronic wave packets 
formed in the process of ionization of the electron from the 
double-well potential. A similar nonmonotonic dependence 
of the probability of ionization on the internuclear distance 
was obtained in Ref. 18 

Therefore the calculations performed in the approxima- 
tion of frozen nuclei illustrate qualitatively the interesting 
features of the behavior of the system. The reliability of the 
results obtained in this approximation are demonstrated by 
the two-particle calculations. 
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