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This paper shows that in oxides of the perovskite family the symmetry of the one-electron wave 
function of a bound state of an oxygen vacancy can be lowered due to the interaction of 
the electron with the lattice polarization. The phenomenon explains the existence in nominally 
pure KtA03 of the dipole centers recently discovered by the second-harmonic generation 
method. The problem is analyzed theoretically both in the continuum approximation and by 
allowing for the real structure of the crystal. The lattice polarization energy is determined 
by numerically solving the problem for a cluster with roughly 160 atoms in the first region (closest 
to the defect) and about 2000 atoms in the second regions (at a distance from the defect). 
The asymptotic value of the electric fields obtained analytically is used in the second region. The 
covalent component of the energy is found from analytical calculations of lattice sums by 
the method of Green's functions. The electron Green's functions are determined by the alternate 
structure theory with a realistic description of electron dispersion in bands of allowed 
states, which are found by approximating the results of band calculations done by other 
researchers. O 1996 American Institute of Physics. [S 1063-776 1 (96)015 10-71 

1. INTRODUCTION 

As is known, the interaction between charge carriers and 
lattice polarization can lead to spatial localization of the car- 
riers. The common approach is to consider bound states that 
are symmetric with respect to a certain lattice site, states that 
do not violate the point symmetry of the lattice. Only the 
spatial symmetry of the one-electron wave function is bro- 
ken. However, lately it has been discovered that sometimes 
the state of the so-called molecular polaron proves to be 
energetically more advantageous.' In this state the polaron 
has equal weights on the two nearest anions of the lattice. 
Such states are stabilized by the decrease in the radii of the 
anions, the approach of the anions toward one another, and 
the resulting strengthening of the covalent component of the 
chemical bond. 

This paper examines an entirely different possibility: 
that the wave function of a polaron coupled with a point 
defect acquires different weights on sites that are equivalent 
from the standpoint of the point symmetry of the defect. 
Such a nonequilibrium state can have a large lifetime, and in 
time it may transform into a similar state, but with a rotated 
polarization vector. 

Actually such a state, we believe, was observed by 
Fisher et al.' in experimental studies of reduced KTa03. 
They applied the method of second harmonic generation at 
low temperatures and discovered in reduced KTa03 1018 
~ r n - ~  dipole centers whose concentration increases under re- 
duction and decreases under oxidation of the sample. 

Earlier in studies of the electric conduction and optical 
spectra of oxides of the perovskite family we found that the 
theoretically calculated temperature dependence of the elec- 
trical conductivity is in good agreement with the experiment 
data if one assumes that the crystal contains 1 0 ' ~  cm-3 sin- 
gly ionized oxygen vacancies V: (see Refs. 3 and 4). These 

defects are the basic ones in oxides of the perovskite family. 
If their concentration is in the vicinity of the above value, it 
can easily be controlled by heating in the respective (oxidiz- 
ing or reducing) atmosphere. 

It can be assumed that the experimentally discovered 
dipole centers are related in some way to Vo '. We will see 
that under certain conditions V: has a dipole moment slowly 
fluctuating in time. For this to happen the ground state of 
V: must be formed differently from that in F-centers. 

Usually an F-center is interpreted as an electron bound 
to an anion vacancy. It is assumed that the wave function of 
this electron is primarily located in the cavity formed in the 
crystal at the anion site. The reasons for such localization are 
well-studied. They are the strong reffection of the electron 
wave from the cations closest to the vacancy and to the de- 
crease in the potential at the vacancy center because of the 
Madelung field.5p6 However, the strong reflection of the elec- 
tron wave occurs only if the first free eigenstates of the cat- 
ions are highly excited. If cations have fairly low-lying 
states, as is the case in ion-covalent crystals, an entirely new 
possibility emerges. The wave function of an electron at 
V: in this case can be localized at the cations closest to 
V; This ground state was obtained in Refs. 7 and 8 and was 
found in accordance with the existing optical and electrical 
characteristics of oxides of the perovskite family. 

The ions closest to the oxygen site in KTa03 are the two 
equivalent Ta ions. The electron wave function can have 
weights on these ions that are equal in absolute value, so that 
the corresponding defect state can be denoted by 
T ~ ~ . ~ v ~ T ~ ~ - ~ ,  where the number in the superscript indicates 
the formal valence of the ion. For the case of preferential 
localization of the electron at one of the Ta ions two other 
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symmetrically reflected structures emerge: Ta4+voTa5+ and 
T ~ ~ + v ~ T ~ ~ + .  These have dipole moments (with respect to 
the defect center) pointing in opposite directions. 

In this paper we will show that the interaction of the 
electron at V: with the lattice polarization stabilizes the 
asymmetric states of a polaron of the Ta4+voTa5+ or 
Ta5+v0~a4+  type. Section 2 is devoted to the general state- 
ment of the problem. For illustration we analyze the problem 
using two models: the continuum model (Sec. 3) and the 
model of exactly polarizable ions (Sec. 5). Here it must be 
immediately noted that the first model is too crude for ob- 
taining quantitative results and is given here only because it 
possesses all the necessary features of a more complicated 
model but, in contrast to the latter, is exactly solvable. At the 
same time we found that to describe the phenomenon quan- 
titatively one must allow the local field to differ from the 
mean field and include the interaction of the polarizations of 
lattice sites located in a broad region near a defect, which 
meant using the following approach. The entire region of the 
crystal surrounding a defect was divided into two parts. The 
first contained about 160 atoms for which the polarization of 
each site was determined self-consistently, i.e., the dipole 
moment of each site was determined by the field at the lattice 
site generated by all the other polarized sites. In the second 
region, which included about 2000 atoms, we employed the 
asymptotic behavior of the local fields. This behavior is stud- 
ied in Sec. 4 by the inverse Fourier transformation method. 
Here it must be immediately noted that this behavior in polar 
crystals was found to differ considerably from the behavior 
in the often used Mott-Littleton model. The model assumes 
that the electric field generated by a point charge in a polar 
lattice far from the charge can be described by the Coulomb 
formula in the continuum approximation. Actually, however, 
this formula is true only in the mean field, i.e., if one calcu- 
lates the mean field over a unit cell. The local (microscopic) 
field in polar crystals can differ considerably from the mean 
field. In particular, earlier in Refs. 9-1 1 it was found that the 
local field at the sites of a simple cubic lattice differs by a 
factor of ( E  + 2)/3 from the macroscopic field. Section 4 
generalizes this result to the case of more complex lattices, in 
particular, to the case of the lattice of the perovskite family. 

The chemical bond in oxides of the perovskite family is 
of an intermediate ion-covalent nature.12 This means that in 
solving the problem one must accurately take into account 
the covalent effects. We show that these effects stabilize the 
symmetric state of the bound defect state. Estimates of the 
covalent contribution to the binding energy are made in Secs. 
6 and 7 by a combination of the method of Green's functions 
and a realistic model for the electronic structure of a perfect 
crystal, the model being based on numerous band calcula- 
tions by the density functional method. Analytical results for 
the lattice sums that emerge in calculating the covalent con- 
tribution to the energy were obtained. The method does not 
use perturbation theory techniques. In Sec. 8 we discuss the 
results and arrive at several conclusions. 

2. GENERAL STATEMENT OF THE PROBLEM 

When an atomic vacancy is created in a crystal, the po- 
tential V in the space surrounding the vacancy changes. Here 

and in what follows V is interpreted as the matrix element of 
the perturbation of the electron Hamiltonian in the atomic 
basis. The modified potential may cause a local level to ap- 
pear in the forbidden band. This happens if 

where g ( ~ )  = (E - H)-I is the resolvent of the Hamiltonian 
operator, or the Green's function of a perfect crystal. Here 
we consider a situation in which a local state exists and is 
occupied by a single electron. 

An oxygen site in the KTa03 lattice is surrounded by 
two Ta ions positioned symmetrically with respect to the 
site. In this connection one would think that the wave func- 
tion of the electron bound with the vacancy has equal 
weights on these ions. Below however, we will see that the 
interaction of the electron with the polarization of the sur- 
rounding medium makes the localization of the electron on 
one of the two Ta ions advantageous. In this case the one- 
electron wave function will have a symmetry that is lower 
than the point symmetry of the oxygen site. It is this solution 
of the problem that we are discussing in the present paper. 
Within the solution the electron polarizes the surrounding 
crystal, with the result that it is shifted, so to say, away from 
the center to one of the Ta ions closest to the vacancy. Ob- 
viously, this is possible only if the Ta4+ ion has a low-lying 
state (in comparison, say, to the position of the cation levels 
in alkali halide crystals). At the same time, in covalent semi- 
conductors with low-lying levels this effect may not manifest 
itself because, first, as shown in Sec. 6, the covalent bond 
stabilizes the symmetric state of the defect and, second, as 
shown in Sec. 3, the effect is possible only if the local field 
differs considerably from the mean field. 

We take the charges on the Ta atoms closest to Vo as the 
parameters of the problem: 

Here GI  and G2 are the diagonal elements of the Green's 
function of the crystals with defects, and E F  is the Fermi 
energy. Since the wave function of the electron on V: is 
symmetric with respect to the two Ta atoms, we have 
q1=q2=q0.  But is such a symmetric state stable? 

We write the energy of the system as the sum of two 
contributions, 

where Ecov is the covalent component of the energy (see 
definition below) and E,, is the polarization energy of the 
medium: 

Here the sum is only over occupied sites, A,, is the polariz- 
ability of the ith site in the crth direction, e ;  is the local field 
at the ith site (determined by the field ey of the charge source 
and the polarization field P,,,,): 
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where 9" is the cell volume, and @ni ,mj  is the dipole-dipole 
interaction tensor, 

Here j is the identity matrix and we have written 
Rni ,mj=rni - rmj+r ,  where rni is the radius vector of the 
ith site of the nth cell ( r n j =  ro i+Rn ,  with R, the radius 
vector of the nth cell), and R=WR is the unit vector di- 
rected along R. We use the linear approximation, according 
to which 

Note that the displacements of the atoms away from the lat- 
tice sites are assumed small, and because of this they can be 
taken into account by adding an ion component to the elec- 
tron polarizability. We also note that numerical calculations 
show (more about this later in the paper) that the atomic 
displacements near a defect prove to be on the order of the 
ferroelectric displacements of ions in the polar phase (0.06 
A), which supports the use of the linear approximation. 

The covalent energy E,,, can be found from the varia- 
tions in the density of electron states: 

where 

We assume that when the deviations Aq = q - q0 are small, 
the energy (8) can be written in the same way as in the 
two-level model (proof of this is given in Sec. 6): 

where E:,, is the contribution of valence electrons to the 
energy (8), t<O is the effective hopping integral between the 
first and second Ta ions, and fl  and f2 are the weights of the 
wave functions on these ions. To estimate the behavior of 
f ,  and f2 as functions of the parameters of the problem we 
employ the following approximations: 

which are a natural consequence of the two-level model. The 
validity of these assumptions has been verified numerically 
by the method of Green's functions. 

Note that (3) incorporates only the one-particle part of 
the energy. The reason for this is the following. The possible 
effect of the electrostatic electron-electron interaction on the 
stability of the symmetric solution of the problem was ana- 
lyzed in Refs. 13 and 14. There it was found that the Hub- 
bard electron-electron interaction in transition elements can 
disrupt the symmetry of the defect. The present paper studies 
a different and, we believe, a much more important result of 

FIG. 1 .  Schematic of the continuum model used in the present work. 

symmetry violation-the interaction of an electron with the 
polarization of the medium caused by the electron. For this 
reason we focus mainly on the one-particle part of the en- 

ergy. 
We expand the energy (3) in a power series in Aq at the 

point q ,  = q2 = q0 and restrict our discussion to second-order 
terms in Aq: 

where 

This implies that the symmetric state of a defect proves un- 
stable if 

pqO - t<  0. (14) 

At the same time this condition describes the region of a 
stable dipole state. Clearly, since we have t<O, for (13) to 
be true p must be negative and must exceed ltllqo in abso- 
lute value. This is possible in highly polar crystals but not in 
semiconductors. Below we will see that for (14) to hold the 
local field must differ from the mean field, but this difference 
is practically nil in semiconductors. 

3. THE CONTINUUM APPROXIMATION 

Let us take the following model (Fig. I) .  Suppose that a 
uniform polarizable medium with a dielectric constant e con- 
tains two point charges, q ,  and q2 at points zo and - zo and 
a charge go at the origin of the coordinate system. This third 
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charge models an anion vacancy, while the first two model 
the two Ta ions closest to the vacancy. For simplicity we 

assume go= & i.e., q +q2= 1. 
We surround each of the first two charges by spheres of 

radius 5, and assume that inside the spheres the medium is 
unpolarizable. This ensures that the energy is not divergent 
and allows for the finite distance from the field sources to the 
ions closest to them. 

Under these assumptions, 

where 

The energy (15) for B<A- t is minimal at the points 

which correspond to the two possible dipole states of the 
defect. The condition for the stability of the dipole state can 
be written as 

At zo=2A we find lt1<5(&- l ) l ~ ~ e ~ ,  which holds for 
It1 =0.1 eV if 1.02<&<49. Thus, for e>49 the dipole state 
proves unstable in the given model. The reason is that at high 
values of E the electric field at distances Irl>izo is ex- 
tremely weak and hence the polarization energy can not 
counterbalance the covalent energy. In Sec. 4 we will see 
that the true asymptotic behavior of the electric field at the 
lattice sites of an ionic crystal for large values of E is inde- 
pendent of E ,  with the result that the condition (18) assumes 
the form 

where a is the atomic polarizability, and y- 1. We see that 
for large values of e the right-hand side of the inequality (19) 
is proportional to a. In the continuum approximation we 
have a- e - 1, but if we allow for the atomic structure of the 
crystal, according the Lorenz-Lorentz formula, 

This implies that for large E the value of a is independent of 
E. Thus, for large E the right-hand side of the inequality (19) 
has a maximum. The situation resembles the one in polaron 
theory,I5 which uses the quantity E - I  = eg '+ e, , where 
eo  and E ,  are the low- and high-frequency dielectric con- 
stants, respectively. When e, is large, we can ignore &;', 

and E - I  = E,  . This means that the depth of the polaron 
well for large eo  has a limit determined by the high- 
frequency dielectric constant &, . Similarly, in our case we 
found that for large E (here E 5 E , )  the drop in the polariza- 

tion energy when the symmetry of the defect is broken has a 
limit determined by the atomic polarizability. 

For small values of e (E  - 1) the right-hand side of the 
inequality (19) is proportional to e -  1,  i.e., the larger the 
value of e the stronger the effect. 

Note that the polarizable medium is assumed to be in the 
paraelectric state, when the impurity electric field does not 
force the medium out of equilibrium. Because of this we also 
ignore the fluctuations of the medium polarization and the 
nonlinearity of the P vs E relationship. Actually, at tempera- 
tures close to the Curie point the impurities may transform 
the crystal into a ferroelectric state.16 Near T c ,  the polariza- 
tion may fluctuate spatially even in the paraelectric phase, 
i.e., small polarized regions can exist. In such cases, obvi- 
ously, the dipole state of a defect may become stable much 
more easily. Our analysis shows, however, that even in the 
paraelectric phase far from the Curie point stabilization of a 
state of V: with broken symmetry is possible. Below we 
examine this problem with allowance for the real geometry 
of the crystal lattice. 

4. THE ASYMPTOTIC BEHAVIOR OF THE ELECTRIC FIELD 
OF A POINT CHARGE IN A LATTICE OF POLARIZABLE 
IONS 

In this section we establish the asymptotic behavior of 
the electric field of a point charge in a polar crystal. We take 
a lattice consisting of polarizable sites and assume that the 
polarization of each site is determined by the total local field 
generated by the field source and all the other polarized sites. 
Solving this problem in general form requires taking account 
of an infinite number of linear equations (5) and (6). But if 
we are interested only in the asymptotic value of the field, 
there is a way of considerably simplifying the solution of the 
problem and even obtaining a solution in analytic form. 
  ah an^ was the first to do this for a simple cubic lattice. The 
value of the energy of interaction between a point charge and 
a distant point dipole in a simple cubic lattice was found to 
be (e+2)/3 times higher than that provided by the con- 
tinuum approximation. This result was verified by smith" 
and ~ielopolski," who found that the asymptotic value of 
the electric field of a point charge in a simple cubic lattice is 
(e+2)/3 times larger than the one used in the Mott- 
Littleton model. These results were used by Vugmeister and 
~ l i n c h u k ' ~  to explain the ferroelectric phenomena in a 
KTa03:Li solution. They calculated the interaction energy of 
Li impurities in the soft-mode approximation. Here we gen- 
eralize the results obtained in Refs. 9- 1 1 to the case of more 
complex lattices. In particular, we allow for the fact that the 
oxygen site in the perovskite lattice is axisymmetric. In this 
connection we are forced to discard the method of deriving 
finite expressions suggested in Ref. 9, since it is valid only 
for the atomic positions in cubic lattices that also possess 
cubic point symmetry. 

We perform the inverse Fourier transformation of Eqs. 
(5) and (6). To this end we examine the following quantities: 
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Here 

where 

is the electric field generated by a unit point charge. As a 
result we get 

The general solution of this system is 

where x is the susceptibility tensor specified by the equations 

The inverse Fourier transform is 

Let us examine the behavior of (26) for large n (far from 
the source). Only small k contribute to (26), i.e., values for 
which we can use the following approximations: 

where i= k i k ,  and a i j ( r )  is the k-independent part of the 
tensor. 

In calculating the integral (26) we use the following for- 
mula: 

where t = cos 8. Then the integral (26) assumes the form 

where 

In the particular case where the field is directed along the z 
axis, which coincides with the crystallographic axis, we have 

where 

is the average value of the reciprocal dielectric constant. The 
quantity p( r ) ,  which represents the enhancement of the di- 
pole moment, satisfies the following conditions: 

The first relates pi to the macroscopic dielectric constant 
E ,  while the second shows that the mean (macroscopic) field 
coincides with the Coulomb field in a continuous medium. 
At the same time, the local (microscopic) field may be arbi- 
trary. The coefficient p is equal to (8 + 2)/3 for a simple 
cubic lattice, which coincides with the result of Refs. 9-11; 
for complex lattices pi= yi(&+2)/3, and here the 
calc~lation'~ for KTa03 have yielded y= 5.20, - 0.21, 
3.72, and 0.24 for the Ta, K, 0, , and Ox, positions, respec- 
tively. The data are close to those of Vugmeister and 
~ l i n c h u k ' ~  in the soft-mode model for the Ta and K posi- 
tions. We see that at large distances the electric field in a 
polar lattice is greatly enhanced in comparison to the value 
provided by the continuum approximation. 

5. DIRECT CALCULATIONS OF THE LATTICE 
POLARIZATION ENERGY 

As noted earlier, the crystal was divided into two parts. 
The first had a diameter of about 16 A. Inside it the system 
of equations (5) and (6) was solved numerically. The initial 
field e0 was generated by the charge 1.2e of the vacancy 
cavity, the charges on two Ta ions, the charges on the ten 
oxygen ions nearest to the Ta ions, and by the dipole mo- 
ments at the sites of the second region. We allowed for the 
covalence of the Ta-0 chemical bond and the breaking of 
chemical bonds in the formation of an atomic vacancy. The 
degree of covalence s of the chemical bond is assumed equal 
to 0.5, which agrees with band  calculation^.'^ In view of this 
the real charge of the Ta5+ ion in the perfect lattice is 
4 ~ ~ =  5se= 2.5e. This means that due to the covalence of the 
chemical bond (2.5/3)e=0.8e of the charge is drawn away 
from each 02- ion to the Ta5 + ions. Thus, the real charge of 
an oxygen ion is go= -2e+0.8e= - 1.2e. 

As a result of the breaking of two chemical bonds in the 
formation of an oxygen vacancy, the Ta ions closest to the 
vacancy acquire an additional charge equal to 2,5e/6= 0.4e. 
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FIG. 2. The geometry of the nearest neighbors of an oxygen vacancy in 
oxides of the perovskite type AMO,; n is the valence of the transition FIG. 3. The polarization energy as a function of the degree x of symmetry 
element. violation. 

We distributed the additional charge created by the electron 
bound to the vacancy between the two TaOS fragments in the 
symmetric state in equal portions (Fig. 2), while for the 
asymmetric state the portions had corresponding weights. In- 
side each Ta05 fragment the charge distribution was fixed in 
such a way that half was on the Ta ion and half was distrib- 
uted uniformly between five oxygen ions. Such a distribution 
corresponds to the partial covalence of the chemical bond 
with s =0.5. As a result in the symmetric state the additional 
charge on each Ta ion was 1.5e, and the additional charge on 
each of the oxygen ions was -0.05e. When the symmetry 
was violated, the charges were specified as follows: 

with O<x< 1 ,  where qo1(qo2) is the charge on each of the 
oxygen ions closest to the first (second) Ta ion. The charge 
of the vacancy was not changed in the process of symmetry 
breaking. 

The second region was roughly 64 A in diameter. In this 
region the local field at a lattice site was determined by Eq. 
(32). The polarization energy was calculated by direct sum- 
mation in (4). The ion polarizabilities (aTa= 1.1 A3, 
aoll = 2.44 A3, and aol=0.93 A3) and lattice constant 
a = 3.9884 A were taken from Ref. 18. The degree of viola- 
tion of the symmetry of the defect was taken into account in 
all calculations. 

As a result of the calculations (Fig. 3) we found that 
E,, has a maximum at q ,  = q2= q0 equal to - 5.87 eV and a 
minimum equal to - 7.44 eV, provided that the electrons on 
one of the Ta ions and on the five oxygen ions closest to that 
Ta ion are totally localized. The lowering of energy proved 
to be greater than its increase caused by the change in the 
energy of the covalent bond (see Sec. 6). 

The calculations imply that the defect state with broken 
symmetry has a lower energy than the symmetric state. How- 
ever, the lattice constant and the atomic polarizabilities that 

we used correspond to room temperature. To study the de- 
pendence of the result on the model parameters we repeated 
the calculations for the lowest possible temperatures, at 
which a=3.9842 A and so=3840 hold (see Ref. 19); at 
room temperature we have so= 204 (see Ref. 18). We fixed 
the polarizabilities of all the atoms except Ta, and the polar- 
izability of the Ta was selected in such a way that the calcu- 
lated value of so coincided with the experimental value. The 
result was a ~ , =  1.08 A3. Here the polarization energy re- 
mained practically unchanged. These data agree with the 
data obtained in the continuum approximation in Sec. 4. 

We also did the following numerical experiment: a, 
was increased from 1.08 A3 to 1.3 A3. Near the value 
a,,= 1.3 A3 we observed a sharp increase in polarization 
energy (by several orders of magnitude) and a significant rise 
in the energy difference between the symmetric and asym- 
metric states of the defect. We believe that the reason for this 
is the appearance at these values of a,, of a cluster that is 
unstable in the transition to the ferroelectric state (initiated 
by the dipole defect). In our opinion the fact that this was 
observed at values of a, somewhat higher than in a bulk 
crystal is related to the finiteness of the cluster. 

We also decreased a ~ ,  from 1.08 A3 to 0.1 A3. Here 
both the polarization energy and the energy difference be- 
tween the symmetric and asymmetric states of the defect 
lowered. The energy difference at aTa= 0.1 A3 proved to be 
equal to 0.6 eV. Obviously, when the polarizability of all the 
other ions decreases, this value must vanish. 

What is interesting is that the Ta ions closest to V: are 
shifted away from the vacancy by 0.06 A. This implies that 
KTaO, must expand in reduction, which agrees with the ex- 
perimental data. In some cases this expansion may lead to 
interesting physical phenomena.20 Curiously, in the state 
with broken symmetry the shifts of the two Ta ions closest to 
V: are different: 0.0.067 and 0.0555 A, respectively. But on 
the average the ions are shifted by 0.06 A away from the 
vacancy. Note that in the ferroelectric state, at aT,= 1.3 
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A3, the Ta ions are shifted in the same direction by 0.025 
and 0.184 A, respectively. 

Our estimates of the energy of the one-electron state of 
V: (see Ref. 8) using Green's functions show that the energy 
is about 0.3 eV. This means that at room temperature and at 
higher temperatures V: is partially ionized (here we take 
into account the relatively low concentration of Vo). Hence 
reliable observations of the effect are possible only at low 
temperatures. 

We explain the observation of dipole centers in nomi- 
nally pure KTa03 (Ref. 2) by means of second harmonic 
generation by the presence of defects of the form 
T ~ ~ + V ~ T ~ ' + .  Each such dipole defect creates a polarized 
region surrounding it. The size of the region can be estimated 
as follows. We expand the electric field of a point charge and 
a point dipole in a power series in llq. Using the method 
developed bu Mahan and ~ a z o ? l  we find 

The expansions are valid if 

respectively. On the other hand, these conditions make it 
possible to estimate the characteristic size of the polarized 
region. For instance, for large c we have 

respectively. We see that for large E the asymptotic behavior 
of the electric field of the point charge is independent of E ,  

and the size of the polarized region increases with E like 
6. This suggests that even when the defect concentration is 
fairly low bur E is large, the defects may form polarized 
regions on the nanometer scale. Note that in our case this 
result follows from the fact that the local field differs from 
the mean field. 

6. CALCULATION OF THE COVALENT COMPONENT OF 
THE INTERACTION ENERGY OF IMPURITIES IN AN 
ION-COVALENT CRYSTAL 

Earlier we noted that breaking of the symmetry of the 
one-electron wave function on a two-impurity center in- 
creases the covalent component of the energy. This increase 
is described by the simple formulas of the two-level model, 
provided that we know the value of the parameter t of the 
effective interaction between the impurities. Determining 
this value is a complicated problem, however. Indeed, since 
the vacancy site contains no oxygen ion, there can be no 
interaction between the two Ta ions closest to the vacancy, 

indirectly via the oxygen ion, just as there can be no such 
interaction in a perfect crystal. Such an interaction can be 
transmitted along long atomic chains connecting the Ta ions 
and bending around the vacancy (Fig. 2). The shortest chain 
consists of four Ta ions and three oxy8en ions. Two of these 
Ta ions are far from the defect ( = 4  A), with the result that 
they play little part in the transmission of the interaction, 
since the wave function of a local state decays exponentially 
with distance from the defect. In other words, even if in 
some way we do find the value of the effective interaction of 
the Ta ions in the Ta-0-Ta chain, this is generally insuffi- 
cient for finding the effective interaction in the Ta-O-Ta- 
0-Ta-0-Ta chain. We must have additional data on the 
wave function of the local defect state. It would be a mistake 
to think that the interaction in a short chain is the same in 
order of magnitude as that in a long chain, since the effective 
interaction must rapidly decrease with the distance between 
the impurities. 

We also note that the interaction is transmitted not by a 
single chain but by an infinite number of such chains. Even if 
we do establish what interaction is transmitted along one of 
the chains, we will still need to sum these interactions over 
the entire lattice of an unbounded crystal. Restricting the 
sum to the nearest chains is possible only if we have a clear 
idea about the rate at which the interaction weakens when the 
length of the chain increases and about the interaction be- 
tween the chains. All this constitutes a separate complicated 
problem. 

Another problem is that the chemical bond in KTa03 is 
of an intermediate ion-covalent nature. This means that the 
dispersion in the bands of allowed states is primarily deter- 
mined by the nearest-neighbor interaction and is of the same 
order as the band gap. Strictly speaking, in these conditions 
we cannot employ perturbation theory techniques and write 
the energy of the interaction between the nearest Ta ions as 
t i d n ~ ( ~ d - ~ p )  (here we have used the pdn-interaction inte- 
gral, since the ground state of V: is built from n orbitals718). 
Note that Harrisson's parametrization gives'2 Vpdn= 1.44 
eV, while the denominator ed-cp is of order 3.5-5.5 eV 
(depending on whether energy is measured to the bottom of 
the conduction T-band or to the middle of the band). On the 
basis of these data it can easily be concluded that the effec- 
tive interaction between the Ta ions in the Ta-0-'Ta chain is 
a quantity on the order of several tenths of an electron-volt. 
However, this estimate, as noted earlier, is not rigorous and 
does not permit an estimate of the interaction of the two Ta 
ions nearest to Vo. 

Below we suggest a rigorous solution of this problem 
based on a realistic description of the electron band structure 
in a perfect perovskite lattice and on the full knowledge of 
the local state of the defect. The method does not use pertur- 
bation theory techniques. To this end we employed the 
method of Green's functions, which makes it possible to ana- 
lytically sum the interactions over the entire lattice surround- 
ing the defect. The results of this section are very general in 
nature, are not linked to a specific representative of the huge 
collection of oxides belonging to the perovskite family, and 
are valid even for the broader class of ion-covalent crystals. 

Thus, if the lattice of an ion-covalent crystal contains a 
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point defect with which a local one-electron state is associ- 
ated, the contribution of this state to the covalent component 
of the energy can be calculated by the formula 

where fn i  are the amplitudes of the one-electron wave func- 
tions of the local state at the ith atom of the nth cell, and 
tni,mj is the hopping integral. The amplitudes fni satisfy the 
following equation: 

where V m j  and gniVmj are the matrices of the perturbation 
potential and the Green's function of a perfect crystal (which 
were defined earlier), and E is the energy of the local level 
specified by Eq. (1). 

Plugging (44) into (43) yields 

where 

. . 
EE:fJ=fniVni C C gni,ps(~)tps,uwguw,mj(E)Vmjfmj. 

ps uw 

(46) 
The diagonal elements E;:,"' can be interpreted as the self- 
energy of the impurity at the nth site (here we are dealing 
with the covalent contribution to the energy caused by the 
electron bounded to the vacancy), while the off-diagonal can 
be interpreted as the impurity interaction energy. 

To find the lattice sums in (46) we do the following. We 
write the equations determining the Green's functions of a 
perfect crystal: 

where j  is the identity matrix, i 0 = e d j  at Ta ions, and 
i0= c p j  at oxygen ions. We solve (47) for i g  and multiply 
the result by i from the left. The result is 

Below we use the special properties of the Green's functions 
in crystals with a chemical bond of an intermediate nature 
and show that when two Ta ions interact, 

We plug (49) into (48) and the result into (46). After sum- 
mation over the entire crystal lattice we get 

. . 
E;;fJ= - fniVni  

This formula is true for the interaction of two Ta ions and for 
the Ta-0 interaction. The amplitude f,,i can be found by 
solving the system of equations 

together with the normalization condition 

The latter, after we have used Eq. (51) and the formula for 
summing Green's functions 

can be written as 

This notation is more convenient since it includes only the 
amplitudes fni  of the sites that are closest to the defect at 
which the perturbation potential is finite. 

Note that Eq. (53) can easily be obtained if we write the 
Green's function in the form 

where r is the number of the band, and k is the wave vector. 
Then 

As Eq. (50) shows, we were able to express the impurity 
interaction energy caused by the covalent component of the 
bond in terms of the corresponding off-diagonal matrix ele- 
ment of the Green's function and its derivative. In this for- 
mula we did not employ the cluster approximation, i.e., the 
entire crystal is taken into account. The formula has been 
derived with full allowance for the electron band structure 
both in a perfect crystal and in a crystal with defects. It 
allows for the decay of the wave function of the defect as the 
distance to the defect increases and does not use any 
perturbation-theory techniques to calculate the covalent com- 
ponent of the energy, unlike the case of crystals with a weak 
covalent bond. Calculations of the case we are interested in 
are done in Sec. 7. 

7. THE GREEN'S FUNCTION OF A PERFECT LATTICE OF 
OXIDES OF THE PEROVSKITE FAMILY 

Calculating the desired quantity requires knowing the 
electron Green's functions. To this end we use the theory of 
alternant structures, which originated in the work of Coulson 
and ~ o n ~ u e t - ~ i ~ ~ i n s ~ ~  devoted to alternant hydrocarbons. 
Later the theory was reformulated by Rebane for disordered 
crystals of the AnBm type.23 For oxides of the perovskite 
family the theory was developed in the works of the present 
author (see the review in Ref. 24) and later was used for 
calculating the optical, electric, and magnetic properties of 
perfect crystals and for calculating the electronic structure of 
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point and extended  defect^.^^-'^ In the present paper we ap- 
ply the theory to calculate the covalent component of the 
impurity interaction energy. 

Equation (55) indicates that to calculate the electron 
Green's functions we must know the electron dispersion 
laws, E Jk), and the state vectors I rkni). The electronic 
structure of oxides of the perovskite family has been thor- 
oughly studied by different variants of the density functional 
method (see a review in Ref. 12). The results of these studies 
show that the dispersion in the bands is caused primarily by 
the nearest-neighbors interaction in the lattice (below for the 
sake of definiteness we speak of Ta and O),  and in this ap- 
proximation the Hamiltonian matrix can be factorized into 
submatrices of the n-- and a-type. Accordingly, the matrix of 
the Green's functions is also factorizable. The band pattern 
here is as follows. The lower conduction band is built from 
orbitals of the n--type, and its bottom is 3.5 eV above the 
valence band. The bottom of the conduction a-band is 3.5 
eV higher. When an oxygen vacancy is formed, the local 
level splits from the bottom of the conduction n--band. This 
state is built from n--type 

In Ref. 29 it was found that the dispersion laws and the 
densities of the electron states in the n--band are perfectly 
approximated in the Koster-Slater model (the tight-binding 
approximation) if the basis consists of only the dn--orbitals 
of Ta and the pn--orbitals of the oxygen ion. With allowance 
for the nearest-neighbors interaction we have 

where the Tij are the off-diagonal matrix elements of the 
secular equation of the tight-binding approximation. Since 
one dn--orbital can interact with two pn--orbitals of the cell, 
one of the solutions of the system (57), corresponding to the 
energy E = E, , describes a bonding p n--state. The other two 
states can easily be obtained after eliminating the vector 
Cpi from (57): 

Let us denote the Xth eigenvalue of the matrix TT* by 
uX=uA(k). Then the system of equations (59) has a solution 
if 

This means that 

E ~ J ~ ) = E O +  w, 
where v =  2 1 ,  and vo and A are, respectively, the half-sum 
and half-difference of the energies E,, and E, . In Ref. 29 it 
was demonstrated that the function (61) accurately approxi- 
mates the dispersion curves obtained by the density func- 
tional method. A parametrization based on this fact is given 
in Ref. 12. 

Using the above tight-binding approximation, we can 
obtain the electron Green's functions. Before we do this, 
however, we note that the conditions for the normalization of 
the state vectors and Eq. (58) imply that for the bands (61) 
the following relationship is valid: 

Combining this with (61) yields 

Now we can easily see that after the state vectors and the 
dispersion laws (61) and (63) are plugged into the expression 
(55) for the Green's function and summation over T is com- 
pleted, we have 

where gd and g, are the diagonal elements of the Green's 
function. The additional term in Eq. (65) is due to the con- 
tribution of the nonbonding states: 

This function can be expressed in terms of a universal func- 
tion that allows reducing the multiband problem to the 
single-band problem: 

where 

Here wA(k)= v ~ ( ~ ) I ~ v ; ~ , .  
Up to this point the results were of a general nature and 

remain valid for all alternant lattices in which the electron 
states are described by Eqs. (57). To calculate the universal 
function f(e) in KTa03 we specify the form of v(k) for 
n - - b a n d ~ : ~ ~  

where a is the lattice constant, and a P = x y , x z , y z .  In (69) 
we transform the sum over k  into an integral over a Brillouin 
zone. The integral with respect k ,  can easily be evaluated by 
the theory of residues, and the integral with respect to k ,  can 
be reduced to an elliptic integral. The final result is 
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where x =  1 - e .  and 

is the complete elliptic integral of the first kind. 
Earlier we obtained expressions for calculating the diag- 

onal elements of the Green's function. The off-diagonal ele- 
ment can be found in similar way, but in cases Eq. (47) can 
be used to reduce them to diagonal elements. Indeed, among 
other things, Eq. (47) implies that 

where the numbers 1 and 2 stand for the Ta ions that are 
closest to each other, and 0 stands for the oxygen site posi- 
tions between these ions. The above formulas can easily be 
used to find the off-diagonal matrix elements of the Green's 
function that relate the closest Ta and 0 ions and the closest 
Ta ions: 

We see that the Green's functions of the electrons in the 
perfect perovskite lattice can be obtained if only two param- 
eters of the theory are known, A and V p d n .  Twice the value 
of the first parameter gives the forbidden gap and hence can 
be found from experiments. The value of the second param- 
eter fixes the dispersion in the v-bands of allowed states and 
can be deduced by approximating the results of band calcu- 
lations done by the density functional method.12 

Within this scheme we estimated the effective interac- 
tion of two Ta ions near an oxygen vacancy in KTa03. With 
0.35 eV for the characteristic energy of the local level8 we 
found that 

The resulting value of the energy E::" of the effective inter- 
action was found to be - 0.09 eV. Clearly, the increase in the 
covalent energy caused by lowering the defect symmetry 
cannot balance the relatively larger decrease in the polariza- 
tion energy. Thus, the results of the calculations suggest that 
our model is valid. 

In conclusion we prove the validity of Eq. (49) used in 
our calculations. We plug formula (SS), which determines 
the one-particle Green's function, into the initial expression: 

Here in the lattice sum we have separated summation over 
the transition elements from summation over the oxygen 
sites. By employing (63) we can simplify the result, leaving 
only the terms with K =  7. This yields 

The first sum is only over the bands of bonding and anti- 
bonding states (61), while the second is over the bands of 
nonbonding states. If we need only the projection of this 
expression on the d-states, then the sum over the nonbonding 
2p-states vanishes and we are left with (49). 

8. DISCUSSION AND CONCLUSION 

This paper has presented a systematic study of the pos- 
sibility of the symmetry of the one-electron wave function 
near V: in KTa03 breaking because of the interaction of the 
electron and the lattice polarization. In agreement with the 
experimental data we found that the lattice polarization can 
lower the energy of the asymmetric electron state so that the 
electron will stay in such a metastable state for a long time. 
In time the electron will hop to a similar state with an oppo- 
site orientation of the dipole moment vector. 

The relative ease with which repolarization occurs ex- 
plains the results of experiments on the variation of the width 
of EPR lines in external fields. Previously the results of these 
experiments seemed to suggest that V: plays no role in 
forming dipole centers, since the time it takes to reorientate a 
complex containing Vo seemed to be too great, especially at 
low temperatures. It is now clear, however, that the reorien- 
tation of the dipole moment is related not to oxygen diffu- 
sion but to electron transfer between the Ta5+ v0Ta4+ and 
T a 4 + v o ~ a S +  states. This requires less energy and consider- 
ably smaller time intervals. 

We have also established that the asymptotic behavior of 
the electric fields generated by the microscopic charged im- 
purities differs from the field specified by the Coulomb for- 
mula written for a uniform polarized medium. Modifications 
of this formula lead to new results in the continuum approxi- 
mation. Within this approach we found that at large values of 
E the symmetric defect state is energetically preferable, 
while if the difference between the local field and the mean 
field are taken into account, the dipole state of V: is prefer- 
able. The correct asymptotic behavior of the electric field for 
a simple cubic lattice agrees with the data of other 
researchers?-] 

In the present work we suggested a new method for cal- 
culating the lattice polarization energy that combines all the 
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merits of the Mott-Littleton model but allows for the correct 
asymptotic behavior of the electric fields. This asymptotic 
form assumes that at large distances the electric field of the 
microscopic impurities is much stronger than is usually as- 
sumed in the continuum approximation, which facilitates the 
formation of polar regions in polar lattices. Such a situation 
occurs in the KTa03:Li system,I6 where a small admixture of 
Li leads to a ferroelectric state. The sharp rise in the field 
strength of microscopic impurities in ferroelectric materials 
can also explain the existence of currents that are even in the 
field. Such currents manifest themselves in the familiar an- 
isotropic scattering of thermal electrons by impurities. Previ- 
ously it was assumed that because of E in the denominator of 
the Coulomb formula, dipole moments could not effectively 
scatter thermal electrons. The effective increase in the impu- 
rity dipole moment by a factor of y ( ~ + 2 ) / 3  for large e 
makes the impurity potential virtually independent of E .  

Thus, in calculation, not only of the polarization energy but 
also of the probability of the scattering of electrons by im- 
purities, one must take into account the correct asymptotic 
behavior of the electric fields and potentials of microscopic 
impurities. 

We were also able to obtain a compact expression con- 
venient for estimates that makes it possible to calculate the 
covalent contribution of the impurity to the total energy of a 
defect. This proved possible because of the special properties 
of the band structure of crystals with a chemical bond of 
intermediate nature. In this crystal the dispersion in the 
bands of allowed states results from the covalent bond be- 
tween the transition element and oxygen. Here the direct 
covalent interaction between the transition elements can be 
ignored. It appears that in this case, as in the case of alternant 
hydrocarbons, the electron states are described by simple 
analytic functions, just as they are in the two-level model. 
The square of the effective hopping integral (dependent on 
the wave vector in the Brillouin zone) can easily be found as 
the eigenvalue of the operator T + T  (see Ref. 23). In view of 
this the electron Green's functions also have a fairly simple 
form, and calculating them is reduced to calculating univer- 
sal functions in the single-band model. Using these simpli- 
fying assumptions, we estimated the covalent contribution to 
the energy of an electron on V: and found that it is much 
lower than the polarization energy. This suggests that the 
state of V: with broken symmetry has a lower energy than 
the symmetric state. 

Note that the very existence of V: in a crystal serves as 
an indication of a fine balance between donors and acceptors. 
At first glance such a state is difficult to attain and easy to 
lose. But earlier experimental work on reduced oxides of the 
perovskite family3.4 has shown that such a state can be reli- 
ably observed. More than that, often it difficult to take the 
crystal out of such a state (say, to transform it to a state of 
the p-type). We believe that there are mechanisms for com- 
pensating the resulting perturbations based on the relative 
ease with which oxygen vacancies can be created. 

The ground state of V: can be destroyed by means other 
than changing the relative concentration of donors and ac- 
ceptors. A rise in temperature may thermally excite an elec- 
tron in V: into the conduction state. The traps can be de- 

stroyed by flooding the crystal with light. It is interesting that 
notwithstanding the relatively low thermal activation energy 
(-0.2 eV), the peak in the spectrum of optical excitation of 
V: lies in the range of highly excited states with 
no= 1.5-2.0 eV (see Ref. 7). 

A final remark is in order. The symmetry of the one- 
electron wave function near an oxygen vacancy can be bro- 
ken not only because of the interaction between the electron 
and the polarization but also because of the Jahn-Teller ef- 
fect. For instance, the electrostatic interaction of a V: elec- 
tron with the valence electrons of the crystal in the event of 
a strong Hubbard interaction on the site of the transition 
elements also facilitates preferential electron localization on 
one of the cations closest to Vo (see Refs. 13 and 14). But 
one must bear in mind that the interaction with the polariza- 
tion in virtual ferroelectric materials is a much more power- 
ful factor. The displacement of the cations closest to V: is 
also asymmetric and facilitates electron localization, but we 
believe that this factor is of secondary importance. 
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