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We give a rigorous solution that describes, in the laboratory reference frame, the dynamics of 
charged particles moving in the field of a fast or slow transverse electromagnetic wave 
with an arbitrary field strength. We determine the size of the interaction region where the particles 
effectively exchange energy with the field, and determine the dependence of the frequency 
of oscillations of passing and captured particles on the wave's field strength. We also formulate 
the conditions in which the particles are accelerated by the wave and the conditions in 
which the particles give up some of their energy to the wave. Finally, we show that even in a 
single interaction with the field, the transfer of energy from a flux of particles with a 
large energy spread to short-wave radiation can be highly efficient. O 1996 American Institute 
of Physics. [S 1063-7761 (96)00309-51 

1. INTRODUCTION 

The interaction of transverse electromagnetic waves and 
charged particles is a fundamental process lying at the base 
of many phenomena that emerge in the interaction of radia- 
tion and matter. The literature devoted to studies of this in- 
teraction is vast. The results of such studies can be found in 
books, reviews, and monographs (see, e.g., Refs. 1-4 and the 
literature cited therein). A subject thoroughly studied in this 
respect is the dynamics of particles interacting with the field 
of a wave whose amplitude is small. By a small-amplitude 
wave we mean a wave whose nonlinearity parameter 
i/= , -eElmcw is small. Here E and w are the amplitude and 

frequency of the wave, e and m are the particle's charge and 
mass, and c is the speed of light. Advances in laser physics 
allow for pump waves in which 5% 1. Such fields make it 
possible, among other things, to construct new compact ac- 
celerators with exceptionally high acceleration rates. Basi- 
cally, it was the possibility of employing intense laser fields 
to accelerate charged particles that stimulated research in the 
dynamics of particles in laser fields. Such research started 
immediately after the advent of lasers. Apparently the first 
work in this field was Ref. 5, while the latest are Refs. 6 and 
7. Most researches have analyzed acceleration patterns in 
electromagnetic fields of a fairly complicated structure. For 
this reason, e.g., in Ref. 8, the analysis of the dynamics of 
particles in high-intensity fields was done numerically, while 
analytical studies required using various small parameters. 
The most natural and commonly used smallness parameter is 
the nonlinearity parameter Y;. Rigorous solutions are ana- 
lyzed infrequently. The reason is that only for the simplest 
field configurations can such solutions be found. But even 
here the formulas provide a solution only in implicit form, 
which complicates analysis. For instance, in Ref. 1 a rigor- 
ous solution was found (in the reference frame in which the 
particle on the average is at rest) for the problem of a 
charged particle moving in the field of a plane electromag- 
netic field in a vacuum. The form of these solutions is not 
always convenient, especially for analyzing the interaction 

with the field not of a single particle but of a flux of particles, 
since different reference frames must be assigned to different 
particles, depending on the phase with which a particle en- 
ters the interaction region. Using the Hamilton-Jacobi equa- 
tion in the same way as it was done in Ref. l ,  we arrive at 
rigorous solutions in any reference frame, including the labo- 
ratory one. Much effort is required to obtain similar solutions 
for the problem in which the particles move in the field of a 
slow wave. However, as will be shown shortly, these solu- 
tions can be obtained in a simpler manner directly from the 
equations of motion, without resorting to the Hamilton- 
Jacobi equation. 

In this paper we obtain the main formulas describing, in 
the laboratory reference frame, the dynamics of particles 
moving in the field of a fast or slow transverse electromag- 
netic waves of arbitrary strength and polarization. The for- 
mulas are used to determine the conditions for effective en- 
ergy exchange between wave and particles. We will show 
that, notwithstanding the implicit nature of the exact solu- 
tions, their analysis makes possible a better understanding of 
the various aspects of particle dynamics, especially for par- 
ticle motion in high-intensity fields, where the nonlinearity 
parameter 25' is not small. 

The basic integrals of the motion are obtained in Sec. 2. 
In Sec 3 we analyze the dynamics of particle motion in a 
vacuum, find the dimensions of the interaction region needed 
for efficient energy exchange between wave and particles, 
and determine the dependence of the oscillation period on 
the field strength. There we also formulate the conditions in 
which the particles are accelerated or give up some of their 
energy to the wave. In Sec. 4 we derive the main expressions 
describing the dynamics of particle motion in the field of a 
slow wave. The conditions needed for the particles to be 
captured are also determined, and so are the frequencies of 
the capture oscillations. Phase stability of particles in a wave 
with a variable phase velocity is described in Sec. 5. Finally, 
the most important results are summarized and discussed in 
the Conclusion. 
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FIG. 1. Intersection of the hyperboloid 
y 2 - p : - p T =  1 with the integral of longitu- 
dinal motion p,- k y=p, ,-  k yo for two 
cases of particle-wave interaction: (a) the 
wave is fast (ks I ) ,  and (b) the wave is 
slow (k> I). 
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2. BASIC EQUATIONS AND INTEGRALS OF THE MOTION 

We start with a charged particle moving in the field of a 
plane electromagnetic wave of arbitrary polarization. The 
components of the electric and magnetic fields in such a 
wave can be written as 

where *=of- kr, Eo= d o ,  with a= {a, ,ia, ,a,) the 
wave's polarization vector, ko=olc,  and o and k are the 
wave's frequency and wave vector. We introduce the follow- 
ing dimensionless variables: 

In these variables the equation of motion assumes the form 
(we drop the subscript "1") 

It is convenient to augment Eq. (2) by an equation that de- 
termines the particle energy and can be found from system 
(2): 

where y= JK2 is the dimensionless particle energy (mea- 
sured in units of mc2). 

Equations (2) and (3) have the following well-known 
integrals of the motion: 

The subscript "0" labels the initial variables. 
Without loss of generality, below we assume that the 

wave propagates along the z axis, i.e., k={O,O,k). 
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For the case of a linearly polarized wave (a, =0)  the 
equations of motion (2) and the integrals of the motion (4) 
yield another integral of the motion, important for further 
analysis: 

2 2 
Px Pxo 

( Y - Y * ) ~ - ~ = ( Y ~ - Y * ) ~ - ~ .  

where 

For the case of the interaction in a vacuum (k= 1) we can 
write the integral of the motion (5) as 

2 2 
Px - Pxo 

Y= 2( yo-pzo). 

Let us find the region in the energy-momentum space 
(y,p) within which the particles can move. We do this for a 
particle interacting with a linearly polarized wave (a,=O). 
Then py=pyo=const. Particle motion in this case is re- 
stricted by the condition 

The condition specifies a hyperboloid of two sheets. Only its 
upper sheet ( g 2  1), which is depicted in Fig. 1, carries 
physical meaning. The motion is restricted not only by the 
hyperboloid surface but also by the integral of the motion 
pz- k y=pzo- k yo, i.e., real motion takes place along the 
section of the hyperboloid by this integral of the motion. 
Figure la  depicts this section for the case where the particles 
interact with the field of a fast wave ( k 6  1), and Fig. lb  
depicts the section of the same hyperboloid by the same 
integral of the motion fork> 1, i.e., when the wave interact- 
ing with the particles is slow. Particle motion takes place 
along the line of intersection of the integral of the motion 
and the hyperboloid. While in the first case (Fig. la) the 
section is a hyperbola (k< I ) ,  in the second (Fig. lb; 
k> 1) it is an ellipse. At k= 1 the intersection line is a pa- 
rabola. Qualitatively the difference between the possible tra- 
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jectories (closed or open) rests within a relatively simple 
fact: in a vacuum (k= 1 ) and in the field of a fast wave T=?(%+ -L[g:(h+sin2 u,) 
(k< 1) the particles can travel with respect to the wave, Y& 
which can carry them along (see below), while a slow wave 
(k> 1) can capture them. Equations (5) and (6) are the ana- - 2 gxpx0 sin $,, . 
lytical expressions for the projections on the (p, , y) plane of I I (9) 

the lines of intersection of the integrals of the motion and the 
hyperboloid. In the reference frame in which the particle is on the average 

at rest Eqs. (8) and (9) yield 

3. INTERACTION IN A VACUUM 8: cos 2@ 
px= 8, sin @, py=O, p,=- 

The most thorough analysis of the dynamics of the par- 4Y(t ' 

ticle motion can be performed when the particles interact 
X= - %'x cos fi gi sin 2+ 

with the field in a vacuum. Bearing in mind the relation , y=O, z = -  
between the phase @ and the integrals of the motion (4), we r3/ 8 ( ~ 3 / ) ~  ' 

find that 

combining (7) with the system of equations (21, we easily The expressions coincide with those obtained in Ref. 1. 

arrive at the following general expressions for the particle's It is easily shown that in the same reference frame where 

momentum components and energy: the particle is on the average at rest the expressions for the 
momenta and coordinates of the particle in the case of circu- 

P,' P,O+ gx(sin (li- sin $01, lar polarization also coincide with those derived in Ref. 1. 
Note that the choice of the reference frame where a par- 

pY=pyo+ gY(c0s @-COS $01, ticle is on the average at rest depends on the phase with 
(8) which the particle enters the interaction region, i.e., on +, . 

(P: +P;)-(P:o+P;o) For this reason using such a reference frame is inconvenient 
PZ"PZ0* 

2Y* if we are studying the energy exchange between a large num- 
ber of particles and the field. It is much simpler to study the 

Y" Y O * ( P ~ - P ~ O ) ~  dynamics of the interaction using Eqs. (8) and (9) and the 

where ~x,y=eEocux,y l m c o ;  the upper sign (+) in the ex- 
pressions for y and p, corresponds to the case where the 
wave and particle propagate in the same direction ( k  = 1 ), 
and the lower sign ( - ) to the case where they propagate in 
opposite directions (k = - 1 ). 

Combining (8) and (7), we can easily find the expres- 
sions for the particle coordinates and the period of particle 

integral of the motion (7). 
Let us now analyze the above expressions. First, they 

clearly suggest that the wave carries the particles along, 
which becomes especially evident when one examines the 
case of a wave interacting with particles that were initially at 
rest. Putting pxo= pzo = 0 and xo = zo = q50 = yo = 0 in Eqs. 
(8) and (9), we find that 

oscillations ii the field of the wave. To avoid cumbersome 
formulas, they are written below only for the particular case px=%; sin +, pz= k q Y  I 2  ,(1 -cos 2$), 
of a linearly polarized wave (ay=O): 

1 
X = X O + - [ ( ~ - $ O ) ( P ~ O - ~ ~  sin $o)-?Yx(cos 1C, 

Y* 

z o -  0 1 1 
z=zo+ - +-It c- 

Y* 2( Y * ) ~  

(10) 

where T is the oscillation period. We see that, while oscil- . . . .  . . 
lating, the particle is carried along by the wave. The oscilla- 

+ s i n Z ~ o ) - 2 K x p x o s i n ~  tion period depends on the field strength and for ?Yx9 1 is 
considerably longer than the wave's period. If the region in 

I 
which the field interacts with the particles is large, Eqs. (8)- 

- 2 sin t,b0(cos 9- cos rClo) (10) can be averaged over the oscillations. As a result we 
obtain the average coordinates, energy, and momentum of 
the particle carried along by the wave. For a particle that was 

- 2Fxp,o(cos $- cos go) initially at rest (po< I )  these quantities are 
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8: 8 :T 
(y )= l+-  ( z )  = " ---- 

4  ' 4+8: '  

Now we analyze the problem in detail. Note that al- 
though the general expressions (8) and (9) appear to be 
simple, they are really complex because the phase rjl is a 
function of the initial phase t,ho. Below we examine the most 
interesting particular cases amendable to simple analysis. 

Let pxo= 0. Then, as Eqs. (8) imply, the energy and lon- 
gitudinal momentum of a particle vary periodically but al- 
ways remain larger than, or equal to, the initial values yo and 
pzo. For a relativistic particle ( yo% 1) the energy can vary 
within the following limits: 

Employing the integral of motion (7), we can easily find the 
field-particle interaction time t ,  or, which is the same, the 
length 1, of the field-particle interaction region in which the 
particle acquires the maximum energy y  = yo( 1 + 4  8). For 
instance, for yo+ 1 these two quantities are 

where A and To are the wavelength and period of the wave. 
If the particle is nomelativistic (yo= 1 ), the maximum 

energy is y= 1 + 2 8 .  A particle acquires this energy over a 
distance of 

Thus, if the field-particle interaction region is limited (the 
characteristic size being I,), then after the particle flux has 
travelled through this region it will on the average acquire 
some energy. The main drawback of this acceleration mecha- 
nism is that there is a spread in particle energy at the exit of 
the interaction region and that the particles have transverse 
velocity. The maximum transverse velocity at the exit is 
lpxl = 2 g X ,  and in the course of the field-particle interaction 
the particle shifts in the transverse direction by l < A  yoZX. 

Note that the optimum transverse size of the interaction 
region (see (1 1)) is simply the distance over which the phase 
of the wave on the electron path changes by T .  For @< 1 
this distance is 2 -y2 times greater than one-half of the wave- 
length, Al2, and is determined solely by kinematics and the 
relativistic Doppler effect. When D 1, the effect of a par- 
ticle being carried along by the wave begins to play an im- 
portant role, and for 8% 1 this can essentially increase the 
size of the region of effective energy exchange. 

Suppose that pxo # 0 and that 28X4pxo4pzo-  yo%- 1. 
The maximum variation of the particle energy, 
A y= y- yo, is then determined by the following expres- 
sion: 

The size of the interaction region along the z axis in which 
the particle acquires or gives up an amount of energy equal 
to (12) is 

Note that while at pxo= 0  a particle can only acquire energy 
after interacting with the field, in the case at hand it the can 
acquire or give up energy, i.e., the particle can be accelerated 
or the intensity of the wave can grow due to the energy from 
the particle beam. 

For particles with nonzero transverse velocity at the en- 
trance to the field-particle interaction region (pxo # 0 )  an 
important characteristic is the minimum transverse size of 
the interaction region needed for effective energy exchange. 
If the above inequalities hold, this size is 

More interesting from the practical viewpoint is the case 
where the wave interacts with a flux of particles rather than a 
single particle. If all the particle have the same velocity and 
are uniformly distributed in space, the efficiency of energy 
exchange between the particle flux and the field can be found 
by averaging the expression for the energy in (8) over the 
phases @oi of the particles entering the region of interaction 
with the field. The difficulty of such averaging is caused by 
the fact that the phase of the ith particle is related to the 
initial phase Goi implicitly. Generally, the relation between * and y30 can easily be obtained from (9) if we specify either 
the longitudinal or the transverse dimensions of the interac- 
tion region. In some cases it is more convenient to relate fl 
and +o through a fixed longitudinal size. For instance, if 
pxo= 0  and 8;4 1, from (9) we see that for z this relation- 
ship becomes quite simple (linear): 

If in (13) we put zo=O and yo%- 1 and assume that the co- 
ordinate z is equal to the optimum size, z = zap,= 2 .rr y:, the 
relation between the phase at the exit from the interaction 
region and the phase at the entrance to that region is espe- 
cially simple: 

Using this relationship, we can easily find the average energy 
and the average momenta of the particles in the beam ac- 
quired by the particles after interacting with the field: 

The relationship between * and I / J ~  is also simple if 
pxo% ?YX for an arbitrary value of &;,: 

where 

8 
E = -  

9 

Pxo  

1 
@ -( x - x o ) ( ~ o - ~ ~ o ) " . r r .  

Pxo 
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FIG. 2. Projection of the line of intersection 
of the energy hyperboloid and the integlal of 
motion onto the ( y , p , )  plane when a par- 

Y Y ticle interacts with a slow wave: (a) for 
) up,,> v o ,  and (b) for vqh< V O .  In the latter 

case the particle may glve up all of  its en- 
ergy to the wave. 

Plugging (14) into the expression for the energy in (8) and 
averaging over the initial phase, we arrive at the following 
expression for the average velocity: 

where J ,  is the nth order Bessel function of the first kind. 
Note that in deriving (15) we only used the fact that the 

parameter E is small, i.e., both e.6 and E, can be arbitrary. 
Equation (15) shows, in particular, that by appropriate 

choice of the beam parameters and the size of the interaction 
region not only can the beam be accelerated but also the 
opposite process can be initiated, i.e., some of the beam en- 
ergy can be given up to the wave. For instance, for 
tP= 0.3, (= 5 d 2 ,  and vZo= 1 from Eq. (15) it follows that 
the beam gives up 15% of its energy to the wave in the 
course of one pass through the interaction region. The mini- 
mum dimensions of the interaction region for this case are 
I ,=  5X y;/4 and 1,= 5 X yo/4. An important feature of such 
energy transfer from particle beam to wave is the fact that 
the efficiency of such transfer is independent of the beam 
quality. Indeed, the acceptable beam energy spread Sy can 
be estimated from the condition that 66s T. Combining this 
with the assumption that the dimensions of the interaction 
region are given yields S y S  y. 

of the ellipse (y< y,) and qualitatively is no different from 
the motion of particles that interact with the wave in a 
vacuum. But if the field strength in the wave is so high that 
B :> ( yo- y*)2/4yihvih the particles are captured by the 
wave and move along the ellipse, i.e., they perform capture 
oscillations in the field of the transverse wave. 

In the second case the particles overtake the wave 
(v0> vph) and are slowed down. More than that, it can easily 
be shown that if the wave's phase velocity and the initial 
velocity of the particle are related through the formula 

and the particle proves to be captured, the particle gives up 
all of its energy to the wave ( y= 1 ). Figure 2b corresponds 
to this case. 

The dynamics of particles in the field of a slow wave is 
much more complicated for analysis than in the case of field- 
particle interaction in a vacuum. The primary reason is that 
(7) is no more an integral of motion. Instead we have 

Below we give the main formulas describing the dynam- 
ics of a particle in the field of a slow wave. As with field- 
particle interaction in a vacuum, the expressions for the mo- 
menta and energy of the particle can easily be found for the 
general case: 

px=pxo+ gxo(sin $- sin $o), 

4. INTERACTION OF PARTICLES WITH THE FIELD OF A 
SLOW WAVE pz=pzo+k(y,-yo) l - ~ ~ ( s i n  $-sin $o)2 

As noted earlier, the dynamics of particles interacting 
with the field of a slow (k> 1) transverse electromagnetic 
wave may drastically differ from that of particles interacting 
with a fast wave (ks 1). Figures la  and b clearly illustrate 
this distinction. The field of a slow wave may capture a 
particle, which manifests itself in the fact that the integral 
curves along which the particle moves become closed (see 
Eqs. (5) and (6)). Figures 2a and b depict the projections 
onto the ( y,p,) plane of these curves for the particular cases 
of pXo=O with 1 >vph>v0 and pxo=O with 1 >v0>vph, 
respectively. 

In the first case (Fig. 2a) the particle velocity is lower 
than the wave's velocity. The particle can only be acceler- 
ated, as in the case of interaction in a vacuum. Here, if 
if ,2<( yo- y*)2/4yi~%h the particles are not carried along 
by the wave, and the motion occurs only along the left half 

2 ~ x 0  
- K~ -(sin 81 $- sin 14~) , I 'I2} 

where 

The upper sign (+) in front of the square brackets in (17) 
corresponds (for acceleration; Fig. 2a) to motion along the 
right half of the ellipse (y>  y,), and the lower sign (-) to 
the motion along the left half (y<  y,). The expressions for 
the particle coordinates can be found by integrating (17). 
Generally these are cumbersome expressions, but can easily 
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be derived nevertheless. Rather than writing them in full, we 
give an idea of the characteristic dimensions of the region of 
effective energy exchange and the characteristic time scales 
by writing these expressions for the special case of $o=O, 
pxO = 0. and $S !T: 

- B 
In 

{I K COS $+ J-1 
1 + K  4 k 2 -  l ) ( y * -  Y O )  

9 

where F ( $ , K )  is the elliptic integral of the first kind, 

cp= arc sin(^ sin $1, K~ sin2 $< 1 ,  

with K <  1 corresponding to the case of passing particles and 
K> 1 to the case of captured particles, and r is the time it 
takes the particle to reach phase 4. 

These formulas make it possible, among other things, to 
find the frequency of small phase oscillations of the captured 
particles by taking into account the symmetry of the motion. 
In such oscillations $4 1, K% 1 ,  K sin I& 1, and cpG ;T. 
Plugging these values into (20), we find w, = w Bx I Yih~;h  . 
As we get closer to the separatrix separating the passing 
particles from the captured, we see that the frequency of the 
phase oscillations tends to zero: 

5. PHASE STABILITY 

It would be interesting to establish the possibility of 
phase stability in a transverse wave and to find the special 
features of this phenomenon. To this end we assume that the 
parameters of the medium together with the wave's phase 
velocity slowly vary along the direction z in which the wave 
propagates. The phase of the wave can then be written as 

Clearly, both the equations of motion (2) and the integrals of 
the motion (4) retain their form. As in accelerator theory, we 
introduce the concept of a synchronous particle, whose ve- 
locity varies in the same way as does the phase velocity of 
the wave (us= vph).  

Using the integrals of motion (4) to determine the phase 
$, we can easily derive the following equation: 

k k ,  1 
$- -4- -rBx['(sin 2$- sin 2+& + -(Cx cos + 

k  Y  2~  Y  

We analyze only the behavior of small deviations of the 
phase from the synchronous. This means that we put 
$= cp,+ cp, with cp* 1 ,  and linearize Eq. (21) with respect to 
cp. As a result we arrive at the equation of damped oscilla- 
tions of a pendulum for determining cp: 

where 

An expression for the frequency of phase oscillations at 
pxo=O was derived in Ref. 9, while expressions for n2 for 
pxo= 0  and pxo% 23'' were derived in Ref. 10. 

6. CONCLUSION 

An important conclusion that can be drawn from the 
above results is that restricting the region of field-particle 
interaction leads to efficient exchange of energy between 
field and particles. The following remark is apparently in 
order here. In Ref. 6 a categorical statement was made to the 
effect that it is impossible to accelerate charged particles 
with an electromagnetic field in a vacuum by a force propor- 
tional to the first power of the electric field strength E. This 
is of course true if the region where the particles and the field 
interact has no boundaries. But in reality the region is lim- 
ited, and there can be efficient exchange of energy between 
wave and particles. The same result follows from the formu- 
las of Ref. 6 if one assumes the field-particle interaction 
time to be finite (OGtGT) rather than infinite 
( - a < t < a ) ,  as is done in Ref. 6. 

If the particle and wave move in the same direction 
(pxo= 0 ) ,  the particle always acquires energy from the wave, 
with the energy increment proportional to the particle energy 
and the square of the electric field strength: A y cc yo2T '. 
Note that the quadratic dependence on the field strength is in 
no way related to the oscillatory motion, with the result that 
all restrictions on the particle energy related to bremsstrah- 
lung, which limit the possibility of particles being acceler- 
ated by the Miller force: are lifted. Moreover, when a pon- 
deromotive potential accelerates a particle, the energy 
increment is inversely proportional to the energy (A y  
a 81 yo), with the result that at high energies ( yo% 1 ) the 
energy-exchange mechanism considered here is more effec- 
tive. 

If pxo # 0, a particle may be accelerated but it may also 
be slowed down. An important feature of the transfer of en- 
ergy from particle to wave is the weak dependence of the 
efficiency of energy transfer on the beam energy spread 
(Sy-  y) .  This feature of the scheme of amplification of 
short-wave radiation has an advantage over other schemes of 
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free electron lasers, in which the spread must be small 
( S y S  for amplifying a wave with X-- 10 pm; see 
Ref. 11). Amplifying shorter waves requires beams of even 
higher quality (Sy- l ~ - ~ ~ ) .  This result can easily be ex- 
plained. In traditional schemes of free electron lasers a self- 
consistent dynamics of particles and field is considered. Ex- 
citation (amplification) of a wave occurs as a result of 
development of a collective beam instability. The process 
begins at the linear stage, when the field amplitude is low. 
Here only high-quality beams can efficiently (with a hydro- 
dynamic increment) excite short-wave radiation. In the 
scheme of energy transfer from particles to wave considered 
here the field of the wave does not change, i.e., the fixed- 
field approximation is valid, and the field strength is high so 
that the field completely determines the dynamics of the par- 
ticles. Clearly, such an approximation is valid if in the course 
of the time it takes a particle to pass through the interaction 
region all variations in the field strength can be ignored. It is 
also assumed that the field is in a steady-state regime, i.e., 
the increment in field energy is balanced by the field leaving 
the interaction region. Thus, when such an approximation 
holds, low-quality beams ( S y S  y) can be used to excite 
short-wave radiation. 

The above possibilities of energy exchange between par- 
ticles and fieid are rough models of real schemes that can be 
employed. To bring the models closer to reality we must 
allow for inhomogeneity in the transverse structure of the 
field and study the process of energy exchange not in a single 
isolated interaction region but in a set of such regions orga- 
nized in some manner. The results of such studies can be 
found in Refs. 7, 12, and 13. To accelerate charged particles, 
sugiharaI2.l3 suggested using a laser flux consisting of a 
large number of parallel elementary beams, with the phase of 
each beam shifted by a certain value in relation to the phase 
of the previous beam. The effective field acting on particles 
that cross such a laser flux at a certain angle is equivalent to 
the field of a slow electromagnetic wave. Allowing for the 
inhomogeneous structure of the field of the elementary 
beams does not drastically change the dynamics of the par- 
ticles. Another interesting way of organizing of the elemen- 
tary regions was proposed by Apollonov et ~ l . ~  In their 
method a laser beam is successively reflected from many 
mirrors mounted in a pattern similar to that of electrodes in a 
photomultiplier, and the path traveled by a laser beam is 
similar to that traveled by electrons in a photomultiplier. The 
accelerated particles move along the system's axis between 
the mirrors, successively intersecting each laser beam in its 
focal cross section. This method of organizing the elemen- 
tary regions, with allowance for the above-described pro- 
cesses in each region, can apparently be used as a guide for 
building real accelerators and free electron lasers. 

In addition to allowing for the transverse structure in real 
systems we must also analyze the dynamics of the particles 
at the entrance to, and exit from, the interaction region. In 
these local regions the field structure differs from that of a 
plane transverse electromagnetic wave. Indeed, even in such 
a region as that between the mirrors of an open cavity, the 
plane structure of the field is distorted in the vicinity of the 

openings in the cavity through which the particles get into 
the cavity. 

As the laser field becomes more intense, the efficiency of 
energy exchange between particles and field grows, and so 
does the rate of particle acceleration. High field strengths are 
produced by focusing the radiation. A focused field is spa- 
tially inhomogeneous, which leads to the emergence of a 
ponderomotive force. This force must be taken into account 
since it may have a considerable influence on the dynamics 
of the accelerated particles and the properties of the medium. 
Generally, high field strengths of even a homogeneous field 
lead to destruction of the medium. Indeed, in experiments the 
intensity of focused laser radiation has reached a value of 
3 X 10" W cm-2 (see Ref. 14). The strength of the electric 
field of such radiation exceeds that of interatomic fields. The 
state of the medium in such fields changes-the medium is 
transformed into a plasma. Inevitable density fluctuations 
lead to the appearance of high-frequency pressure forces and 
to an increase in the degree of the medium's inhornogeneity. 
As a result, modulation instability develops. Hence an accel- 
eration scheme with the medium (plasma) as an element has 
potential, apparently, only for pulsed mode operation. The 
pulse length in such schemes is limited by 
T =  min(dl8c;r-I), where d is the diameter of the laser 
focus, and r is the modulation instability increment. These 
difficulties have led to a situation in which more and more 
attention is being paid to developing schemes of laser accel- 
eration without any medium. One example is the inverted 
free electron laser. Apollonov et aL7 developed a new ap- 
proach to this problem that has many advantages over other 
approaches. They suggested using a combination of a laser 
field and an external static magnetic field to accelerate 
charged particles. The use of an external magnetic field to 
create conditions for effective energy transfer between par- 
ticles and field has a long history. Many schemes of acceler- 
ating particles and generating electromagnetic waves have 
been developed over the years. However, Apollonov et aL7 
took into account an important physical fact, i.e., that if the 
magnitude of the external transverse static magnetic field ex- 
ceeds a certain value, proportional to the particle energy, 
then the frequency of the laser field oscillations along the 
electron path varies with time. As a result, in passing through 
the interaction medium the particles, on the average, acquire 
energy. Estimates of the maximum increment in the particle 
energy in a single pass through the interaction region yield 
(in our variables) A y= y o S  2ru ( S <  1 and a> 1 ), which is 
a quantity of the same order as the one obtained in our 
scheme. There are three important features determining the 
advantages of the approach developed in Ref. 7. First, and 
the most important, is that the exchange of energy between 
particle and wave is not strictly resonant. Hence the limita- 
tions related to the nonlinear shift in the phase of the accel- 
erating wave with respect to the particle (limitations critical 
in schemes of the inverted free electron laser type) are un- 
important here. Second, acceleration takes place in a 
vacuum, and all the problems associated with the special 
features of the interaction of intense laser radiation with mat- 
ter (with plasma, in particular) have no meaning. Third, the 
external transverse magnetic field can bring the accelerated 
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particles back to the field-particle interaction region, i.e., 
multiple cyclic particle acceleration becomes possible. We 
have listed the advantages of the approach developed in Ref. 
7 because they are inherent in the acceleration schemes that 
can be proposed on the basis of the results obtained in the 
present paper. 

We would also like to emphasize the importance of tak- 
ing into account the integrals of motion (5) or (6). In various 
schemes of acceleration of charged particles the complexity 
of the structure of the accelerating field forces one to analyze 
the longitudinal (phase) motion of particles and the trans- 
verse motion separately. For longitudinal motion it is suffi- 
cient in many cases to examine only one integral of the mo- 
tion in (4). But in some cases the analysis of this integral of 
the motion without taking into account (5) or (6) may lead to 
an error. For example, let us consider the motion of a particle 
along the z axis, with the angle at which the slow electro- 
magnetic wave (k> 1) moves with respect to this axis being 
such that k z =  1. We analyze only one integral of the motion 
in (4), the one characterizing the longitudinal motion of a 
particle: 

pz- y- tTz sin += Cz . 
This integral of the motion implies, in particular, that the 
particle can be accelerated without limit (y+m)  by a field 
with a finite amplitude KZ. The same integral of the motion 
can be used to find the conditions needed for securing the 
particles in the limitless acceleration regime and other char- 
acteristics of particle motion. But, as the integral of the mo- 
tion (5) shows, limitless acceleration in this case is impos- 
sible: the paths in the ( y,p,) plane are always closed and the 
quantities y and p ,  are always finite. 
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