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One-dimensional longitudinal and transverse periodic structures in two-dimensional samples are 
considered. In the longitudinal structures the direction of modulation of the temperature 
field coincides with the direction of the electric current, and in the transverse structures these 
directions are mutually orthogonal. The properties of the structures are highly dependent 
on the relationship between the conductivities of the low-temperature ( a , )  and high-temperature 
(a,) phases. It is shown that there is a stable stationary transverse structure in a fixed- 
current regime when al < a,. A similar longitudinal structure exists in a fixed-voltage regime 
when a, >a2. However, this longitudinal structure slowly drifts due to the Peltier effect. 
The transverse structures in materials with al > az and the longitudinal structures observed for 
al<a2 are unstable in the general case, because the low-temperature phase in these 
structures is superheated and the high-temperature phase is supercooled. When the degrees of 
superheating and supercooling are sufficiently large, the appearance of spontaneous 
motion of these structures (traveling waves) not associated with the Peltier effect is possible. 
O 1996 American Institute of Physics. [S 1063-7761(96)01909-91 

1. INTRODUCTION 

The presence of heat sources that are nonlinear with re- 
spect to the temperature can result in the propagation of un- 
damped thermal waves and periodically modulated thermal 
fie~ds."~ One of the possibilities for the appearance of such 
phenomena is associated with the passage of an electric cur- 
rent along a sample composed of a material in which phase 
transformations can occur. When an electric current is 
passed, the temperature of the sample is determined by the 
balance between the Joule heat and the heat dissipated. The 
difference between the conductivities of the phases and the 
associated difference between the amounts of Joule heat 
evolved can result in the appearance of thermal waves, which 
are simultaneously phase-transition waves?-7 as well as in 
the formation of stationary and moving two-phase 
 structure^.^'^'^ 

In Ref. 9 we considered the morphological instability of 
planar interfaces when a pure material is heated by an elec- 
tric current. Both isolated thermal waves and two-phase 
structures were examined in the large-period limit of these 
structures, where the thermal interaction of different inter- 
faces can be neglected. In the present paper we wish to ex- 
amine the possibility of the realization of periodic structures 
in greater detail for arbitrary relationships between the period 
of the structure and the characteristic lengths of the thermal 
interaction of the fronts. We shall confine ourselves here to 
the geometrically simple situation of two parallel electrodes. 
We shall distinguish between longitudinal structures, in 
which the direction of modulation of the thermal field coin- 
cides with the direction of the electric field, and transverse 

structures, in which these two directions are mutually or- 
thogonal. We shall consider both fixed-current and fixed- 
voltage regimes in each of these geometries. 

2. THERMAL FIELDS IN PERIODIC STRUCTURES 

We consider simple one-dimensional structures, which 
can drift with a constant velocity in the general case. The 
thermal fields in the coordinate system moving together with 
a structure depend on only one spatial coordinate and are 
described by the equation 

Here the subscript i = 1, 2 labels the two different phases. To 
be specific, we understand that phase 1 is the low- 
temperature phase, i-e., the phase which is thermodynami- 
cally stable at low temperatures (T<To) and metastable at 
high temperatures (T> To, where To is the equilibrium tem- 
perature of phases 1 and 2). In Eq. (1) v is the steady-state 
drift velocity of the structure, K is the thermal conductivity, 
D = KIC is the thermal diffusivity, c is the specific heat, and 
h is a coefficient with the dimensions of length, which char- 
acterizes the rate of linear heat exchange with the surround- 
ing medium of temperature T , .  For simplicity the thermal 
characteristics of both phases are assumed to be identical. 
The density of the Joule heat evolved Qi is given by the 
relation 
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in which j  is the current density, E is the electric field, and 
a is the conductivity, which is assumed to differ in phases 1 
and 2, but not to depend on the temperature. We stress that 
we do not restrict the metastability regions of the phases. For 
example, the low-temperature phase can exist metastably 
even at T>To, and its conductivity is ul in that range. Simi- 
larly, the conductivity of phase 2 equals u2 even at T<To. 

The following equilibrium conditions hold on the phase 
boundaries, i.e., at x= 0 and x = pA (see Fig. 1): 

Here A is the period of the structure, and p is the fraction of 
low-temperature phase 1 in the structure under consideration. 
A heat balance is maintained on the interfaces, and with 
consideration of the Peltier effect the conditions defining it 
have the form 

FIG. 1 .  Schematic representation of periodic two-phase 
stluctures and the temperature distribution in them under 
the longitudinal (a) and transverse (b) geometries. 

In Eqs. (3) and (5) the periodicity of the thermal field is 
taken into account explicitly, T 2 ( 0 )  = T2(A) ,  and 
T i ( 0 )  = T;(A) .  In the conditions (5) and (6) L is the latent 
heat of the transition of phase 2 to phase I ,  Il is the Peltier 
coefficient for the phase boundary between phases I and 2, 
and its sign is chosen such that when a current passes from 
phase 1 to phase 2, i.e., when j,>O, Peltier heat is evolved 
for Il > O  and is absorbed for II < 0. In (5) and (6) j ,  is the 
current comwnent normal to the interface. We note that in a 
transverse structure j,=O, and the Peltier effect is absent. 

The solution of Eq. (1) under the boundary conditions 
(3)-(6) leads to the following two relations: 

where ity V =  v h/2D, the dimensionless period A = Alh, the dimen- 
sionless Peltier effect P = IIh j ,  ILD, and the dimensionless 

s ,  = J1+V2-- V ,  s2= JW+ V .  (9) deviations of the temperatures of the homogeneous phases 

In E ~ s .  ( 3 4 9 )  we have intraduced the dimensionless veloc- Ti= T,+ Q i h 2 / ~  from the equilibrium temperature TO: 
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Assuming that the Peltier effect and the corresponding drift 
velocities are small ( P 9  1, V 9  1) and expanding (7) and (8) 
to terms linear in V ,  we find 

Equations (7) and (8) or Eqs. (11) and (12), which corre- 
spond to them, allow us to determine 7 and the drift velocity 
as functions of the period of the structure A under assigned 
external conditions for passage of the current. 

3. LONGITUDINAL PERIODIC STRUCTURES 

In this case the periodic structure consists of alternating 
plates of phase 1 and phase 2 parallel to the electrodes (Fig. 
la). The direction of modulation of the temperature field 
coincides with the direction of the current. The structure un- 
der consideration corresponds to conductors of different con- 
ductivity connected in series. The current is constant along 
the sample, i.e., identical in the two phases. The external 
conditions can fix either the current density j  or the mean 
electric field strength E. In the latter case the current density 
in the sample depends on the fractions of the phases: 

Fixed-current regime. In Eq.  (1 I), which specifies 7 ,  the 
Ai are described according to (10) and (2) by the expressions 

and do not depend on 7.  It follows from Eq. (11) that a 
two-phase structure corresponding to 0<  7< 1 can exist only 
in a certain range of currents between j l  and j2: 

in which A ,  and A2 have identical signs ( A ,  and A2 vanish 
at j l  and j2,  respectively). The dependence of 7 on the cur- 
rent j  for a fixed period A is shown schematically in Fig. 2. 

When ul<u2 (Fig. 2a), it is seen from (15) that 
j 2 > j l .  At currents j < j ,  low-temperature phase 1 exists 
(7' l ) ,  and its temperature T1<TO;  at j > j 2  high- 
temperature phase 2 exists, and its temperature T2> To. The 
existence of a periodic structure with a value of 7 that de- 
pends on the period A is possible in the current range 
j l < j <  j2 (Fig. 3). The temperature is modulated along the 
direction of the current (Fig. la). We stress that the low- 
temperature phase in this case is superheated and that the 
high-temperature phase is supercooled with the possible re- 
sultant morphological instability of such a structure? 

The characteristic value of the current jo in Fig. 3 is 
determined by the behavior of 7 as the period A increases. 
When j< jo, the fraction 7 of phase 1 increases and tends to 
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FIG. 3. Qualitative dependence of the fraction 7 of phase I on the period 
A of a longitudinal structure for u l < u z  and three values of the current j :  

, ,<j( l )<jo, jcz), JO. . jo< j(')<j2. 

unity, and when j> jo, it decreases and tends to zero. It is 
seen from (1 1) that jo is determined from the condition 
A1=A2:  

When ul > u2 (Fig. 2b), jI > j2. In this case the regions 
for the existence of the homogeneous phases determined us- 
ing the criterion of thermodynamic stability (i.e., TI< To for 
phase 1 and T2> To for phase 2) overlap. In the current range 
j2 < j< j, solutions corresponding to periodic two-phase 
structures with 0 <  v< 1 formally exist in addition to the 
homogeneous states. However, a simple analysis reveals the 
instability of these structures against transitions to the homo- 
geneous states with v= 1 or v=0.  We note that the depen- 
dence of 17 on j in Fig. 2b is typical of kinetic phase transi- 
tions of the first kind with overlapping metastability regions 

j2<j<jl. The question of the transition point between the 
homogeneous states of phase I and phase 2 can be solved by 
analyzing the motion of a thermal wave that switches the 
system from one homogeneous state to the other. When the 
Peltier effect is small, phase I "gobbles up" phase 2 at 
j< jo, the opposite occurs at j> jo, and the transition current 
jo is specified by (16) (Refs. 5 and 7). As was shown in Ref. 
9, the thermal wave front is morphologically stable in the 
case of a, > u2 under consideration. 

We note that, regardless of the relationship between the 
conductivities of the phases, the current-voltage characteris- 
tics in the region where the two-phase structures exist have 
segments with a negative differential resistivity, dEldj<O 
(Fig. 2). 

Fixed-voltage regime. In this case the values of A, and 
A2 in Eq. (1 1) are specified by the relations (14) with j from 
(13). Now, A, and A2 depend on the fraction 17 of phase 1, 
and the value of 7 as a function of the field E and the period 
A is found from the transcendental equation (11). The de- 
pendence of T,I on E at a fixed A is qualitatively illustrated in 
Fig. 4. 

As in the case of a fixed current, the metastability re- 
gions of the homogeneous states with phase 1 and with phase 
2correspondtoE<El=jl/ul andE>E2=j2/u2.Herethe 
currents ji are assigned by (15) and specify the conditions 
under which the temperature of each homogeneous phase is 
equal to the transition temperature To. However, in contrast 
to the fixed-current regime, here the region where the two- 
phase structures exist is broader than the interval between 
E l  and E2 and depends on the period A of the structure. As 
A tends to zero, this region contracts to the interval 
[E I ,E2]. When A e  1, from Eq. (1 1) we find 

FIG. 4. Qualitative dependence of the fraction 
q of phase I on the field strength E and corre- 
sponding current-voltage characteristic for a 
longitudinal structure with a fixed period: a) 
u I < u Z ,  b) uI>uZ. 
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FIG. 5. Same as in Fig. 4, but for a transverse 
StNChlR..  

/ (a2-(11). 
to the Peltier effect P =  IIh j lLD. We note that in the fixed- 

" = [ K ( T , -  Tc) 
(17) voltage regime the current j ,  in turn, depends on T,I according 

to (13). 

As A tends to infinity, this region expands to the interval 
between Eel= jo 1 a,  and Eo2= jo l a 2 .  The physical meaning 
of the fact that the fields Eoi are determined by the equilib- 
rium current jo is as follows. When A+w, the interfaces in 
the two-phase structure become isolated. Such interfaces can 
be stationary only when the equilibrium current jo, at which 
A = A2, passes through the sample. The condition A ,  = A2, 
which follows from Eq. (1 1) when A- tw,  specifies the lin- 
ear dependence of q on the field strength E: 

where jo is assigned by Eq. (16). 
When a, < a2 (Fig. 4a), the ascending portion of the q 

versus E curve for the two-phase structures is unstable 
against transitions to a homogeneous state, in analogy to the 
situation with al > a2 in the fixed-current regime. 

When ar>a2 (Fig. 4b), the two-phase structure is 
stable. However, unlike the fixed-current regime, under 
which stability corresponds to a l < a 2 ,  here the transitions 
from the homogeneous states to the two-phase states corre- 
spond to "reverse" bifurcations and the presence of inter- 
mediate unstable states. We note that, as was shown in Ref. 
9, the interfaces in the two-~hase structure in the case of 

4. TRANSVERSE PERIODIC STRUCTURES 

In this case the periodic structure consists of alternating 
plates of phase 1 and phase 2 perpendicular to the electrodes 
(Fig. lb). The direction of modulation of the temperature 
field is perpendicular to the electric field. The structure under 
consideration corresponds to conductors of different conduc- 
tivity connected in parallel. Here the electric field strength 
E is constant along the sample, i.e., identical in the two 
phases. The external conditions can fix either the field 
strength E or the mean current density j .  In the latter case the 
value of E in the sample depends on the fractions of the 
phases: 

In transverse structures there is no current component per- 
pendicular to the boundary, j,,= 0,  and there is, therefore, no 
Peltier effect [P=O in Eqs. (8) and (12)]. When stationary 
periodic structures are considered, it is sufficient to deter- 
mine q from Eq. (1 1). 

Fixed-voltage regime. In this case the Ai appearing in 
Eq. (1 1) are described, according to (10) and (2) by the ex- 
pressions 

al > u2 under consideration are morphologically stable, at 
least in the limit of large values of A. K 

To conclude this section we note that after determining 
the fraction T,I of phase 1 from Eq. (1 I ) ,  we can use (1 2) to 
find the drift velocity of the structure, which is proportional 
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and do not depend on 7. 
The dependence of 7 on E at a fixed value of the period 

A is schematically shown in Fig. 5. The region of two-phase 
structures is found in the interval between E l = j l  l a l  and 
E2= j2 / u 2 .  Here E and E2,  like the currents j l  and j2 from 
(15), correspond to the vanishing of A and A2, respectively. 

When ul < u2 (Fig. 5a), the two-phase structures are un- 
stable against transitions to the homogeneous states. The 
transition from one homogeneous state to the other can occur 
upon passage of an isolated thermal wave, which is morpho- 
logically stable? In this case phase 2 "gobbles up" phase 1 
when E>Eo,  and phase I "gobbles up" phase 2 when 
E<Eo. The critical value of Eo is determined by the condi- 
tion A ,  = A2, under which the velocity of the thermal wave 
equals zero: 

i i 
2 FIG. 6. Same as in Fig. 2, but for a transverse 

E~ StNctuE. 

2 E O b  

When ul > u2 (Fig. 5b), the two-phase structures formed 
in the range of field strengths between E l  and E2 is stable 
against variations of the fractions of the phases in it. How- 
ever, the temperature distribution in such a structure (Fig. 
lb) is characterized by the superheating of phase I and the 
supercooling of phase 2, which possibly lead to the morpho- 
logical instability of the interfaces in such a structure. 

The current-voltage characteristic for the two-phase 
structures has a negative differential conductivity regardless 
of the relationship between the conductivities (Fig. 5), just as 
in the case of the longitudinal two-phase structures in the 
fixed-current regime. 

Fixed-current regime. The description of this regime is 
largely similar to the fixed-voltage regime for longitudinal 
structures. The A i ,  which are defined by (20) and (19) in 

* 

terms of the mean current density j ,  now depend on 7. The 
dependence of 7 on j  at a fixed value of A is qualitatively 
illustrated in Fig. 6, which is similar in many respects to 
Fig. 4. 

The range of currents at which a two-phase structure 
exists depends on the period A of the structure. When 
A +O, this range contracts to the interval [ j l  , j 2 ] .  In this 
case, using Eq. (1 1) and considering (19) and (20), for 
A 6 1  we find 

/ 
/ * 

The fraction 7 of phase I depends quadratically on the cur- 
rent and is equal to zero and unity at j2 and j , ,  respectively 
[the currents ji are defined by (15)l. In the other limiting 

O iol J ,  I, i, i O i, I, i, i,, i 

case, in which A t m ,  the region where the two-phase struc- 
tures exist expands to the interval between the points 
j o l = E o l u l  and jo2=Eolu2,  where Eo is specified by Eq. 
(21) and corresponds to the condition that each isolated 
boundary is stationary. Here, setting E=Eo,  from (19) we 
find 

7= ( j l E o -  u2)/(u1 - u 2 ) .  (23) 

It is not difficult to see that (23) is the solution of Eq. (1 1) for 
A+ 1, in which case A ,  = A2. 

When a, < u2 (Fig. 6a), as in the case corresponding to 
Fig. 4b, the two-phase structure is stable, and transitions 
from the homogeneous states to the two-phase states corre- 
spond to reverse bifurcations and the presence of intermedi- 
ate unstable states. We note that in this case each of the 
phases in the structure is in its own stability region, i.e., 
low-temperature phase I is at temperatures below To,  and 
phase 2 is at temperatures above To (Fig. lb). 
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When u,>u2 (Fig. 6b), the ascending portion of the 
~ ( j )  curve for the two-phase structures is unstable against 
transitions to a homogeneous state, as in the cases in Figs. 
2b, 4a, and 5a. 

5. MOTION OF THE PERIODIC STRUCTURES 

As we have already noted, the Peltier effect results in 
motion of the longitudinal structures, whose direction de- 
pends on the direction of the electric current. In addition, 
motion can also appear spontaneously as a bifurcation from 
stationary structures. As will become clear, spontaneous mo- 
tion of the structures is possible only under conditions such 
that low-temperature phase 1 is superheated and phase 2 is 
supercooled. This means that such motion is possible for 
transverse structures when ul > u2 and for longitudinal 
structures when ul < u 2 .  In order to stress the spontaneity of 
this motion, we shall discuss transverse structures, in which 
the Peltier effect and the motion associated with it are absent. 
The direction of the spontaneous motion can then be arbi- 
trary; the structure can move either to the right or to the left 
with velocities of identical magnitude (traveling waves). 

Let us consider periodic transverse structures in the 
fixed-voltage regime. Stationary structures exist in the inter- 
val between E l  and E2,  and when ul>u2, they are stable 
against transitions to the homogeneous states. We shall not 
consider the fixed-current regime for ul > u 2 ,  since the cor- 
responding structures are unstable. The dependence of 7 on 
E is specified by Eqs. (11) and (20) and is qualitatively il- 
lustrated in Fig. 5b. Equation (12) (with P=O in the case 
under consideration) was written in the linear approximation 
with respect to V .  As usual, the bifurcation to a regime of 
moving structures is specified by the condition that the coef- 
ficient in front of the term that is linear in V vanish: 

The solution of this equation together with (1 1) specifies 
values of E within the interval [ E ,  ,E2] and the fraction 7 of 
phase 1 at the bifurcation points for an assigned value of the 
period A .  The linear approximation is inadequate for finding 
the velocity and 7 in a moving structure, and the general 
equations (7) and (8) must be considered. An analysis of 
these equations leads to the following qualitative picture for 
the velocity V  (Fig. 7). 

As A decreases, the region for the existence of moving 
structures contracts to the point Eo, at which A , = A 2 = A o  
and 7' 112: 

The moving solutions vanish when the two bifurcation points 
merge and coincide with the point Eo (Fig. 7). This occurs at 
the critical values A.  and A = A o ,  which satisfy Eq. (24) at 
the point Eo: 

Here motion is possible in the range of parameters in which 

FIG. 7. Qualitative dependence of the rate of spontaneous motion of trans- 
verse structures on the field strength E for two different values of the period 
A,>A, .  The value of A ,  is close to the critical value determined from 
Eq. (26). 

It is seen from (26) and (27) that for a fixed value of the 
period A motion is possible when lAol exceeds a certain 
critical value that depends on A ;  if A. is fixed, motion ap- 
pears at values of A greater than a certain critical value that 
depends on IAol. Moving solutions are impossible when 
I Aol < 1. We note that since moving solutions exist only for 
Ao<O, spontaneous motion of the transverse structures is 
possible only in systems with ul > u2, and spontaneous mo- 
tion of the longitudinal structures is possible only in systems 
with u l < u 2 .  In such systems low-temperature phase 1 is 
superheated, and high-temperature phase 2 is supercooled. 
Moreover, the degrees of superheating and supercooling 
must be fairly large: ( A o [  > 1 . 

At the point Eo, at which A ,  = A 2 =  A.  and V =  112, Eq. 
(7) holds identically, and Eq. (8) becomes significantly sim- 
pler and takes the form 

Near the boundary where the solutions of (26) vanish the 
velocity is small ( V <  1) and vanishes as 

We present several evaluations for the case of AS= 1. In 
the case in which large values of A correspond to conditions 
close to (26) (this is possible when IAol is close to l), from 
(29) we find 
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In the other limiting case the velocity is large. Using Eq. (28) 
for A S  1 and V S  1, after expanding in 1/v2 we obtain the 
velocity at Eo 

In the limit A % +  1 under consideration, the bifurcation point 
located between E l  and Eo is characterized by a value of 
A in the range 1 < 1 A 1 < 2. There is a similar range for 
A2 and the second bifurcation point, which is located be- 
tween Eo and E2. In addition, lAil-+l when IAol-+l, and 
[Ail +2 when [Ao[ S 1. The values of the fields at the turning 
points ET and E; (see Fig. 7) depend on lAol, but so that the 
corresponding values I AT I = 1. 

The qualitative picture shown in Fig. 7 is characteristic 
of reverse bifurcations. Here the dashed portions of the 
curves are unstable against transitions either to stationary 
structures or to structures that move with larger velocities 
and correspond to the solid portions of the curves in Fig. 7. 

As we have already noted, the spontaneous motion of a 
structure is possible under the conditions of high degrees of 
superheating and supercooling of metastable phases. Motion 
of the transverse structures is therefore possible in systems 
with al>u2. Conversely, spontaneous motion of the longi- 
tudinal structures occurs only in systems with ul < u2 in the 
fixed-current regime (in the fixed-voltage regime the struc- 
tures are unstable against transitions to the homogeneous 
states). Also, the velocity of these structures is different for 
motion along and against the current due to the presence of 
the Peltier effect. 

The practical realization of the spontaneous motion of 
structures requires materials with a broad region of metasta- 
bility, since the material must withstand high degrees of su- 
perheating and supercooling during an experiment. 

6. CONCLUSIONS 

We have examined both the stationary and moving peri- 
odic structures appearing during phase transitions stimulated 
by Joule heating. These structures depend significantly on 
the relationship between the conductivities of the low- 
temperature phase ( a , )  and the high-temperature phase 
(a2). In addition, it is important whether a fixed-current or a 
fixed-voltage regime is effected and whether the geometry of 
the structures is longitudinal or transverse. 

In materials with ul  < u2: 
1. There is a stable transverse structure in the fixed- 

current regime (Fig. 6a). 
2. In the fixed-current regime there is a longitudinal 

structure (Fig. 2a) which moves with a small velocity that is 
proportional to the Peltier coefficient. This structure, how- 
ever, can be morphologically unstable. In addition, in a cer- 
tain range of currents a slowly moving structure can become 
unstable against a transition to more rapid spontaneous mo- 
tion not associated with the Peltier effect. Such a transition to 
spontaneous motion is possible under the conditions of 
strong superheating and supercooling of the phases in the 
two-phase structure. 

3. In fixed-voltage regimes both the longitudinal and 
transverse structures are unstable against transitions to the 
homogeneous states in the range of field strengths between 
E and E2 (Figs. 4a and 5a). The transition from one homo- 
geneous state to the other can occur as a result of the motion 
of transverse thermal waves. In this case the low-temperature 
phase is stable against the transition to the high-temperature 
phase at E<Eo, and the high-temperature phase is stable at 
E>Eo. 

In materials with u, > u2: 
1. There is a stable longitudinal structure in the fixed- 

voltage regime (Fig. 4b). 
2. In the fixed-voltage regime there is a stationary trans- 

verse structure (Fig. 5b), in which the low-temperature phase 
is superheated and the high-temperature phase is super- 
cooled. This structure can be morphologically unstable. At 
sufficiently high degrees of superheating and supercooling of 
the phases the stationary structure can become unstable 
against the appearance of spontaneous motion. 

3. In the fixed-current regime the longitudinal and trans- 
verse periodic structures are unstable against transitions to 
the homogeneous states in the range of currents between j, 
and j2 (Figs. 2b and 6b). Transitions between the homoge- 
neous states can occur as a result of the propagation of lon- 
gitudinal thermal waves. 

We considered very simple periodic structures contain- 
ing one plane of each of the phases in each period. In the 
general case these structures exist in a range of periods 
greater than a certain critical value. In the case of stationary 
structures or structures that move only because of the Peltier 
effect, this critical value of the period is equal to zero within 
the current interval [j, ,j2] or the field interval [El  ,E2] (see 
Figs. 4b and 6a). Transitions of the period-doubling type and 
the formation of more complicated periodic structures are 
apparently possible. However, an analysis of these questions 
is beyond the scope of the present work. 
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