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The position of the chemical potential ,u and the temperature dependence of the charge-density- 
wave vector q(T), which determine the type of conduction (the sign of the charge carriers) 
in the semiconductor state of quasi-one-dimensional conductors below the Peierls transition 
temperature, are calculated. The results obtained differ from the calculations previously 
performed. The temperature dependences of the conductivity, the thermopower, and the Hall 
coefficient, as well as the temperature hysteresis of the first two parameters, are discussed with 
consideration of the relationship between the linear electron and hole concentrations n and 
p per conducting chain and the magnitude of the charge-density-wave vector 
~ ( p  - n) = q(T) - q(0). It is shown that because of the dependence of q on T, the activation 
dependence of the conductivity a a exp(-AIT) is maintained even in the limit of unipolar 
conduction ( n a p  or p%n), which does not have any analogy in ordinary semiconductors. 
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1. INTRODUCTION 

An energy gap 2A forms on the Fermi surface in quasi- 
one-dimensional conductors below the Peierls transition tem- 
perature T p  (see, for example, Ref. 1). As a result, the con- 
ductor undergoes a transition to a semimetallic state, as in 
the case of NbSe3, or to a semiconductor state, as in the case 
of other quasi-one-dimensional charge-density-wave conduc- 
tors, which we shall examine in the present paper. In the 
Peierls state one-electron excitations (electrons and holes) 
coexist with a deformed mobile electron crystal, i.e., a 
charge-density wave. In an electric field below the threshold 
value, at which a charge-density wave cannot move in the 
crystal as a whole, the conductivity and other kinetic prop- 
erties of the quasi-one-dimensional conductor are determined 
by one-electron excitations, making it similar to an ordinary 
semiconductor. Nevertheless, even in weak electric fields 
there are significant differences between the properties of 
quasi-one-dimensional charge-density-wave conductors and 
ordinary semiconductors. For example, the variation of the 
wave vector q of the charge-density wave is associated with 
the variation of its charge and, as a consequence of the 
number-of-particles conservation law, with the variation of 
the electron and hole concentrations. Therefore, the variation 
of the charge-density-wave vector (with the temperature or 
as a result of the application of an electric field) plays the 
same role as the doping of ordinary semiconductors, i.e., it 
alters the electron and hole concentrations and, consequently, 
the conductivity. A similar model of a quasi-one- 
dimensional conductor as a semiconductor with a doping 
level that depends on the electric or thermal history of the 
sample was used to qualitatively and quantitatively describe 
the thermopower and c o n d u ~ t i v i t ~ ~ . ~  under the assumption 
that the deviation of the chemical potential ,u from the 
middle of the band gap even at equilibrium is not equal to 
zero.3 In Sec. 2 we calculate ,u and the temperature depen- 
dence of the charge-density-wave vector q. In particular, we 

show that the shift of the chemical potential ,u is greater in 
magnitude than in the calculations in Ref. 4 and depends on 
the form of the electron spectrum of the material not just 
near the Fermi energy. In Sec. 3 we analyze the relationship 
of the conductivity and the electron and hole concentrations 
to the temperature dependence of q and show that in unipolar 
semiconductors, such as TaS3 and blue bronze, the tempera- 
ture dependence of the conductivity is determined mainly by 
the temperature dependence of q.') We discuss the results of 
measurements of the thermopower and the Hall effect, as 
well as the temperature hysteresis of the conductivity and the 
thermopower, in terms of the shift of the chemical potential 
relative to the middle of the band gap and the electron and 
hole contributions to the transport processes. We also show 
that at low temperatures the experimental data cannot be ex- 
plained within the contributions of the electrons and holes 
alone, and it should be assumed that nonlinear charge- 
density-wave excitations, such as phase solitons, or charge- 
density-wave creep make a contribution to the conduction 
processes. 

Below we shall use units in which fi = 1 and kB= 1. 

2. POSITION OF THE CHEMICAL POTENTIAL AND 
MAGNITUDE OF THE CHARGE-DENSITY-WAVE VECTOR 

The position of the chemical potential level and the mag- 
nitude of the charge-density-wave vector in the equilibrium 
state can be found from the condition for the minimum of the 
free energy, which consists of an electronic part and a con- 
tribution from the elastic deformation energy of the lattice 

The elastic energy is defined by the known formula' 
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where X is the dimensionless electron-phonon coupling con- 
stant and v is the Fermi velocity. We calculate the electronic 
part of the free energy using the familiar expression6 

where fl is the thermodynamic potential, N is the number of 
electrons, E F  is the Fermi energy, and e k  is the dispersion 
law of the quasiparticles in the charge-density-wave state, 
which depends on q ( T )  and is determined by the combina- 
tion of the electron energies ~ ( k )  and ~ ( k  5 q )  in the metal- 
lic state. We present the expression for ~k for states with a 
momentum component along the chains k>O. For states 
with the opposite momentum the spectrum is found with 
consideration of the fact that e k  is an even function of the 
momentum: 

The first two terms in (4) describe the variation of the spec- 
trum and the formation of a gap on the Fermi surface as a 
result of the crossover of the states near the Fermi energy 
(see Ref. 1 and the references therein). The last three terms 
describe corrections calculated using perturbation theory to 
the spectrum due to states with wave numbers differing by 
q ,  whose energy differs strongly (by an amount greater than 
A) from ~ ( k ) .  Also, the last two terms describe corrections 
associated with the states en(k)  belonging to other bands, 
and the symbol An in them denotes the off-diagonal compo- 
nents of the charge-density-wave order parameter, i.e., the 
matrix elements of the potential created when a charge- 
density wave forms, calculated for the wave functions of 
different bands. Terms of this type are taken into account in 
theories which treat the Peierls transition in multiband 
mode~s.~ The corrections described by the last terms are usu- 
ally not taken into account, since they are small compared 
with the first terms near the Fermi energy. We write out these 
corrections, since in the following we must take into account 
the contribution to the free energy (3) from states located far 
from the Fermi energy, where all the terms in (4) are small 
and can be of the same order. The corrections associated 
with other bands can be significant, if their energies differ by 
an amount smaller than or of the order of the Fermi energy. 
Such a situation is typical of most quasi-one-dimensional 
charge-density-wave conductors, particularly of MX3 com- 
pounds and blue bron~e."~ 

Let us calculate the free energy in the case of a one- 
dimensional electron spectrum. We first write the expression 
for the concentration of particles (per chain) N. Going over 
from summation to integration over the momentum, we ob- 
tain 

Here q ,  is the quasimomentum on the Brillouin zone bound- 
ary, and fe and fh are the electron and hole equilibrium 
distribution functions: 

where the E: denote the dispersion laws of the quasiparticles 
above and below the energy gap that are described, respec- 
tively, by Eq. (4) with the upper and lower signs in front of 
the square root. 

The particle density in (5) is assumed to be assigned and 
to be temperature-independent and, therefore, equal to its 
value at T=O, at which the states below the gap are com- 
pletely filled and the states above the gap are empty, i.e., 
there are no electrons and holes in the crystal. Because of the 
quasineutrality relation, the total electron density N can be 
assumed constant not only in the case of a homogeneous 
charge-density wave, but also in the case of an inhomoge- 
neously deformed charge-density wave with sufficiently 
smooth perturbations, for example, as a consequence of an 
interaction with impurities. 

We note that the expression for the number of particles 
(5) can be rewritten in the form of an equation relating the 
charge-density-wave vector q ( T )  to the electron and hole 
concentrations n  and p: 

It follows from (7) that the deviation of the charge-density- 
wave vector from its value at zero temperature is exponen- 
tially small at low temperatures T < A ,  since n , p  

exp(- UT). 
Combining (3) and (9, we obtain a simple expression 

for the electronic part of the free energy: 

We now find a relation that specifies the equilibrium 
value of the charge-density-wave vector from the condition 
dFldq = 0 .  Performing some relatively simple transforma- 
tions and using the condition that the number of particles be 
constant, we obtain 
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where E ,  and E~ are the energies of the electrons and holes, 
respectively, measured from the middle of the band gap, 
p =  E F - ~ ( 9 1 2 )  is the deviation of the chemical potential 
level from the middle of the band gap, and v is the Fermi 
velocity. 

Let us now analyze the expression obtained under the 
condition A>T.  It holds in charge-density-wave semicon- 
ductors at practically all temperatures. It is easy to see that 
the last three terms on the right-hand side of (9) are expo- 
nentially small when A  > T  [the first of them is small because 
of Eq. (7)]. Thus, when the exponentially small corrections 
are neglected, the position of the chemical potential level is 
determined by the first term in (9), which includes lattice and 
electronic parts. The lattice part can be represented in the 
form 

where w, is the phonon frequency and g  is the electron- 
phonon coupling constant. If the dependence of g  on q  is 
neglected, as in Ref. 4, it turns out that the lattice contribu- 
tion to the chemical potential shift is proportional to the ve- 
locity of the phonons with the momentum q .  However, gen- 
erally speaking, g  depends on the wave vector, and 
significant variations of g  in response to variation of the 
wave vector by an amount of the order of the reciprocal 
lattice vector should be expected. Since in quasi-one- 
dimensional conductors q  is of the order of the reciprocal 
lattice vector, the function g ( q )  can lead to a contribution to 
p  that is comparable to the contribution due to the depen- 
dence of w, on the wave vector. The order of magnitude of 
the lattice contribution to the chemical potential shift can be 
estimated as 

and the sign of p l  is determined by the specific form of the 
dependences of h and the Fermi velocity on the wave vector. 

The electronic contribution (the second term under the 
differentiation sign) is determined by the integral of the dif- 
ference between the electron energies in the presence of a 
charge-density wave and in the metallic state. This integral 
diverges logarithmically at large distances from the Fermi 
energy and therefore depends on the dispersion law of the 
electrons far from E F  . In Ref. 4 the analogous contributions 
from large energies were disregarded as being dependent on 
the cutoff energy and therefore not having any physical 
meaning. We do not see any basis for discarding this contri- 
bution, which is similar to the familiar logarithmically di- 

verging integral under the gap self-consistency condition that 
is obtained when the free energy (1) varies with respect to 
A.  

Let us discuss the electronic contribution p ,  to the 
chemical potential shift (9) calculated for different forms of 
the electron spectrum. We note at once that the order of 
magnitude of this contribution is the same as that of the 
lattice contribution, i.e., 

and the sign of p  depends on the form of the electron spec- 
trum and on the degree of filling of the electron band. 

We first consider the electronic contribution to p ,  with 
neglect of the influence of the other bands. For a parabolic 
dispersion law at small values of A/EF We obtain 

where the plus and minus signs refer to the cases of electron 
and hole conduction, respectively. We note that the value of 
p  obtained and the corresponding value of q ( T ) - q ( 0 )  are 
large compared to the results in Ref. 4. In fact, from (6) and 
(7) it follows that 

where 

1 A  
po= T - T -  

4 E F  

takes into account the difference in the density of states be- 
tween the electron and hole bands. As we see, p 0  is AIT 
times smaller in order of magnitude than p ,  and has the 
opposite sign. We note that the dependence of q  on T  ob- 
tained in Ref. 4 was associated specifically with p o  in a first 
approximation. Thus, under the quadratic dispersion law the 
sign of the majority charge carriers in the charge-density- 
wave state is the same as in the metallic state. 

It follows from (13) that the deviation of the charge- 
density-wave vector from its value at zero temperature de- 
creases exponentially as the temperature is lowered, the ac- 
tivation energy being close to A  ( p <  A ) .  

For the case in which the electron energy above the 
Peierls transition temperature is described in the model of 
strongly coupled electrons ~ ( k )  = eo - (W/2)cos(ak), p e  is 
given by 
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p = ~  cos Q - C O S ~ Q -  "I 
tan Q 1 

+ 2sin Q 
cos Qln " [ tan(Ql2) +I--) cos Q 

Q sin Qsin2 x  

2 JS2+ sin2 Q sin2 x 
d x ]  . (14) 

where Q = q(O)a/2= .rralAcDw, AcDw is the period of the 
charge-density wave, and S= 2Al W. 

According to (14), the sign of p depends on the degree 
of filling of the band. If the Fermi energy is close to the band 
extremum, the majority carriers in the charge-density-wave 
state have the same sign as in the metallic state, but when the 
degree of filling of the band approaches half, the sign of the 
majority carriers changes. In addition, the sign of p depends 
on S and AleF. For example, if quadrupling of the period 
occurs when a charge-density wave forms, as in orthorhom- 
bic TaS3 (Q= 7r14) or Ko,3M003 (Q=3d4) ,  the sign of 
pe corresponds to the same type of conduction in the states 
with and without a charge-density wave when SC0.26 
(Al&,<O.9), but its sign changes at larger values of 
AleF. If the band is almost half filled, as in (NbSe4)10,31, the 
appearance of a charge-density wave results in a change in 
the sign of the majority charge carriers under the dispersion 
law under consideration for all values of At&,< 1. 

In addition, as was noted above, according to (4) and (9) 
the chemical potential shift can vary in the presence of other 
bands that make a contribution to p, comparable to the con- 
tribution of the principal band, if their energy differs by an 
amount smaller than or of the order of the Fermi energy. 

Thus, the chemical potential shift from the middle of the 
Peierls gap is determined by the form of the dispersion law 
of the material and A and can be determined only from the 
magnitude of the curvature of the electron dispersion law 
near the Fermi energy. This does not contradict the experi- 
mental data, since there are materials in which the sign of the 
majority charge carriers below T p  is the same as in the me- 
tallic state [for example, TaS3 and (NbSe4) 10,31], as well as 
materials in which the sign of the charge carriers changes 
when a charge-density wave forms (blue bronzes). 

According to (1 1) and (12), in a first approximation the 
shift of p, does not depend on the temperature and is larger 
than the value obtained in Ref. 4. However, in real charge- 
density-wave semiconductors the inequalities T< A < &, 
< W (W is the width of the band in the metallic state) hold 
without a large margin, and the corrections in the second 
approximation can be important. Three-dimensional effects 
can also play a significant role. Nevertheless, as the calcula- 
tion shows, in all cases 

3. CHARGE-DENSITY-WAVE VECTOR AND CONDUCTIVITY. 
ANALYSIS OF EXPERIMENTAL DATA 

The conductivity a of quasi-one-dimensional conductors 
below the Peierls transition temperature is known to decrease 
according to a thermal activation law with an activation en- 
ergy close to A. This result is usually interpreted on the basis 
of the theory that the properties of a Peierls conductor are 
similar to the properties of an intrinsic semiconductor. The 
shift of p and the presence of a temperature dependence of 
the charge-density-wave vector indicate, however, that a 
Peierls conductor should be regarded as a doped semicon- 
ductor with a variable doping level, and the question of in- 
terpreting the temperature dependence of a requires a more 
careful analysis. 

The conductivity was calculated on the basis of the mi- 
croscopic theory in Refs. 9 and 10 for the case of elastic 
scattering characterized by forward and backward electron 
scattering (i.e., with and without variation of the momentum 
component along the chain by an amount close to twice the 
Fermi momentum) in the absence of a charge-density wave. 
Since at temperatures below the Peierls transition tempera- 
ture the quasiparticles are superpositions of electron states 
with opposite momenta along the chains, the quasiparticle 
momentum scattering time is expressed in terms of the scat- 
tering probability using energy-dependent coherence factors. 
As a result, the free transit time acquires a different tempera- 
ture dependence than in the metallic state. The results of the 
conductivity calculation in Ref. 9 can be represented in a 
descriptive form: 

where the electron and hole effective masses are much 
smaller than the band electron mass mb= d2e(k)l 

2 
dk  Ik=q/ '2:  

and the quasiparticle momentum scattering time at T< A has 
the form 

and is expressed in terms of vf and v b ,  i.e., the reciprocal 
forward and backward scattering times for electrons in the 
metallic states. In Eqs. (15) and (17) we neglected the small 
differences between the electron and hole scattering times. 
The electron and hole densities calculated under the same 
conditions using Eq. (6) are described by the formulas 

where A*-A. 

In some charge-density-wave conductors one type of 
carrier predominates. For example, measurements of the 
thermopower and the Hall coefticient show that in fields be- 
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FIG. 1. Typical hysteresis loop in the temperature dependence of the con- 
ductivity of orthorhombic TaS,. A similar dependence is observed in 
ib.3MoO3. 

low the threshold value blue bronze is an n-type 
semicond~ctor,".'~ and TaS3 is a p-type'3714 and even a uni- 
polar semicond~ctor.'~ According to (7) and (15), in such 
materials 

and, therefore, the temperature dependence of the conductiv- 
ity is determined by the temperature dependence of q with 
accuracy to the relaxation time T , , ~  (17). which is less 
strongly dependent on the temperature. This apparently para- 
doxical conclusion, however, does not contradict the depen- 
dence o(T) exp(-BIT), since q(T) - q(0) also obeys a 
thermal activation dependence with an activation energy 
close to A (Refs. 11, 15, and 16). 

Let us now analyze the experimental data on the tem- 
perature hysteresis of the conductivity, which is attributed3 to 
the presence of a barrier to the formation of defects in the 
electron crystal that provide for a 2.rr phase change i.e., to 
variation of the charge-density-wave vector. Figure 1 pre- 
sents a typical hysteresis loop of the temperature dependence 
of the conductivity for orthorhombic TaS3. The upper and 
lower curves were obtained during continuous cooling and 
heating, respectively, and correspond to the greatest devia- 
tion from the equilibrium state, which is described by the 
curve that is located in the middle of the loop and depicted 
by a dashed line. The slope of this curve specifies the acti- 
vation energy and is related to the Peierls gap A. When the 
direction of variation of the temperature is reversed (curve 1 
or 2), q does not vary in the initial moment (the deviation of 
q from the equilibrium value is equal to the phase gradient). 
Thus, at a given temperature q can have different values, 
depending on the temperature history of the crystal. It is seen 
from Fig. 1 that the initial slope of curves 1 and 2, which 
corresponds to a fixed value of q ,  is much smaller than the 
slope of the equilibrium curve and the curves corresponding 
to saturation, and they characterize a state with an altered 
charge-density-wave vector. It can be concluded that the 
conductivity is, in fact, determined by the magnitude of the 
vector q, in agreement with Eq. (19) for the conductivity. It 

FIG. 2. Temperature dependence of the relative deviation of q(T) from 
q(O)=0.2505c* in TaS, (.-data from Ref. 15; the solid line corresponds 
to an activation energy of  800 K). 

can be stated that a kind of self-doping of the charge-density- 
wave semiconductor takes place: the change in the charge- 
density-wave vector (expansion or contraction of the electron 
crystal) regulates the electron or hole concentration, so that 
the conductivity and the change in the charge-density-wave 
vector q(T)-q(0) obey the same thermal-activation law 
with accuracy to a weaker (nonexponential) temperature de- 
pendence of the quasiparticle momentum scattering time 
rq.  Our arguments are consistent with the results of the di- 
rect measurement of the temperature dependence of q (Fig. 
2) taken from Ref. 15. Although the spread of the experi- 
mental points is very large, they still fit the activation depen- 
dence with an activation energy of 800 K, which is close to 
the value of A in TaS3. 

Figure 3 presents the analogous data for blue bronze 
(K0,3M0O3, an n-type semiconductor below T, with a tran- 
sition to hole conduction in the metallic state) from Ref. 16. 
The points lie on a straight line corresponding to an activa- 
tion energy - 750 K. A similar analysis of the results in Ref. 
11 gives an activation energy of 630 K. The figure also pre- 

FIG. 3. Temperature dependence of  the relative deviation of q(T) from 
q(0) =0.2502b* in &,,MOO, ( B - d a t a  from Ref. 16) and of the reciprocal 
Hall coefficient normalized to l/R,,(m) [O-data from 12, where the value 
of R,,(m) was obtained by extrapolating IogR,, from 1/T to IIT=O). Within 
unipolar conduction both parameters are equal to the ratio of  the quasipar- 
ticle concentration to the total concentration of conduction band electrons. 
The slope of the solid line corresponds to an activation energy of 616 K. 
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sents the data from the measurements of the Hall effect in 
Ref. 12: RH(m)IRH(T). In the unipolar limit both quantities 
should have the ratio of the concentration of quasiparticles to 
the total concentration of electrons condensed in the charge- 
density wave. In fact, the results in Refs. 12 and 16 not only 
give similar activation energies, but lie practically on a 
single straight line, although totally different quantities were 
measured. The observed deviation of the "Hall concentra- 
tion" of carriers from the activation law at high temperatures 
is clearly attributable to the increasing concentration of mi- 
nority carriers near Tp , where the transition from hole con- 
ductivity to electron conductivity occurs in blue bronze. 
Thus, as in orthorhombic TaS3, the deviation of q from its 
value at T=O is proportional to the concentration of the 
majority charge carriers [see (7)]. 

The relationship between the magnitude of the vector q 
and the type and value of the conductivity can also be illus- 
trated in the case of measurements of the thermopower S and 
its hysteresis in different substances. In analogy to Eq. (15) 
we can write a descriptive expression for S: 

p ( A + p ) l T - n ( A - p ) l ~  p A p 
S- ---- - 

T T  
tanh -, (20) 

e ( p + n )  T 

where we have again neglected the difference between the 
scattering times, and in the second equality we also ne- 
glected the difference between the electron and hole effective 
masses. For a unipolar p-type semiconductor, such as ortho- 
rhombic TaS3, Eq. (20) gives S=A/T, which agrees well 
with the experimental value of about 600 pV/K at 120 K 
(Ref. 13). The plots of S(T) exhibit hysteresis,13 which, ac- 
cording to the semiconductor model under consideration, is 
attributable to the shift 6 p  of the chemical potential from its 
equilibrium position, as in the case of the conductivity. The 
magnitude of the hysteresis SS/S in orthorhombic TaS3 
amounts to about 5% at 120 K. According to (20), 
dSldp= 1/T, from which it follows that 6 p = 3   me^.^) In 
the case of unipolar conduction the hysteresis 
6ulu=6plT.  This relation gives Su/u=30%, in good 
agreement with typical experimental values.'* 

Let us now consider an example of another charge- 
density-wave conductor (NbSe4),o/31, in which measure- 
ments of the hysteresis of the thermopower were recently 
perf~rmed.'~ The hysteresis of S in this substance is enor- 
mous. For example, in the region of the thermopower maxi- 
mum at 180 K, S varies in the range from 80 to 250 pV/K 
upon the transition from heating to cooling. Also, the value 
of S is significantly smaller than A/T= 1800 pV/K, i.e., the 
value which would be observed for unipolar conduction [ac- 
cording to the activation energy for conduction A = 3720 K 
(Ref. 19)]. It therefore follows that the conduction is far from 
unipolar and that the shift of p from the middle of the gap is 
smaller than T (an evaluation gives p-- 10 K). In this case 
dSldT- - A/T~ .  Then the observed value SS= 170 pVIK 
corresponds to Sp=17K- 1.5 meV. This value is approxi- 
mately the same as in orthorhombic TaS3, but the hysteresis 
of the conductivity in (NbSe4) 10131 does not exceed 2%. This 
is also consistent with the semiconductor model: taking into 
account that for p < T  we have S u / u =  (SpIT)(2p/T), we 

obtain SU/U- 1%, in agreement with the experimental 
data.19 

Thus, the relationship between the dependence of q on 
T and the temperature hysteresis of the conductivity and of 
the thermopower of charge-density-wave semiconductors 
having either unipolar conduction or conduction with elec- 
tron and hole contributions of similar magnitude becomes 
clear within the model under consideration. It is interesting 
that u(T) exp(- A/T) even in the unipolar limit. In this case 
a fundamental difference is exhibited between charge- 
density-wave semiconductors and ordinary semiconductors, 
in which the conductivity depends weakly on the tempera- 
ture in this case. 

One of the significant consequences of the analysis per- 
formed is the lack of any indications of the incommensurate- 
commensurate transition postulated in several papers.15 

At low temperatures charge-density-wave semiconduc- 
tors display considerable deviations from the temperature de- 
pendences of the conductivity and the thermopower dis- 
cussed here. For example, in orthorhombic TaS3 the 
activation energy for conduction along chains decreases at 
liquid-nitrogen and lower temperatures.2032' These variations 
are accompanied by an abrupt decrease and even a change in 
the sign of the therm~power. '~~'~ At the same time, the acti- 
vation energies for the Hall coefficient and the conductivity 
perpendicular to the chains vary only ~ l i ~ h t l ~ , ' ~ * * ~  ruling out 
an explanation within the chemical potential shift.3) We can- 
not explain such low-temperature behavior within our semi- 
conductor model. This behavior is most likely due to the 
appearance of a new mechanism of conduction along the 
chains involving nonlinear charge-density-wave excitations, 
for example, solitons, or to charge-density-wave creep. In 
both cases we are dealing with the spatially inhomogeneous 
motion of a charge-density wave. The hypothesis of a soliton 
contribution was advanced back in the early papers.20 This 
theory is supported by recent theoretical r e s ~ l t s ? ~ , ~ ~  which 
suggest that the motion of inhomogeneous perturbations of 
the phase of a charge-density wave (particularly, solitons) 
should make a contribution to the thermopower that opposes 
the contribution of the majority carriers. The hypothesis of 
charge-density-wave creep was utilized in Ref. 25 to account 
for the features of the low-temperature conductivity of 
TaS3. 

4. CONCLUSIONS 

In the present work we have analyzed the semiconductor 
model of a Peierls conductor. It has been shown that the 
correspondence between the temperature dependences of the 
charge-density-wave vector and the conductivity can be un- 
derstood within this model. It has also been shown that the 
sign of the majority current carriers is determined by the 
details of the band structure of quasi-one-dimensional con- 
ductors. The region of applicability of the semiconductor 
model has been established. It has been shown, in particular, 
that at comparatively low temperatures the predictions of the 
semiconductor model deviate from the observed temperature 
dependences of the conductivity and the thermopower, at- 
testing to the appearance of a new contribution to the con- 
ductivity. 
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show that pinning centers lead to a different chemical potential shift in 
different chains, causing a large increase in the local value of the conduc- 
tivity along chains without a considerable increase in conductivity in the 
perpendicular direction. 
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