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This paper describes the results of an investigation of anomalous diffusion in critical structures at
order—chaos and chaos—chaos boundaries, involving both numerical experiments and

theoretical analysis. In the first case the critical exponent ¢, which determines the rate of
anomalous diffusion through the expression D o« P, is measured yielding the result cp,~1/3. A
value of the correlation exponent ¢,=1/2 is also found which is in complete agreement

with the predictions of the resonance theory of critical phenomena in dynamical systems. The
most important result of the paper is a confirmation of the central assumption of this

theory, namely that there exists a supercritical local order parameter in the vicinity of the boundary
on the side where the motion has a chaotic component. © 1996 American Institute of

Physics. [S1063-7761(96)00310-1]

1. INTRODUCTION

The microtron was the first cyclic accelerator of relativ-
istic particles invented by Veksler.! The dynamical behavior
of the microtron energy is approximately given by the simple
mapping x,p—Xx, p over one period of rotation of an elec-
tron in the magnetic field:

p=p+Ksinx, x=x+p. (1)

Here x is the phase of the accelerating voltage with ampli-
tude V, and frequency (); the canonically conjugate action p
and the single parameter K of the model are related to the
energy of an electron E and wg, the maximum Larmor fre-
quency, by the following expressions (in a system of units
where e=m=c=1):

2TEQ 27V,
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The dynamics of the microtron model (1) was studied in
Refs. 1 and 2 and by many other authors (see, e.g., Ref. 3).
In all these papers, the main focus of attention was on regular
acceleration (for which |p|et holds, where ¢ is the number of
iterations of the mapping (1)), which corresponds to (neutral)
stability of the dynamics of the phase x (i.e., nondecaying
oscillations). This microtron acceleration regime is possible
only for special values of the parameter K=K,~2mn,
where n#0 is any whole number. The region of stability in
xp phase space is very small, and decreases rapidly with
n—even for the fundamental microtron regime |n|=1 this
region occupies less than 1% of the phase space. What hap-
pens for the other initial conditions?

Strange as it may seem, many years passed before this
question was answered, and only after the simplicity of the
Veksler model (1) made it one of the basic models for ad-
dressing general questions about nonlinear dynamics and
chaos (see, e.g., Refs. 4 and 5). This model is also called the
standard mapping, since many other physical problems re-
duce approximately to it.

It turns out that for K>1 the dynamics is that of un-
bounded diffusion (|p|ec\/f) over a considerable portion of
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the phase space; as K increases, the region of unbounded
diffusion extends over practically the entire plane. In this
limit, the microtron is converted to a ‘‘stochastron,’”’ a term
introduced by Burshtein et al.® They proposed to create dif-
fusive acceleration by feeding a noise voltage to the system.
This goal can also be accomplished by simply changing the
initial conditions (slightly) and/or the parameter K (over
wide limits).” To this author’s knowledge, neither of these
assertions has been proven or even demonstrated experimen-
tally, although in one mode of operation (without microtron
regimes), the stellarator® uses dynamic chaos to preheat plas-
mas.

The dynamics of the ‘‘simple’” model (1), which turns
out to be very rich, has been (and continues to be) studied
intensively, both theoretically and by numerical experiments.
These studies have revealed that the statistical properties of
the motion, especially diffusion, can be very unusual, or
‘‘anomalous’’ (see, e.g., Ref. 9). It turns out that this behav-
ior is associated with the phase-space boundary with chaos,
in the neighborhood of which the motion develops a very
complex hierarchical structure. Although this structure itself
has been studied in great detail,”' its influence on the sta-
tistical properties of the motion still remains unclear for the
most part.”!! It is this problem that is the subject of the
present paper.

2. ISLANDS OF STABILITY

The main regions (‘‘islands’’) of the phase plane where
the acceleration predicted by model (1) is regular form
around the fixed points (periodic solutions) p =0 mod 2,
x=*x,, where

K sin xo=2mn, K2?=s2+(2mn)?, s=K cos xq,

—4<5<0. 3)

The inequalities determine the region of stability of the fixed
points. In what follows we set s =—2 (the center of stability).
For each value of |n| there are two islands per 271X 27 phase
space cell. All the islands are similar in the dimensionless
variables
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FIG. 1. Universal boundary of the microtron regions in dimensionless vari-
ables (4): n=2-20000; the duration of the motion for each n equals 3000
iterations of the mapping (1). The region inside the boundary corresponds to
regular motion, while outside it the motion is chaotic. Near the fixed point
x;=p,=0 the frequency of small oscillations w,=7/2, while at the bound-
ary w,=2mr, (6).

Kx,~0.99, Ps=£, Kp,~2.49. (4)
Py

Figure 1 shows the boundaries of five islands for n=2, 20,

200, 2000, 20000. The region of regular motion lies within a

boundary of this kind, and the relative area of an island A is

given by the expression

AK?*~0.17. (5)

It is noteworthy that the maximum area AK 2~0.19 is
achieved for a stability parameter s~—1.92. All the similar-
ity relations (3)—(5) are obtained from theory,**!! but their
numerical coefficients are empirical. The boundary of an is-
land of stability defines a transition from chaos to order. This
boundary is robust, i.e., it is not destroyed by small changes
in the single model parameter K, which is also the order
parameter. This follows, in particular, from Eq. (3).

A peculiarity of this model is that although the dimen-
sions of the chaos boundary and the region of regular motion
are extremely small, they nevertheless can significantly alter
the statistical properties of the chaotic component of the mo-

S(v)/S(0)

tion. The explanation for this is that the chaotic trajectories
“‘get stuck’’ in the complicated critical structure along the
chaos boundary.>!! This structure is entirely determined by
the number of the rotation at the boundary

r=r,=0.23889...=[4,52,1,1,1,2,...], (6)

which is also independent of n. The last expression (6) gives
a representation of r in the form of a continued fraction (the
consecutive elements of the fraction are given in the brack-
ets). Since the rotation number r=w/27 is the ratio of the
frequency of oscillation to the perturbation frequency (27),
this representation reveals the basic nonlinear resonances
near the boundary, which also determine the critical struc-
ture, in a most natural way. These resonances correspond to
the convergent sequence of rationals r,=p,/q,—r as
m—o. Each of the denominators ¢, equals the period of
motion of a particular resonance.

A clear picture of the critical structure, which also de-
scribes its renormalization group, can be obtained from the
spectrum of motion at the boundary, an example of which is
shown in Fig. 2a. The spectrum S(») is obtained from the
radial oscillations p(t) (where p2=xf+ p2) perpendicular to
the chaos boundary. A characteristic feature of the spectrum
is the irregularity of the fundamental peaks, which are la-
beled by integers m. The periods of the corresponding reso-
nances are q,=4, 17, 21, 38, 59, 97, 350, 447,:--, for
m=1,2,3,4,5,6,7,8,--- . This picture, which is typical of a
critical structure, is described by the chaotic renormalization
group.!! It implies that the change in the structure of the
motion in going from one scale to the next is irregular in
character, and must itself be described statistically (the dot-
ted line in Fig. 2a). The odd resonances (m=1,3,5,7,...) lie
within the stable region (inside the chaos boundary), whereas
the even resonances envelope the boundary, i.e., they are in
the chaotic component of the motion.

For comparison, Fig. 2b shows the special case of exact
similarity'® (the fixed point of the renormalization group),
where the transition from scale to scale is regular. It is curi-
ous that exact similarity includes both regular and chaotic
components of the motion (paths). The motion in both cases
is almost periodic (with a discrete spectrum); the finite width

S(v)/S(0)

FIG. 2. Example of the spectrum of motion at the chaos boundary: the frequency is » (mod 1), S(v)/S(0) is the relative magnitude of the Fourier amplitude;
the total duration of the motions T=65536 iterations. a) Statistical similarity (chaotic renormalization group) at the robust order-chaos boundary: n=1;
r,=0.23713 (the peak labelled r,), which differs somewhat from the asymptotic value (6). The numbers on the curve are the labels m of the fundamental
resonances, while the dotted line is the theory (8). b) Exact similarity (fixed point of the renormalization group) at the nonrobust chaos- chaos boundary for

the special point r,=(3—\5)2=[2,1,1,1,...] and K=0.9716.
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of the peaks Ay~1/T is determined by the total duration of
the motion T.

3. CRITICAL STRUCTURE AND ANOMALOUS DIFFUSION

The main level of the critical structure is determined by
a sequence of fundamental nonlinear resonances, each of
which consists of a comb of g, stable regions around the
trajectory of period g, , surrounded by a rather thick chaotic
layer (for a detailed discussion, see, e.g., Refs. 9-11). The
comb runs along the chaos boundary; its transverse size p,,
and area A,, are given by the estimate

A(K)

Am~_q—2—°cpm°csm’ ™
where A(K) is the total area of the island (5) and S,,=S(v,,)
is the amplitude of transverse oscillations (wiggling) of the
chaos boundary at a frequency v,,=q,,|7,— 7|~ 1/q,, . This
implies the following global shape of the spectrum, shown in
Fig. 2 by a dotted line:

S,,,~an. 8)

Of course, for the case of renormalized chaos (Fig. 2a) this
simple dependence expresses only the average behavior of
the structure, on which are imposed the strong fluctuations
that are general characteristics of critical phenomena.

The rate of diffusion is determined by the statistics of the
““sticking’” time ¢,, at the corresponding scale m. After av-
eraging over time or over initial conditions (ergodicity), and
under the assumption of statistical independence of the vari-
ous sticking events, we have

K2
((Ap)2>~§m: (Ap),anK2§ Nt = Co(K)t. (9)

Here N, (t) is the number of times the trajectory arrives at
scale m within the full duration of the motion ¢; the last term
describes ordinary diffusion (with an additional coefficient
Co(K)~1 due to close correlations), which occupies the
overwhelming portion of the time due to the smallness of the
regular region in the problem under discussion. In turn, the
number of arrivals is given by

N,=tP,, P,~AILF, (10)

where P,,=P(t,,) is the distribution of Poincaré returns, i.e.,
the distribution over time of delays during reflection (scatter-
ing) from the chaos boundary. This statistic is characterized
by a critical exponent cp . From the ergodicity of the motion
it follows that

trN A A
=thm=Am~—2—~tTA. (11)
m m

The function A,,=A(t,,) plays the role of the correlation of
sticking events; from the last estimate above (similarity) we
have cp=c4+ 1. This implies an asymptotic average rate of
diffusion
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t

— 2 2.1-c¢
D(1)= —K %‘, tmAn~AK* A

~AK?(At)°p. (12)
where the critical exponent of the diffusion equals

l_CA
CD—1+CA,

(13)

and the maximum sticking time f,, is determined from the
condition

At cp
N,,,(tmax)~’7p—~1, =] ~—=<I. (14)

max

The sum in (12) reduces approximately to the largest term
t,,= tmax » Decause all the quantities that describe of the criti-
cal structure depend exponentially on the scale label m (a
geometric progression). Of course, this is true only for
c4<1. In the opposite case the rate of diffusion does not
depend on time, i.e., it is normal.

The theory of critical exponents at the chaos boundary
turns out to be far from trivial. In order to calculate these
exponents, it is necessary to estimate the quantity ¢,,(q,,). At
first glance, it is natural to assume f,,~gq,, i.e., that the
(un)sticking time is the same order as the characteristic time
for this scale.!? However, it is immediately clear from (7)
and (14) that this would imply ¢, =2, together with ¢p=3,
which is completely inconsistent with the reliably measured
value of the exponent c,p~1.5.9'“'13'14 In addition to this
quantitative discrepancy, this assumption would imply a
qualitatively different kind of diffusion,'' i.e., one that is
normal in spite of the sticking of trajectories.

This qualitative effect is particularly important for evalu-
ating the elaborations of the work of Ref. 12 presented in
Ref. 15. In this approach, attention is focused primarily on
the interior of the chaos boundary, which also has a hierar-
chical structure (‘‘resonances around resonances;’’ see also
Refs. 16 and 17). A value of the critical exponent cp can be
successfully obtained using this method that is very close to
the empirical value cPNZ;15 this value still excludes anoma-
lous diffusion. Meanwhile, it was shown in Ref. 9 that for
¢p<2 the contribution of the interior of the chaos boundary
generally has no effect on the critical exponents.

Nevertheless, it should be noted that the scale ¢,,~q,,
has a definite physical meaning, not only dynamically (the
period of the fundamental resonance) but also statistically, in
that it determines the rate of local diffusion D,~gq,,*/q,,
=g, perpendicular to the chaos boundary.'® This type of
diffusion has actually been observed recently;16 however, it
is bounded and leads only to establishment of local statistical
equilibrium without any movement to neighboring scales.

In order to resolve this contradiction, the authors of Ref.
11 advanced the hypothesis that at the critical point we have
t,=%, i.e., all scales of the critical structure are dynamically
isolated and separated by their chaotic boundaries, which are
invariant curves. In view of the hierarchical nature of the
critical structure, the latter form an everywhere-dense set.
According to this hypothesis, finite values of ¢, are ex-
plained by the departure of the local order parameter near the
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FIG. 3. Anomalous diffusion for model (1) in the microtron regime (3): the
broken curves are numerical data for n=1, 2, 5 and a control count with
K =2 (see text); the horizontal lines show (constant) rates of normal dif-
fusion. The oblique line is the function (19) with the theoretical value
¢p=1/3 and empirical value b=11 (for n=1, M =40).

chaos boundary from its critical value at the boundary itself.
In this case, from one side of the boundary the structure
becomes subcritical, which ensures regular motion for the
majority of initial conditions, whereas from the opposite side
supercritical structure arises with a finite sticking time. Un-
der the assumption that the local order parameter depends
linearly on the distance to the chaos boundary, we obtain the
estimate

tn~q., cp=2c,. (15)

Depending on the details of the critical structure, ¢,=7 (Ref.
11) or ¢,=4 (Ref. 9), and accordingly c¢,=2/7 or c,=1/2.
The latter value is considered to be more precise (see the
discussion in Ref. 9).

In both cases we have ¢, <1, which leads to anomalous
(accelerated) diffusion (c,>0). In point of fact, the first nu-
merical experiments'! have already confirmed the existence
of anomalous diffusion at the chaos boundary, and conse-
quently disprove both the initial assertion c,=1 of Ref. 12
and its further elaboration in Ref. 15. This type of diffusion
has been investigated in many subsequent papers (see, e.g.,
Refs. 17, 19, and 20).

Note that while there are many general studies of
anomalous diffusion, both accelerated (cp>0) and retarded
(cp<0), that predate the present paper (see, e.g., Ref. 21),
the topic of interest here is diffusion connected with the spe-
cific critical structure at the chaos boundary.

4. NUMERICAL EXPERIMENTS

A fundamental problem with the empirical study of
anomalous diffusion in this model arises from large fluctua-
tions. The latter are, in turn, explained by the fact that the
main contribution to the diffusion (for a given segment of
time) comes from the single sticking event with ¢, =t .
For this reason, fluctuations grow with time (Fig. 3). In order
to suppress them a doubled average is used: first average
D(t) over M =40 independent trajectories, and then average
the critical exponent ¢p(t) over four groups of trajectories,
also independent.

The basic results of the numerical experiments are
shown in Fig. 3 for n=1, K,=6.5938:-, Dy=C,K?/2~39;
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n=2, K,=12.72---, Dy=121; and n=5, Ks=31.47.
D y=~644. For comparison the case of normal diffusion with
Ko=2r is also shown. In this case the stable region is com-
pletely disrupted (see (3)), and despite the insignificant
change in K (K,/K,—1~0.05), the diffusion remains normal
for all choices t<5-10" of the number of iterations of the
mapping (1).

The existence of anomalous diffusion is not in doubt.
With regard to measurement of the critical exponent cp,
matters are more complicated due to the strong fluctuations
mentioned above. Figure 3 clearly shows the ‘‘Levy
jumps”’ 2! associated with sticking of the trajectories at the
chaos boundary. It is interesting that the steepness of these
Jjumps is distinctly asymmetric—a peculiarity whose mecha-
nism is not fully clear. The asymptotic regime of anomalous
diffusion is reached after a certain time that increases with
the size of the islands. Plots of the asymptotic function D(?)
(t>t,) on a log-log scale can be fitted by the linear expres-
sion (see (12)):

In D(t)=cp In t+In B. (16)

As a result, the following values are obtained:

n=1, ¢p=0.29-037, B=4.4—13,
1,=5-10-10°, n=2, ¢p=0.34—0.39,
B=22-09, t,=5-10*-5-10°. (17)

The minimum value ¢, used in the fit is determined by pass-
ing to the asymptotic regime, while the maximum is bounded
by the large jumps in D(¢) (see Fig. 3). Although anomalous
diffusion is clearly evident even for n=>5, practical counting
times turn out to be insufficient to reach the asymptotic re-
gime, at least for an accurate measurement of c, . The values
of ¢, obtained for n=1,2 in (17) are in good agreement with
each other and with the theoretical value c¢,=1/3, which is
used to plot the straight line shown in Fig. 3. According to
(12), the second fitting parameter B can be represented in the
form

) 0.076M ">
B,=bA,K (A,M)P~ — A= fMA,, (18)
where A, now denotes the total area of the two islands of
stability for a given n, and b,f are certain constants. The
dependence on the number of trajectories M arises from the
fact that for anomalous diffusion it is sufficient that any one
of the trajectories stick, provided that the last inequality (18)
holds. In the opposite case, we have t,,~t and cp~c,~1/2.
In this case, it is ¢ that enters into the inequality and not M¢,
since the trajectories are independent. The last expression for
B, in (18) was obtained by taking (5) into account and using
the value ¢, =1/3. For M =40 the values (17) imply b~11
(n=1, B~2.8) and b~10 (n=2, B~1.5). The final expres-
sion for the coefficient of anomalous diffusion is the follow-
ing:

D ,(t)~0.76(Mt/n*)'3, (19)

which is plotted in Fig. 3 (the oblique straight line) for n=1.
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Let us now compare these results with known data. First
of all, the rather large theoretical value c¢,=1/2 given in Ref.
22 is explained by the simplifying assumption #,,,,,~t (com-
pare (14)) adopted in Ref. 22 and taken from Refs. 9 and 11.
This assumption is valid only when inequality (18) is vio-
lated, in particular, for very large M and small ¢ (see below).

Anomalous diffusion at a chaos boundary was probably
first observed in the numerical experiments of Ref. 23 for
exactly this model with n=1. However, the rate of diffusion
was given only for the maximum counting time = 108, For
some reason, the authors of Ref. 23 were unable to observe
anomalous diffusion for n=2, although for r=108 its rate is
the same as for n=1, which is still much larger than the
normal rate: D/D~17.3 (see (19) for M =64 and Fig. 3). For
n=1, the ratio D/Dy=~27 found in Ref. 23 is in satisfactory
agreement with the average D/Dy~36 of (19), taking into
account the large fluctuations also noted in Ref. 23.

In Ref. 20 data were presented on anomalous diffusion
for the same model, but over a very short time interval
t<2000 and for a somewhat different value of K=6.9115,
for which the area of the stable region is decreased by a
factor of 5. The critical exponent was taken to equal c¢,=1/3;
however, the accuracy of this value is unknown, primarily
due to the smallness of ¢. For the maximum counting time
we have D~160, whereas the theoretical value (19), taking
into account the small area of the islands (see (18)) is D=~60.
The difference is probably related not so much to fluctua-
tions as to the change in the shape of the islands of stability,
and accordingly the rotation number at the boundary with
chaos. It is interesting to note that an enormous number of
trajectories M =10 was used in this paper to calculate the
distribution function for anomalous diffusion (see also Ref.
17). Therefore, these results also provide indirect confirma-
tion of the dependence of the average rate of diffusion on M
(19), which at first glance is strange. Without this factor, the
rate would fall by almost a factor of 50! More detailed analy-
sis of the data of Ref. 20, which was verified by additional
numerical experiments, shows that for t~100 a transition
occurs from ¢,~0.5 to ¢p=~0.3, most likely related to vio-
lation of the inequality (18). From this follows the estimate
f~0.05.

Similar results are also obtained from the different
(continuous-time) model of Ref. 17, with M=3600 and a
maximum ¢~10° (in comparable units). In particular, the
critical exponent c¢;~0.38~1/3 remains roughly the same
despite the completely different global structure of the mo-
tion. This provides additional confirmation of the universal-
ity of the critical structure at the chaos boundary. Note that
in this model the decrease of ¢ at counting times around
t~10* is even more obvious (see Fig. 7 in Ref. 20) and
corresponds to roughly the same value of f for A~1.

Thus, the existence of anomalous diffusion due to the
critical structure at the chaos boundary can be regarded as
firmly established. However, at this time both the demonstra-
tion of existence of anomalous diffusion itself (i.e., c;,>0)
and the approximate computation of the critical exponents
are possible only within the resonance theory of critical
structure of chaos, with the additional hypothesis of the dy-
namic separation of scales.”!! This important hypothesis can
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FIG. 4. Phase portrait of model (1) for the critical value K=0.9716... . The
arrows show the two chaos—chaos boundaries that separate the chaotic com-
ponents. Motion in each of these regions is represented by a single trajectory
using r=10’ iterations with step size Ar=2000 and 5000.

be verified further, at least qualitatively, by using a different
model with a chaos—chaos boundary.

5. STATISTICAL PROPERTIES OF MOTION AT A
CHAOS-CHAOS BOUNDARY

In contrast to the better-known and more robust order-
chaos boundary, which is preserved over a relatively wide
range of variation of the order parameter (K in our model),
the chaos—chaos boundary is not robust, i.e., it is destroyed
by any deviation from the critical value K=0.9716---.1° Fig-
ure 4 shows a phase portrait of the model (1) for this case.
The critical invariant curves shown by arrows are absolute
barriers to the motion; however, chaotic trajectories can ap-
proach arbitrarily closely to them from both sides. Because
the local order parameter is now supercritical on both sides
of the boundary, its decrease as the boundary is approached
becomes at least quadratic; of course, the supercriticality rap-
idly decreases while the sticking time grows rapidly. This in
turn leads to a decrease in the critical correlation exponent
c,—0, and causes the exponent for anomalous diffusion to
increase to its limiting value: c¢p— 1. The first confirmation
of this structure at the chaos-chaos boundary was obtained in
Ref. 11 by measuring the statistics of Poincaré returns (10):
The critical exponent cp=1+c¢4~0.975+0.013 actually
turns out to be very close to its limiting value.

Figure 5 shows the results of measurements of anoma-
lous diffusion in this case. The average rate of diffusion
along x is defined as

((Ax)?)

Dn)=———~Br*, Ax=2 [p()=p,]. (20)
Here the resonance value of the momentum p,=p,=0 dur-
ing diffusion for an integer resonance (below the lower
boundary in Fig. 4) and p,=p,= for diffusion at a half-
integer resonance (between the two boundaries).

In this case the mapping (1) corresponds to a different
physical model-the motion of particles in a multiwave field.
The variables x,p are now Cartesian, with unbounded varia-
tion of the coordinate x. This is the type of model investi-
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FIG. 5. Anomalous diffusion at a chaos-chaos boundary: model (1) with
critical value K=0.9716---, averaging over M =100 independent trajecto-
ries. The heavy curves correspond to diffusion with the limiting rate D(r) ot
(steep lines) for integer (/) and half-integer resonance (2). For comparison,
diffusion for the subcritical value K=0.9 is also shown (light curve); the
dotted line corresponds to ¢, =1/3 for diffusion at the chaos—order bound-

ary.

gated in Ref. 17 for the two-wave case. Although this case is
the simplest from a physical point of view, it turns out to be
considerably more complicated from the standpoint of nu-
merical experiments and theoretical analysis.

It is clear from Fig. 5 that the diffusion exponent c =1
actually increases rapidly and is close to its limiting value. If
the trajectories were to get stuck near the chaos boundary for
the entire duration of the motion ¢, then the coefficient in
(20) would be B;~(27r;)?%, where r;=(3—1/5)/2~0.382 is
the number of rotations at the lower chaos boundary, while
r,=0.5—r;. From this we have B,~5.8 and B,~0.55. In
fact, from the data shown in Fig. 5 it follows that B;~0.35,
B,~=~0.023, i.e., it is approximately 20 times smaller. This
is most likely connected with the relatively small size of the
intrinsically critical structure (A ~0.1; compare the parameter
f of the same order in inequality (18)). On the other hand,
this area is still considerably larger than in the microtron
model, which is probably the main reason for the consider-
able decrease in fluctuations (compare Figs. 3 and 5). In any
case, the small value of the coefficient B shows that it is
diffusion that occurs, and not regular motion along x, al-
though both mechanisms give xo¢. This is also confirmed
directly by observation outside the trajectories. In particular,
this quasiregular motion along x takes place on both sides!
For cp=~1 and c,~0, inequality (18) is already violated for
M= 1/f~10, and the rate of diffusion does not depend on M.
In both cases cp=~(1—c)/(1+c )~1—cy~1.

Thus, the diffusion limit at a chaos—chaos boundary ac-
tually confirms the hypothesis of supercriticality, which is
very important for further development of the theory of criti-
cal phenomena in dynamic systems. However, the nature of
the stable (i.e., independent of initial conditions for the tra-
jectories) anomaly for large 1=10%, demonstrated by curve I
in Fig. 5 with particular force, remains completely unclear.
Traces of this anomaly were already noted in Ref. 11, based
on the more rapid decay of the distribution function of Poin-
caré returns P(r) when r=10°. This anomaly also turns out
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to be stable and is not connected with small statistics, as
proposed in Ref. 11.

Outwardly, the anomaly in Fig. 5 appears to indicate that
the value of the parameter K=0.9716 is still subcritical
(compare the case K=0.9), or that for some reason the stick-
ing takes place away from the fundamental chaos—chaos
boundary at one of the interior chaos—order boundaries. On
the other hand, no anomalies are seen in the spectrum of
motion at the chaos—chaos boundary (Fig. 2). On the whole,
this question requires a separate investigation of its own.

6. CONCLUSION

An extensive series of numerical experiments has been
conducted in order to study critical structures at a chaos—
order boundary (Fig. 1) for the simple dynamic system (1).
The study is based on observing the very distinctive anoma-
lous diffusion (Fig. 3) caused by this structure. In particular,
accurate measurements have been made of the value of the
critical exponent cp~1/3 appearing in the expression (12)
for anomalous diffusion that is predicted by the resonance
theory of critical phenomena.”!! The investigations were
made in the special (microtron) regime (3) of model (1), at
which the chaos boundary has a very small size (Fig. 1).
Despite this, the statistical properties of all the chaotic com-
ponents of the motion were fully determined by using a suf-
ficiently large time interval. This work emphasizes the im-
portance of critical phenomena in dynamics, especially with
regard to the robustness (structural stability) of the chaos—
order boundary.

One of the main goals of this study was to confirm the
underlying hypothesis of the theory regarding the supercriti-
cal nature of the local order parameter with respect to the
chaotic component in the vicinity of the boundary. The em-
pirical value of ¢; and the value of the critical correlation
exponent at the chaos boundary c,~1/2 (see (13)) obtained
from it completely confirm this hypothesis. In view of its
importance for the theory as a whole, an additional verifica-
tion was undertaken using a different (critical) value of the
order parameter K =0.9716---, at which a (nonrobust) chaos-
chaos boundary appears in the system with a qualitatively
different structure (Figs. 1, 2, and 4). The rapid increase in
cp—1 and decrease in ¢, —0 predicted by the theory are
actually confirmed (Fig. 5). Nevertheless, a stable anomaly
was observed (also noted in Ref. 11) which is under study at
this time. It is interesting to note that in this case the rate of
(homogeneous) diffusion reaches its limiting value |Ax|oz,
i.e., the motion is similar to that of a free particle, but that it
takes place at a lower rate, and from both sides of the bound-
ary!

This work was carried out by the Russian Fund for Fun-
damental Research (Grant 95-01-010047).
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