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The paper reports about a study of the Shubnikov-de Haas effect, quantum Hall effect, and 
electric transport parameters of GaAs/AlXGal-,As heterostructures in which the AIxGal-,As is 
uniformly doped with silicon and GaAs is Bdoped at various distances L g  between the 
Blayer and heterojunction. Measurements have been performed at temperatures ranging between 
0.4 K and 300 K in magnetic fields of up to 35 T. The conductivity and Hall mobility were 
measured as functions of L a .  The maximum Hall mobility and 2D-electron conductivity were 
observed at L6=600-750 A. The sheet density, transport and quantum mobilities of 2D- 
electrons in different dimensional subbands have been evaluated from the transverse 
magnetoresistance. The transport mobility in the highest subband is an order of magnitude higher 
than in the lowest subband owing to the separation between free electrons and ionized 
impurities. The self-consistent solution of the Schrodinger and Poisson equations yields the 
electron densities, effective masses, and wave functions in all subbands. The electron mobility due 
to scattering from ionized impurities has been calculated when several subbands are 
occupied. The differences among transport and quantum mobilities in the subbands of 
GaAsIAlGaAs heterostructures with combined doping at low temperatures have been interpreted 
in terms of scattering from ionized impurities. O 1996 American Institute of Physics. 
[S 1063-776 1(96)027 10-21 

1. INTRODUCTION 

Two-dimensional semiconductor structures with high 
electron densities where two or more dimensional subbands 
are filled generate a lot of interest.'-* The behavior of elec- 
trons in such systems is more complicated than in structures 
where only one subband is filled. An essential factor is in- 
tersubband electron the electron mobilities in 
the subbands are different. High densities of two- 
dimensional (2D) electrons can be generated by 8-doping, 
which has been studied fairly i n t e n s i ~ e l ~ . ' ~ - ' ~  Besides, the 
task of fabricating high-power field-effect transistors based 
on heterostructures demands higher 2D electron densities. 

This paper reports a study of GaAs/A1,Gal -,As hetero- 
junctions in which not only is the AlGaAs layer uniformly 
doped with silicon, but the GaAs layer is 8-doped. Using this 
combined doping, we could fabricate heterostructures with 
higher 2D-electron densities and a sufficiently high Hall mo- 
bility of current carriers. 

The main task of our work was to measure the quantum 
oscillations of magnetoresistance and the quantum Hall ef- 
fect in high magnetic fields (up to 35 T) and low tempera- 
tures (down to 0.4 K) in manufactured structures where 
many subbands of dimensional quantization are filled with 
electrons with a view to determine transport and quantum 
mobilities of 2D electrons in the subbands as functions of the 
separation Ls between the &layer and heterojunction. We 
have calculated the electronic band structure and wave func- 
tions at various La,  and the transport and quantum mobilities 
of electrons in all the subbands with due account of the in- 
tersubband scattering from ionized impurities. 

2. EXPERIMENTAL TECHNIQUES AND SAMPLES 

Techniques of measuring resistance and magnetoresistance 
as functions of temperature 

The resistance versus temperature was measured in the 
range of 0.4 to 300 K, and the Hall effect and transverse 
magnetoresistance were measured in the range of 0.4 to 150 
K in a dc magnetic field of up to 12 T and in a pulsed 
magnetic field of up to 35 T. 

The temperature was lowered to 0.4 K by pumping out 
vapor of liquid 3 ~ e .  In the range of 4.2-300 K, the tempera- 
ture was measured using a copper-iron thermocouple, and in 
the range of 0.4-4.2 K using a carbon resistance thermom- 
eter. 

The conductivity and Hall effect were measured in the 
double Hall bridge configuration by the dc method using a 
low-frequency current bridge. 

In measurements of the magnetoresistance or Hall effect 
at low temperatures in a magnetic field of up to 12 T, we 
used a superconducting solenoid, while the measurements in 
a magnetic field of up to 35 T were performed at the pulsed 
magnetic facility of Amsterdam University. 

Structure of the samples 

We used GaAsIAlGaAs heterostructures with combined 
doping grown by molecular-beam epitaxy. A diagram of the 
sample structure is given in Fig. 1. A 1-pm buffer layer of 
i-GaAs was grown at 550 OC on a semi-insulating GaAs(Cr) 
substrate, then a silicon &layer with a density of 
N,= 1.5X 1013 cm-2 was deposited on the surface and 
coated with an i-GaAs layer with a thickness L a .  Next a 
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FIG. 1 .  Diagram of the structure of investigated samples. 

conventional heterojunction was manufactured by growing 
an i-AIxGal-,As spacer with a thickness of 40 A 
(x = 0.36) or 50 (x = 0.25), a doped layer of n-Alo,25Ga 
0.75A~ 250 A thick, and an i-A1,Gal -,As layer with a vari- 
able gap width 90 A thick (the parameter x varied from 0.25 
to 0). This barrier was manufactured in order to block for- 
mation of DX-centers and of a parallel conducting channel. 
The structure was capped with a GaAs contact layer 
110 A thick. The silicon 8-layer was located in the samples 
with numbers running from 1 to 6 at distances Lg= 200, 400, 
600, 750, 1000, and 1200 A from the heterojunction. The 
measured structures were defined in the shape of a double 
Hall bridge with a channel width of 150 p m  by the photo- 
lithographic technique. 

3. PARAMETERS OF 2D ELECTRON GAS 
IN THE INVESTIGATED HETEROSTRUCTURES 

Conductivity and magnetoresistance of GaAslGaAlAs 
heterostructures with combined doping 

The resistances of all the samples drop as the tempera- 
ture rises up to 50-100 K, then the resistance changes with 

FIG. 3. Transverse magnetoresistance p,, (samples 2, 3, and 6) and Hall 
magnetoresistance p, (sample 3) at T =  0.4 K. 

temperature like that of metals. Figure 2 shows as an ex- 
ample the sheet resistances of samples 2, 3, and 6 versus 
temperature. 

Shubnikov-de Haas oscillations were detected in the 
heterostructures in strong magnetic fields and at low tem- 
peratures. The resistivity components p,, for the samples 2, 
3, and 6, and pxy for the sample 3 versus magnetic field 
ranging up to 8 T at a temperature of 0.4 K are shown in Fig. 
3. The transverse resistivity pxx and Hall resistivity pxy of 
samples 3 and 6 versus magnetic field ranging to 35 T at a 
temperature of 4.2 K are given in Fig. 4. Analysis of the 
magnetoresistance oscillations yields fairly accurate determi- 
nation of the 2D electron density and mobility in the dimen- 
sional quantization subbands, which will be discussed below. 

Hall effect measurements indicate that in all the samples 
the Hall coefficient R is constant with temperature in the 
range of 0.4 to 10 K. Therefore the curves of p(T) shown in 
Fig. 2 demonstrate the temperature dependence of the 

FIG. 2. Sheet resistances of samples 2, 3, and 6 versus temperature. 
FIG. 4. Shubnikov-de Haas oscillations of p,, and Hall resistivity p,, for 
(a) samples 3 and (b) 6 at T =  4.2 K. 
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electron mobility. The sheet conductance of the samples 
a = ( 3  -4.5) X R -  ' at the liquid-helium temperature is 
higher than in previously studied 8-doped heterostructures: 
@=( I -  1 . 5 ) ~  0 - I :  @ = ( I - 2 . 5 ) ~  , @  

~ ( 2 - 3 ) ~  10-3 (),- ' ,I6 a - 3 ~  10-3 0 - 1  , '7 (2.5-3.5) 
x 10-3 0 - 1  18 

Determination of electron densities and mobilities using the 
Shubnikov-de Haas effect 

Reliable electron densities can be derived from 
Shubnikov-de Haas oscillations, for which each subband has 
an oscillation with its own period. The part of the density of 
states oscillating in the magnetic field, Ag,  can be expressed 
as19-21 

which leads to the following expressions for the conductivity 
tensor components in the two-dimentional case (the Landau 
level width r is assumed to be independent of energy and 
magnetic field, and rq= fLI2r): 

where po= e r0 lrn * is the transport mobility at B = 0, go is 
the density of states at zero magnetic field, pq = e rq lrn * is 
the "quantum" mobility, N, is the electron density, and e is 
the absolute value of the electron charge. The oscillation 
frequency B,  in the reciprocal magnetic field determines the 
two-dimensional electron density: N,  = eB, 1 r f i  , EF 
=( r f i2 / rn* )~ ,  . If several subbands are filled, the conduc- 
tivities due to their carriers should be added. 

In order to separate the oscillating component, the resis- 
tance should be differentiated twice with respect to the re- 
ciprocal magnetic field u = 1/B. An application of this tech- 
nique to the determination of electron density in subbands is 
illustrated by Fig. 5, which shows curves for sample 3. The 
resistivity p,, versus the reciprocal magnetic field u (Fig. 5a) 
has been numerically differentiated (Fig. 5b), and a fast Fou- 
rier transform has been performed (Fig. 5c). 

Analysis of the oscillation amplitude as a function of 
magnetic field and temperature yields the mobility of 2D 
electrons in each dimensional subband. But here we face the 
problem related to the difference between the transport and 
quantum mobilities, po and pq .899922-24 The transport relax- 
ation time 70 of the electron momentum is derived by solv- 
ing the Boltzmann kinetic equation in the relaxation-time 
approximation and can be expressed as17325 

u. I I T  

d%/du: R - T 2  

FFr, arb. units 

FIG. 5. Determination of electron densities and mobilities: (a) experimental 
curve of magnetoresistance versus reciprocal magnetic field u= 1IB; (b) 
second derivative of the oscillating function d 2 p , , ( ~ ) l d ~ 2  (thin line shows 
calculations with parameters listed in Table I); (c) Fourier transform of 
d2p,,(u)ldu2. Measurements were taken from sample 3 at a temperature of 
4.2 K. 

where Q(0) is proportional to the probability of scattering 
through the angle 0, while the quantum relaxation time is 
defined by the equation21926 

Because of the factor 1 - cos 0 in the equation for 70, scat- 
tering through small angles makes a negligible contribution, 
and if Q(0) is largest at small angles (for example, in the 
case of Coulomb scattering), the transport relaxation time 
r0 may be an order of magnitude larger than 7,. 

By varying po and pq in each subband, one can fit the 
second derivative of pXx= a,, /(a:,+ a:,) with respect to 
u calculated using Eqs. (1)-(3) to experimental data. The fit 
to measurements of the sample 3 is shown in Fig. 5b by the 
light trace. In this fit we used the optimization technique 
described in Ref. 27. The resulting parameters N, , p o ,  and 
pq are listed in Table I. By and large, there is a tendency to 
higher mobilities (both transport and quantum) as the sub- 
band number increases. The transport mobility is a factor of 
two to three larger than the quantum mobility. The following 
ratios of the transport to quantum mobility were obtained by 
different researchers of heterostnrctures based on GaAs: 
polp,=2.5 (Ref. 17), po/p,-4-9 (Ref. 21), p o / p q  
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TABLE I.  2D densities N ,  and effective masses m* of electrons in dimensional subbands derived from self-consistent calculations; electron densities, 
transport I*, and quantum y mobilities derived from Shubnikov-de Haas measurements at a temperature of 4.2 K; transport I*, and quantum 4 mobilities 
calculated for scattering from ionized impurities, including intersubband scattering for the samples 2, 3, and 6. 

Self-consistent calculation Shubnikov-de Haas Calculation 
n 

Sample Subband N S  N ,  , I-%* Pv * POLO. C L q *  

number number 10" cm-2 m*lm, 10" cm-2 c m 2 / ~ . s  cm'1v.s cm2/v.s  cm2/v. s 

-5-9 (Ref. 9), po/p ,=4-16 (Ref. 25). These values of 
the mobilities may be inaccurate because the quantum limit 
is achieved in the fifth subband at a magnetic field of 6-8 T. 

Table I also lists electron densities and effective masses 
derived from a self-consistent solution of the Poisson and 
Schrodinger equations, and electron mobilities calculated by 
taking account of the electron scattering from ionized impu- 
rities, including intersubband scattering. The calculation 
techniques and results will be discussed below. 

The transport mobility and electron density in the 
samples can be also derived from measurements of the clas- 
sical magnetoresistance.28.29 In this technique the measure- 
ments of p,, and p,, as functions of magnetic field are trans- 
formed to the so-called mobility spectrum, which yields the 
peak conductivity as a function of mobility. The parameters 
p,, and pry for the samples 2, 3,  and 6 measured in the 
magnetic field range of 0.2 to 1.5 T were transformed to the 
mobility spectrum, which demonstrated that the samples 
contained two groups of electrons with lower (-1800 
cm2/v. s) and higher (=20000 cm2/v. s) mobilities. 

At low magnetic field of less than 0.02 T for the samples 
2 and 3 and less than 0.2 T for the sample 6, a small negative 
magnetoresistance was detected, whereas the Shubnikov-de 
Haas oscillations were observed only in magnetic fields be- 
yond 2 T (Fig. 3). The absolute value of the negative mag- 
netoresistance drops with the temperature. Along with the 
increase in the sample resistance at low temperatures 
(T<40 K) at a constant electron density (Fig. 2), this nega- 
tive magnetoresistance may be ascribed to quantum correc- 
tions to conductivity in two-dimensional  structure^.^' 

4. CALCULATION OF ELECTRON BANDS AND TRANSPORT 
PARAMETERS OF HETEROSTRUCTURES 

Scheme of the self-consistent calculation of electronic 
bands in heterojunctions 

The electron wave functions &(z) and energies En are 
determined in the effective mass approximation by the one- 
dimensional Schrodinger equation 

The potential energy U(z) = U,(z) + UH(z) + Uxc(z) is the 
sum of the jump in the conduction band energy U, on the 
heterojunction, electrostatic potential energy UH (Hartree 
potential), and exchange-correlation potential U,, . The elec- 
tron effective mass in Al,Ga,-,As is described by the 
formula23 m * (z) = (0.0665 + 0.0835x)mo, where mo is the 
free-electron mass. The difference between the gap widths in 
GaAs and A1,Gal -,As equals3' AE, = (1  155x+ 370x2) 
meV. The ratio of the potential jump at the conduction 
band bottom to that of the gap width was taken to 
be AEclAE,=0.63 (Refs. 32 and 33), implying U,(z) 
= 0.63( 1155x+ 370x2) meV. The electrostatic potential en- 
ergy is determined by the Poisson equation 

where EO is the permittivity of free space, E is the material 
dielectric constant, and N I  is the three-dimensional density 
of ionized impurities (donors and acceptors): N I =  NCI- N ,  . 
The number of electrons in the nth subband is 
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Assuming that the Fermi level of the system at T=O K far 
from the heterojunction coincides with the donor level, 
U( - 0 3 )  = E b l  , U(+ w )  = Eb2 (the energy is measured with 
respect to the Fermi level, EF=O), and that I)~,,~,=O, we 
obtain the boundary conditions in the form 

The exchange-correlation energy is, generally speaking, an 
unknown functional of the electron density, 
U,,(z)= U,,[n(z)]. In practical calculations, a simple ap- 
proximation for the exchange-correlation contribution, 
namely the local-density approach, is commonly used. In this 
approximation we have U,,[n (z)] = p,,[no = n(z)], where 
pxc is the exchange-correlation contribution to the chemical 
potential of a uniform electron gas with constant density no 
equal to the local electron density n(z) in the inhomoge- 
neous system. The function U,, was approximated by the 
formula34 

where 

4 . r r ~ ~ e h ~  e2 
a$ = Ry* = 

m*e2 ' 8rreo&a$ ' 

In gallium arsenide the effective Bohr radius is 
a,*=100 A, and the effective Rydberg is Ry"z5.4 meV. 

The difference between the dielectric constants of GaAs 
and AlXGa,-,As gives rise to an image force acting on an 
electron near the heterojunction. The difference between the 
dielectric constants of the two materials, however, is no more 
than lo%, so we ignored the contribution of this effect to the 
potential energy.35 

In the absence of charges, the energy U,(z) at the bot- 
tom of the conduction band has a jump on the heterojunction. 
In order to smooth this jump on the junction, the function 
U,(z) was multiplied by the interpolation function G(z), 
whose exact form was given by Stem and Das ~ a r m a . ~ ~  

The one-dimensional Schrodinger equation was solved 
using the transfer matrix technique.36 The calculation took 
into account the nonparabolicity of the conduction band, 
which is significant at large subband energies.37 The nonpa- 
rabolicity leads to the following corrections: (1) the energies 
of subband edges are slightly lowered; (2) the effective 
masses in the subbands with higher numbers in the 8-layer 
are enhanced by up to 7% (see Table I). 

Band diagrams of the heterostructures 

The self-consistent solution of the Schrodinger and Pois- 
son equations was found using an iteration algorithm which 
included the following steps. 

1) An initial potential energy Uin was selected and the 
Schrodinger equation (6) was solved. Thus we obtained the 
energy levels E n  and wave functions cCln(z) in the selected 
potential. 

2) The corrections to the energy levels and electron ef- 
fective masses due to the nonparabolicity were calculated. 

3) 2D electron densities in the subbands were calculated 
using Eq. (8). 

4) The Poisson equation (7) was solved. The density of 
ionized donors in the 8-layer was selected so that the total 
electron density in all the subbands should equal the experi- 
mental value derived from Shubnikov-de Haas oscillations. 

5) The potential jump U,(z) and exchange correlation 
energy E,,(z) from Eq. (10) were added to the electrostatic 
potential UIj(z), yielding the total potential energy 
Uout(z). 

6) If U,,, were very close to Uin (for example, 
maxJ~,,,(z) - Uin(z)l <O.1 meV), U,,, was defined as the 
solution and the process was terminated; otherwise a new 
initial potential UyiW= u$*+ k(~, , , -  u fd )  was introduced: 
and steps 1 to 6 were repeated. The coefficient k was intro- 
duced for better convergence of the iteration procedure; we 
took k-0.01. The silicon level energy was taken to be 
Eb=5.8 meV. The donor density in A10,25Gao,7SAs was 
3 x 1017 ~ m - ~ .  The effect of acceptors was neglected. 

In order to fit the calculated electron densities in the 
subbands to the experimental data, we had to assume that the 
Blayer had a finite thickness. Supposing that the donors 
were uniformly distributed in a layer with a thickness Az, we 
found the Az at which the agreement with the experimental 
data was the best. This method for determination of the 
Blayer thickness was used by several a ~ t h o r s . ~ ~ - ~ '  Using 
this technique, Zrenner et a1.16 obtained Az= 80 A in struc- 
tures grown at Ts=530 "C at a 2D electron density of 
N ,  = 8 X lo i2  ~ m - ~ ,  and Santos et al.42 obtained 
Az= 110 A at Ts=580 "C and N , - ~ x  1012 ~ m - ~ .  The 
width of silicon 8-layers was also determined directly: at 
T,= 550 "C and an impurity density of 1013 cmP2 the experi- 
ments yielded 116 A43 and from 50 to 150 A in different 
s t r ~ c t u r e s . ~ ~  The main causes of the 8-layer broadening are 
diffusion due to the high growth temperature42744 and 
segregation.45 

The electron density in the subbands as functions of the 
Blayer thickness in the sample 2 are shown in Fig. 6. The 
best agreement with the Shubnikov-de Haas measurements 
is achieved at Az= 90 A in all the samples. The diagrams of 
the subbands calculated at this &layer width for the samples 
2 and 6 are given in Fig. 7. One can see that the wave 
functions of the lower levels are localized in the &layer, and 
there are subbands with wave functions localized near the 
heterojunction. Higher subbands are common for both the 
heterojunction and S-layer. The discrepancy between the cal- 
culated electron densities and Shubnikov-de Haas measure- 
ments are caused largely by the difference between the as- 
sumed Blayer profile and its real shape (the impurity 
distribution may be not only inhomogeneous, but also asym- 
metrical with a tail in the growth d i r e ~ t i o n ~ ~ ) ,  and by the 
effect of the contact layer on the Fermi-level position. 
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FIG. 6. Populations of subbands versus the width of the slayer for sample 
2. 

Calculation of the electron mobility due to scattering from 
ionized impurities when several subbands are filled 

The transport mobility can be derived using the kinetic 
equation and describing the impurity scattering in the Born 
approximation.'9 The scattering theory was generalized to 
the case of several filled subbands by Sigga and   wok.^^ 
Below we describe the scheme for calculating transport re- 
laxation times T, in the subbands (see also Refs. 25, 47-49). 

When several dimensional subbands are filled, the T, are 
derived from the linear equation system 

where the coefficients Pnn,  are the probabilities for the re- 
spective intersubband transitions: 

where 

q=2k(1 -cos p)'I2, q1=(k2-2kk' cos q+kr2) ' I2,  

and 6(x )  is the Heavyside 0-function. 
The effective scattering potential takes into ac- 

count the distribution of ionized impurities: 

where N(zi) is the three-dimensional impurity density at the 
point 2;. Since the charged impurities are screened by free 
electrons of all the filled subbands, the matrix element of the 
nonscreened Coulomb potential, 

is related to the screened potential Knt(q,zi)  through the 
dielectric function: 

where E O  is the permittivity of free space, E is the dielectric 
constant, and fil(z) are the subband wave functions calcu- 
lated concurrently with the band diagram. In the random- 
phase approximation the dielectric function has the form 

where nnnl is the polarization component,49 and the form- 
factor F is determined by the equation 

FIG. 7. Band diagrams of  samples 
(a) 2 and (b) 6. The energy is mea- 
sured with respect to the Fermi level 

F (dashed line). Electron wave func- 
.o -------- --*, - -  tions squared in subbands are also 

2 \ I  \f shown (those of the third, fourth, and 
I fifth subband are shown at the tops 

-0 .1  -I 1.1 of the graphs). E,. denotes the ... 

1 ,  Y! conduction-band bottom. 
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xexp(-q(z-z '~)$t,(z ')$n~(z') .  (17) 

The transport mobility in the nth subband is 

(18) 

where f o  is the Fermi-Dirac distribution function. The quan- 
tum lifetime at the Fermi level is obtained by adding all the 
scattering probabilities with equal weighk4 

The transport and quantum mobilities in samples 2, 3 
and 6 calculated by this method are listed in Table I. The 
dependence of the mobility on the subband number is deter- 
mined by several competing factors.1° On one hand, the 
Fermi momentum is lower in the higher subbands, which 
leads, according to the well-known properties of Coulomb 
scattering, to a lower mobility. On the other hand, the width 
of the electron localization region is larger in the higher sub- 
bands, i.e., the average separation between impurities and 
electrons is larger, which should result in a higher mobility. 
Therefore the shape of the function pn(n)  cannot be easily 
derived from general considerations. Our numerical calcula- 
tions (Table I) indicate that the electron mobility increases 
with the subband number. The mobility in the fourth sub- 
band (sample 3) or in the third subband (sample 6) is high 
because the S-layer is at a considerable distance from the 
heterojunction, where the wave function of this subband is 
localized. In samples 3 and 6 the calculated transport mobil- 
ity in the fourth and third subband, respectively 
(> lo5 cm2/v.s), is one order of magnitude higher than that 
derived from mobility spectra (the mobility in the higher 
subbands could not be derived from Shubnikov-de Haas 
measurements because the electron densities in them were 
low and the corresponding Fourier components could not be 
detected in spectra of oscillations, see Fig. 5 and Table I), so 
alternative scattering mechanisms (mostly scattering due to 
the lateral r ~ u ~ h n e s s ~ ~ ' ~ ' )  should be taken into consideration. 
The calculations and measurements of mobilities are in good 
agreement, and the small discrepancies between the calcula- 
tions and Shubnikov-de Haas measurements are, most prob- 
ably, due to errors in the impurity distribution (which is im- 
portant for the lower subbands) and in the calculated energy 
levels and wave functions (which affects mostly the mobility 
in higher subbands). 

Optimization of transport parameters of heterostructures 
with combined doping 

Figure 8 shows the conductivity a and Hall mobility 
p = R a  (the Hall coefficient R was measured at low mag- 
netic fields) as functions of the distance Lg between the 

FIG. 8. Conductivity (squares) and Hall mobility (triangles) versus separa- 
tion between the slayer and heterojunction at a temperature of 4.2 K in 
tested samples. 

&layer and the heterojunction. Both the conductivity and 
Hall mobility have maxima at Lg=600-750 A. 

The results described in the previous sections allow us to 
account for this dependence of the transport parameters on 
the distance Lg. At small Lg the electron scattering due to 
the impurities of the S-layer is strong, so the mobilities in all 
the subbands are relatively low. The electron densities, as 
well as the mobility in the fourth subband, whose wave func- 
tion is localized near the heterojunction increase with Lg. 
Although this subband contributes only about one twentieth 
of the total electron density, it yields about one third of the 
conductivity owing to the high mobility. At larger distances 
between the junction and S-layer the electron density in the 
higher subbands drops. As a result, there is an optimal dis- 
tance between the heterojunction and S-layer at which both 
the conductivity and Hall mobility are maximal. 

It is noteworthy that the 2D-electron density in our 
samples was close to the limit for GaAs(Si). There are sev- 
eral publications demonstrating that the free-carrier density 
in Sdoped GaAs cannot be higher than 8 X  1012 ~ m - ~ ,  al- 
though the dopant concentration may be considerably 
higher.16939,43 In the sample 3 (La= 600 A) the 2D-electron 
density is N,= 10.4X 1012 cmP2, which is about 30% higher 
than the highest values reported for GaAs heterostructures. 
There are two interpretations of the electron density satura- 
tion in ~ a ~ s . ~ ~ , ~ ~ - ~ ~  The fi rst (structural) mechanism is that 
at high silicon concentrations the dopant replaces not only 
Ga atoms to form donor centers, but also As, thus generating 
acceptors and compensating for the n-type conductivity. In 
this case the limiting electron density should depend on the 
growing conditions of a heterostructure. The second (elec- 
tronic) mechanism is due to the impurity levels of the 
L-band, which is higher than the r-band in GaAs. The con- 
duction band bends as the electron density increases, and 
when the Fermi level coincides with that of DX-centers (or 
similar centers with a sufficiently high density of states), the 
Fermi energy is pinned to the impurity level. In this case the 
free-electron density is determined by the energy difference 
between the r-band bottom and the DX-level, which equals 
about 200 meV in G ~ A s . ~ " ' ~  The limiting electron density 
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measured as a function of pressure53 provides evidence in 
favor of the electronic mechanism. The maximum energy 
differences between the Fermi level and r-band bottom mea- 
sured in samples 2, 3, and 6 at 194, 198, and 196 meV, 
respectively, indicate that if the electronic saturation model 
is valid, the electron densities in these samples are close to 
maximum. 

5. CONCLUSION 

We have studied the electric transport properties of 
GaAs/Al,Ga,-,As heterostructures in which Al,Ga,-,,As is 
uniformly doped with silicon and GaAs is Bdoped. The 2D- 
electron densities, transport and quantum mobilities in di- 
mensional subbands have been derived from measurements 
of transverse magnetoresistance. The transport mobility in 
the upper subband is one order of magnitude higher than in 
the lower subbands, owing to the separation of free electrons 
from ionized impurities. 

The electron densities, effective masses, and wave func- 
tions in all the subbands have been derived from self- 
consistent solutions of the Schrijdinger and Poisson equa- 
tions. The calculated electron mobilities due to scattering 
from ionized impurities in the case of several filled subbands 
are in good agreement with Shubnikov-de Haas measure- 
ments. Therefore the dependence of transport and quantum 
mobilities on the subband number in GaAsIAlGaAs hetero- 
structures with combined doping at low temperatures can be 
ascribed to the impurity scattering. Intersubband carrier scat- 
tering affects mainly the mobility in the upper subbands: in 
the three lower subbands this scattering mechanism yields 
20%, while in the upper subbands intrasubband carrier scat- 
tering and intersubband carrier scattering are comparable. 
The conductivity and Hall mobility have been measured as 
functions of the distance between the heterojunction and 
&layer. The Hall mobility and 2D-electron conductivity 
peak at a distance between the 6-layer and heterojunction 
L8=600-750 A. This result is important for designing 
high-power transistors based on GaAs heterostructures with 
optimal parameters. The combination of the GaAs 8-doping 
and AlGaAs uniform doping has allowed us to manufacture 
heterostructures with the highest possible 2D-electron den- 
sity of 1.04X loi3 ~ r n - ~ .  
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