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1. INTRODUCTION 

Two essentially different types of divergences arise in 
calculations of the matrix elements of quantum- 
electrodynamic processes. Primarily these are ultraviolet di- 
vergences originating in the high-momentum range of virtual 
particles. For the divergent expressions to acquire a formal 
meaning one is forced to introduce an ultraviolet cutoff pa- 
rameter, say, a cutoff momentum A.  Integration over the 
virtual quanta with momenta close to zero also leads to di- 
vergences if the free electron lines in the Feynman diagram 
under consideration lie on the mass surface. The common 
way to remove these infrared divergences is to introduce a 
small photon mass A. Naturally, the final result of calcula- 
tions depends neither on A nor on X ,  but the same cannot be 
said about the contributions of individual Feynman dia- 
grams. 

In view of conservation of electromagnetic current no 
physical results are changed by the following substitution of 
the photon propagator: 

where the xa are any functions of qo and q. This statement is 
true for the complete gauge-invariant set of Feynman dia- 
grams, whereas the contributions of individual diagrams are 
not invariant under substitution (1). A well-chosen gauge of 
the photon propagator may simplify the calculation of matrix 
elements considerably. For instance, at high virtual-photon 
momenta l q i l  the diagrams with several successive logarith- 
mic integrations contain in the Landau gauge' one power of 
the logarithm less than they do in the Feynman gauge. In the 
Landau gauge the mass operator and the first-order vertex 
function contain no range of integration that is logarithmic as 
1q1-+w, with the result that the one-loop renormalization 
constants Z, and Z2 are ultraviolet-finite. On the other hand, 
with infrared divergences it is convenient to use the Fried- 
Yemie gauge293 or the Coulomb gauge. In these gauges the 
radiative corrections have a softer low-energy asymptotic be- 
havior, so that we can ignore the finite photon mass A .  If 
canceling out divergent contributions is not too difficult, the 
most convenient gauge from the standpoint of calculations is 
the Feynman gauge. However, in some problems (say, in 
calculating the radiative corrections to bound states) remov- 
ing the ultraviolet and infrared divergences is not so simple. 
What would be convenient in this case is a gauge having the 

merits of both the Landau gauge and the Fried-Yennie or 
Coulomb gauge. It is also desirable that such a gauge contain 
no additional dimensional parameter hindering specific cal- 
culations. 

A gauge with such properties is presented in this paper. 
Section 2 is devoted to the derivation of the expression for 
the photon propagator. Sections 3 and 4 discuss the behavior 
of radiative corrections. Some additional properties of the 
gauge and its relation to other gauges are discussed in the 
Appendix. 

The relativistic system of units, in which fi= 1 and 
c=  1, is used throughout the paper, and all notation is 
~tandard.~ 

2. CHOICE OF PROPAGATOR 

The simplest way to find a gauge that satisfies the above 
requirements is to examine the following vertex function in 
different regimes: 

Here and in what follows we use the following notation for 
the electron denominators: 

In the case of the photon propagator of the general form 

both infrared and ultraviolet divergences are inherent in (2). 
We start by examining the terms in the integrand that are 

potentially dangerous from the standpoint of divergences in 
the infrared range. In this respect it is sufficient to know the 
vertex function at zero transfer momentum and near the mass 
surface: p ' = p = (m ,0) . Then for small q we have 
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In the Feynman gauge the tensor Gffp=gap is indepen- 
dent of the niomentum q and the analyt~c properties of the 
vertex function are determined entirely by the two denomi- 
nators in (5). When integrating in the complex go plane we 
find the integration contour squeezed between two poles, 
go= - i e  ant1 qo= - ( q ( + i e ,  which leads to a singularity. 
There are two ways of resolving this difficulty. The first 
consists in removing the pole g 2  = 0 by choosing the photon 
propagator in the Coulomb gauge Doe= - llq2. Here 
Goo=g2/q2 ;md there is no more q2=0 pole in (5). The 
other approach consists in selecting Goo(q) in such a way 
that the residue of ~ ~ / ~ i ~ ~  at the pole g 2 =  0 vanishes. The 
simplest way to do this is to put 

Knowing Goo, we can recover the spatial components of 
the tensor Gap in a purely covariant way. As a result we 
arrive at the well-known Fried-Yennie gauge: 

The first to point out the special properties of the Fried- 
Yennie gauge (7) was ~ b r i k o s o v . ~  He proved that the elec- 
tron Green's function has a simple pole at p2  = m2 only in 
the gauge (7), while in other gauges at a zero photon mass 
X the value p2=m2 corresponds to a branch point. ~ o r ' k o v ~  
showed that the appearance of an additional singularity in the 
Green's function of a charged particle when the particle in- 
teracts with an electromagnetic field is related solely to the 
classical properties of the electric current generated by the 
particle in uniform motion. In this way the result holds for 
zero-spin particles, too. The gauge (7) proved to be ex- 
tremely useful in the theory of bound states. Fried and 
yennie3 demonstrated that if the photon propagator is cho- 
sen in the form (7), the principal contribution to the Lamb 
shift is provided solely by the two diagrams corresponding to 
the first two terms in the expansion of the Coulomb Green's 
function in powers of the external field strength. Later the 
infrared properties of the Fried-Yennie gauge were repeat- 
edly used in calculations of one-loop radiative 
 correction^.^-'^ As for higher-order corrections, the Fried- 
Yennie gauge was first used to calculate the two-loop con- 
tributions (in the radiative photon) to the Lamb shift and 
hyperfine splitting of the ground state of hydrogen."-'4 The 
problem of removing the infrared divergences in the Fried- 
Yennie gauge can be approached from another angle if one 
allows for the fact that the photon propagator is transverse in 
the coordinate representation (see the Appendix). Represent- 
ing the electron propagator in the first line of Eq. (5) as 

we can write the infrared-dangerous part of the vertex func- 
tion in terms of a total derivative as follows: 

which is possible because of Eq. (A12). As a result Eq. (9) 
vanishes under integration over the surface of a hypersphere 
of infinite radius. 

The Fried-Yennie gauge (7) is not the only possible way 
of extending Eq. (6) to the spatial components. If explicit 
covariance is not required, the following choice of the propa- 
gator is possible: 

where v =  (1,O) is a unit time-like vector. 
The remaining undefined parameter 5 can be used to 

remove the ultraviolet divergences. To this end we again 
take the vertex function (2), but this time we examine its 
behavior at high momenta +m: 

This expression vanishes if 

Note that in finding the asymptotic forms (1 1) we used only 
the commutation relations for the Dirac matrices and the co- 
variance of all the denominators but not the properties of the 
wave functions or the explicit form of vector 7. The condi- 
tion (12) also follows if we examine the self-energy operator, 
but in this case it appears at a later stage due to the need to 
renormalize the mass. 

Thus, the desired gauge has the form 

(13) 
Another example of a gauge possessing enhanced infra- 

red and ultraviolet properties is 

In the limiting cases 4 p  and B,U, where p is a pa- 
rameter with dimensions of mass, the expression (14) repro- 
duces the Fried-Yennie and Landau gauges, respectively. 
The chief merit of the proposed gauge (13) is the absence of 
a dimensional parameter. The loss of explicit Lorentz- 
invariance is not so important in the case of bound states. 
More than that, in calculating the one-loop radiative correc- 
tions in Secs. 3 and 4 we will see that the vector '7 can be 
chosen in a covariant manner. 
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FIG. 1 .  The one-loop self-energy operator. 

3. THE ONE-LOOP SELF-ENERGY OPERATOR 

We start our study of radiative corrections in the gauge 
(10) by calculating the one-loop self-energy of an electron. 
The initial expression (the notation is clear from Fig. 1) is 

(15) 

The integration with respect to momentum q  is done in 
the standard way by merging the denominators via the Feyn- 
man parameter x  and by performing a Euclidean rotation of 
the integration contour. It must be noted at this point that in 
all the gauges except the Fried-Yennie gauge ([= 1)  Eq. 
(15) contains a linearly divergent part, so that the shift 
q 4 q - p x  of the integration variable results in an additive 
constant (related to the surface term) appearing in the inte- 
gral (15). This leads to the following explicit expression for 
the unrenormalized mass operator: 

where 

In deriving (16) we performed an additional integration by 
parts with respect to x  to remove logarithmic terms of the 
form In A. 

The quantity 

which diverges logarithmically as A+ m, is gauge-invariant 
and cancels out the mass counterterm in the Lagrangian. The 
Euclidean cutoff momentum A is chosen symmetric in all 
the components of momentum q ,  which is possible because 
all the denominators are covariant. 

The expression (16) simplifies considerably at two spe- 
cial values of the gauge parameter, g= 1 and [= - 1 .  

In the first case, (= 1 (the Fried-Yennie gauge) we ar- 
rive at the well-known r e s ~ l t ' ~ ~ ' ~ , ~  

where 

The last equality shows that the renormalization constant 
Z 2  in the Fried-Yennie gauge is infrared-finite but diverges 
logarithmically as the ultraviolet cutoff momentum A tends 
to infinity. 

In the case [= - 1 Eq. (16) implies that the once sub- 
tracted mass operator 

does not depend on the cutoff momentum A. At t= - 1 it is 
convenient to write Eq. (16) in the form 

This expression depends on two variables, the "virtuality" 
variable p = 1 - p 2 / m 2  and the space-like vector 

whose square is 

When the unit time-like vector 7 is selected in the form 
(1,0), - Q 2  coincides with the square of the three- 
dimensional momentum, p2, and the expression (22) can be 
interpreted as a function of the variables p and p2 or equiva- 
lently, of the variables pi and p2. However, wishing to retain 
the freedom in choosing the vector 7, below we use the 
variables p and Q 2 .  

A characteristic feature of the mass operator in the gauge 
(10) that sets the operator apart from the corresponding ex- 
pression in any covariant gauge is the presence of a term 
with an anticommutator. A similar term appears in other 
noncovariant gauges, for instance, in the Coulomb gauge,'9 
with the numerical coefficient in front of the anticommutator 
depending on the specific form of the propagator. Let us now 
examine the behavior of the mass operator (22) near the pole 
p 2 = m 2  (the virtuality variable p tends to zero in this case) 
and for an arbitrary value of momentum Q .  If we are inter- 
ested only in the terms proportional to the first power of 
i - m  - m p  , we can write (22) in the form 
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where we have introduced the following function of the vari- 
ables p  and Q': 

Here we are not interested in the explicit form of the 
function R ( p , Q 2 )  in (25).  It is enough to know that it be- 
haves no worse than In p  as p+O. 

Note the logarithmic singularity of F ( p , e 2 )  as p--to. 
Such a singularity before all term linear in (i - m )  is present 
in every gauge except the Fried-Yennie gauge, in which the 
coefficient of the logarithmic term vanishes. It would seem 
that the attempt to find a gauge combining the merits of the 
Landau and Fried-Yennie gauges has been defeated, since 
we were unable to remove the term of the form 
(i-  m)ln p in the asymptotic expression for the mass opera- 
tor. However, the infrared behavior of the mass operator im- 
proves the coefficient e 2 / m 2  of the logarithm. For instance, 
in the case of bound states, where the most important mo- 
menta are those of order of atomic momenta, the coefficient 
of In p  proves to be small, ~ ~ / r n ~ - ~ ~ / n i ~ - ( ~ a ) ~ ,  and the 
corresponding contribution to the energy coincides in order 
of magnitude with that of the term quadratic in b - m  in (25).  
On the other hand, for a number of corrections to the Lamb 
shift and the hyperfine splitting:-* the most important mo- 
menta are the high ones l p ( - - n ~ .  This makes it possible to 
ignore the binding energy and the momenta of the wave 
functions in a11 the propagators,8 as a result of which we 
arrive at the irelation e2 /nz2=  - p ,  i.e., again the contribu- 
tions of the terms with e2 and ( f i - m ) 2  are of the same 
order. Finally, by choosing the vector 77 in the form 
v = P l @  we can make e2 identically zero and, in general, 
remove the terms of the form (6-m)ln p  from the mass 
operator. 

Thus, if in a specific physical situation e2 does lead to 
an additional smallness, the worst term from the infrared 
standpoint is the term { in F ( p , e 2 )  [in the Fried-Yennie 
gauge the similar term is - $ l n ( ~ ~ / m ~ ) +  i]. The correspond- 
ing term (3cu/2m)(i  - m )  in the mass operator can lead to 
infrared divergences, but without logarithmic enhancement. 
In calculating the matrix elements it is convenient to use the 
mass operator in the form (22) with previously subtracting 
the term ( 3  cu12n)(b - m ) .  According to the Ward identity, 
this term can<-els out with the term - (3~x127~)  yCL in the ver- 
tex function. Of course this procedure is not renormalization 
in the ordinary sense of the word, but it is sufficient from a 
practical standpoint. 

In order to carry out the standard renormalization proce- 
dure we must calculate the derivative d 2 ( p ) l d p p  rigorously 
for p  = p, where p stands for momentum on the mass sur- 
face. This derivative diverges in proportion to In p, so that a 
small photon mass X is introduced to formally remove the 
divergences. In the gauge (13) considered here the introduc- 

tion of a photon mass may prove unjustified computationally. 
Indeed, as noted earlier, in some cases the quantity 
- e 2 / m 2  coincides with the virtuality variable p  or has the 
same order of smallness. By introducing a photon mass X we 
obtain a finite term multiplied by In X in the renormalization 
part and the same with the opposite sign in the renormalized 
mass operator C R ( p ) .  To avoid the emergence of fictitious 
contributions that cancel out in the final result we will at- 
tempt to carry out the renormalization procedure without in- 
troducing a photon mass. 

We define the renormalized mass operator x R ( p )  in the 
following way: 

After differentiating with respect to p  and subtracting the 
constant Sm =X(B we obtain 

In contrast to the standard renormalization procedure, where 
the virtuality variable p  is strictly zero, the coefficient of the 
structure (i - m )  in (28) is not a constant. Nevertheless, we 
write the once subtracted mass operator (28)  in a form that is 
as close to the standard form as possible: 

The introduced function 

at e 2 = 0  coincides with the ordinary renormalization con- 
stant of the wave function, Z2 = 1 + 3  cuI23-r. 

Next we examine the behavior of the exact electron 
Green's function S r ( p )  near the pole p 2 = m 2 .  To first order 
in cr we have 

We can remove the matrices in the denominator of S r ( p )  by 
multiplying and dividing the function by the expression (31) 
in which and Q are taken with signs reversed: 
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FIG. 2. The one-loop vertex function. 

The function S r ( p )  at p2=rn2 can be written in the 
usual form 

To this end we use the expression 

to introduce the "renormalized" wave function 

The function (35) coincides in form with the wave fimc- 
tion in the Coulomb gauge,19s20 differing from the later only 
in numerical coefficients. In the particular case of 
- Q 2 =  P 2 4 m 2  Eq. (30) implies 

After simple transformations the renormalization factor in 
the Coulomb gauge can be reduced to the same form. Here 
the factor 2 in front of the structure (- p2/m2)1n(l lp)  in (36) 
is replaced by 3, and the constant C =  5 in the Coulomb 
gauge corresponds to a quantity dependent on the ultraviolet 
cutoff parameter A .  In addition, the factor cu147r in the ma- 
trix structure 1 + (cu/47r)( yp lm)  must be replaced by 
(1 .16~.  Thus, the wave function l P ( p , s )  exhibits similar in- 
frared behavior in both gauges. The main merit of the gauge 
(13) is the ultraviolet finiteness of the renormalization con- 
stant. 

4. THE VERTEX FUNCTION 

The initial expression for the one-loop vertex function 
(Fig. 2 )  in the gauge (L3) has the form 

Let us study this expression at zero momentum transfer 
k = p' - p and small values of the virtuality variables of ex- 
ternal electron momenta p= 1 - p r 2 / m 2 =  1 - p 2 / m 2 .  For the 
case (= - 1 we have 

Comparing this asymptotic behavior with the one of the mass 
operator [Eq. (25)] ,  we see that the Ward identity is valid: 

Equation (38) can be written as follows: 

where Z , ( ~ , Q ~ )  coincides with the function z ~ ( ~ , Q ~ )  de- 
fined in (30).  As expected, in the limit p 4 O  the 
total transition current @ ( p ) r , ( p  , p )* (p )  = @ ( p )  
X [ y ,  + A, (p  , p ) ] * ( p )  becomes equal to the free current 
Z ( P ) Y , ~ ( P ) .  

Next, following the results of ~ d k i n s , ~ '  we examine the 
terms in the vertex function that contribute to the electron 
magnetic moment. In covariant gauges the origin of the 
anomalous magnetic moment is trivial: it appears because of 
the gauge-invariant term (cw/27rm)iu,,kv in the vertex func- 
tion A , ( p , p l ) .  In noncovariant gauges, however, not only 
does the vertex function contribute to the anomalous moment 
but so does the self-energy correction to the wave function. 

To calculate the electron magnetic moment it is suffi- 
cient to retain only the terms linear in momentum k in the 
matrix element ~ ( p r ) ~ , ( p , p r ) ~ ( p ) .  The simplest way to 
find the vertex function with the given accuracy is to add to 
(40) the term (~~/27rm)iu , ,k '  and to replace the anticom- 
mutator { y ,  , Q )  by the sum Q' y,+ y,Q. As a result we 
obtain 

Here for the sake of generality we have retained the unde- 
fined parameter 5, with the functions Z ,  and Z2 (the argu- 
ments are dropped) containing ultraviolet divergences of the 
type ( 1  + ( ) ln(Alm)  and the matrices Q multiplied by 
1-6. Simple calculations lead us to the ordinary gauge- 
invariant result: 
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Equations (41) and (42) show that in the Fried-Yennie 
gauge ([= 1) the wave function P ( p )  contains no additional 
matrix structure and the entire anomalous moment is deter- 
mined by the second term on the right-hand side of Eq. (41). 
On the other hand, in the gauge (13) at Q= - y p  the mag- 
netic part of lhe last two terms in (20) cancels out and the 
entire correcti~on to the magnetic moment originates in the 
additional matrix structure in the wave function P ( p ) .  

5. CONCLUSION 

Thus, we have found that in the gauge (13) the once 
subtracted mass operator and the unrenormalized vertex 
function are free of ultraviolet divergences. The infrared as- 
ymptotic expressions for these diagrams contain the charac- 
teristic term ( ~ ~ / m ~ ) l n ( l l ~ ) ,  where p is the small virtuality 
variable of the external electron momenta. The softness of 
the infrared behavior of the radiative corrections is deter- 
mined by the coefficient of ln(1lp). For the majority of 
gauges, which are not suited for use in the infrared range, the 
coefficient of the logarithm is of order unity (the common 
factor ( ~ 1 4 ~  is dropped). Both the Fried-Yennie gauge and 
the Coulomb gauge are especially suited for use in the infra- 
red range. In the Fried-Yennie gauge the coefficient is pro- 
portional to p ,  which makes it possible to carry out the renor- 
malization procedure rigorously on the mass surface p=O 
without introtlucing a photon mass A .  In the Coulomb gauge 
the coefficient of ln(1lp) is proportional to p2/m2. For bound 
states the factor p2/m2 leads to additional softening in the 
infrared range, but standard renormalization can be done 
only at p=O (see Ref. 21). In the gauge (13) the coefficient 
of the logarithm contains ~ ~ = ~ ~ - m ~ ,  which depends on 
the unit time-like vector 77. The freedom in choosing 77 
makes it possible to select any simplifying assumption valid 
in a specific physical situation. In the simplest case of 
g= (1,O) the coefficient of the infrared logarithm proves to 
be proportionla1 (as it is in the Coulomb gauge) to p2/m2. 
Choosing 77 in the form of p l  6, in which case Q = 0 holds, 
allows us to remove the term ( ~ ~ / m ~ ) l n ( l l ~ )  from the in- 
frared asymptotic expansion and to carry out the renormal- 
ization procetlure rigorously on the mass surface. For 7 we 

FIG. 3. The self-energy of an electron in a Coulomb field in the lowest order 
(the double line corresponds to the exact propagator). 

can take any combination of the initial (p) and final (p ' )  
electron momenta, which in the rest frame becomes 
77=(1,0). 

The gauge (13) is intended primarily for use in the 
bound-state problem. For instance, when calculating the self- 
energy operator (in Fig. 3 the double line corresponds to the 
exact electron propagator in the Coulomb field), we must 
subtract the self-mass Sm (the diagram b) in an appropriate 
manner from the main diagram a. Various ways of subtract- 
ing 6m have been used in Refs. 22-26 and 9. In addition to 
these approaches there is the one based on the ultraviolet and 
infrared properties of the gauge (13). Using the Dirac equa- 
tion in the Coulomb field, we represent the once subtracted 
mass operator in the form of the sum of three diagrams (Fig. 
4). Then the sum of the diagrams a 1  and b is reduced to the 
finite expression (22) averaged over the wave functions. The 
diagram a 2  is also ultraviolet-finite, since at high momenta 
of the radiative photon the Coulomb Green's function can be 
replaced by the free Green's function and then the asymp- 
totic expression (1 1) can be employed. 
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APPENDIX: SOME ADDITIONAL PROPERTIES OF THE 
GAUGE (13) 

The photon propagator (13) can be written in the sym- 
metric form 

if we introduce a vector q defined as follows:27 

4'2(774)77-9, ?=q2,  (773=(77774). ('42) 

In the particular case ~ = ( 1 , 0 )  the vectors q and q differ 
only in the sign of the spatial part. 

Representing in a similar way the propagator in the Cou- 
lomb gauge 

~ & ( q ) =  gap- ( 2[(77q)'-q qa4s+4.q: I * (A31 

~ + ~ - ~  
P P P' FIG. 4. Transformation of the diagrams of Fig. 3 via the Dirac 

I Equation. 
A 

a 1 a2 b 
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we see that the difference of ( A l )  and (A2 )  is x,A,(x) = 0. 6413) 

~ " p ( 9 ) - ~ : p ( 9 ) = ( 9 " 9 p + & 4 ~ ) 8 ( 4 0 , q ) ~  (A4) 
This gauge was suggested by Fock back in I937 (Ref. 28) 

with the residue of the function g(qo,q) at the pole q2=0 and was used by ~ c h w i n ~ e ? ~  to investigate the infrared 

vanishing. properties of the electron Green's function. 
Let us examine the properties of the propagator ( A l )  in The vector potential A,(x)  satisfying (A13)  can be ex- 

the coordinate representation. We define the Fourier trans- pressed solely in terms of the gauge-invariant electromag- 

form as follows: netic field tensor F,, : 

where we write x instead of x - x ' ,  assuming one of the 
vector potentials of the electromagnetic field in the corre- with dA . l d x p -  dA,  ldxv= F, ,  . 
sponding vacuum average taken at point x l = O .  Plugging For soft photons with a wavelength considerably larger 
( A l )  into (A5 )  and introducing a vector than the characteristic size of the interaction region the field 

F,,  can be assumed uniform, so that we can write 
2 ) - x ,  i 2 = x 2 ,  ( ~ ~ F ) = ( v x )  (A61 

similar to the vector g [Eq. (A2 ) ]  in momentum space, we x" 

obtain A,(x)= pa, . 

By a direct check we see that the operator ( A 7 )  satisfies the 
relationship 

and hence has no inverse. The propagator in the Fried- 
Yennie gauge, 

possesses the same property. The propagator (A7 )  was cho- 
sen from considerations of infrared finiteness, with the result 
that the components Doo in (A7 )  and (A9 )  coincide. 

It is interesting to compare the propagator (A9 )  with the 
propagator in the Landau gauge, 

From the above Fourier transforms (A9 )  and (A10) we ob- 
tain at q 2 #  0 and x2 f 0 the following four symmetric rela- 
tionships: 

Thus, the Fried-Yennie gauge at large values of x2 is similar 
to the Landau gauge at large values of q2 .  More than that, the 
second relationship in (A12)  implies that the Fried-Yennie 
gauge in the coordinate representation corresponds to the 
well-known Fock-Schwinger fixed-point gauge 
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