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A nonlinear perturbation scheme, which describes the displacement of Abrikosov-Josephson 
vortices under the influence of a local perturbation, is developed for Josephson junctions with a 
large critical density, in which the Josephson length is shorter than the London length. 
Nonlinear oscillations of the vortex position and nonlinear relaxation during the evolution of 
pinning are considered both in the case of a tunnel junction between bulk superconductors and in 
the case of a tunnel contact between superconducting films. The pinning force for 
Abrikosov-Josephson vortices, which is determined by the perturbation of the Josephson critical 
current density, is obtained. O 1996 American Institute of Physics. [S 1063-776 1 (96)02808-91 

1. INTRODUCTION 

1. Investigations of the properties of vortex structures in 
Josephson junctions with a large critical current density are 
based on nonlocal electrodynamics,' which becomes neces- 
sary under conditions such that the Josephson length Xi is 
less than the London length A. A detailed discussion of the 
experimental conditions under which nonlocal Josephson 
electrodynamics applies was given in Refs. 2 and 3. These 
conditions correspond to values of the Josephson critical cur- 
rent density exceeding lo6 .4/cm2, as well as large values of 
the Ginzburg-Landau parameter K .  The latter are common 
in type-I1 superconductors. A set of exact solutions of this 
electrodynamics describing both vortex structures at 
and vortex structures moving along a tunnel j ~ n c t i o n ~ - ~  has 
been obtained. The energy of such vortices greatly exceeds 
the energy of ordinary Josephson vortices and approaches 
the energy of Abrikosov vortices. In the structure of their 
magnetic field, the new vortices are similar to Abrikosov 
vortices, although, unlike the latter, they do not have a sin- 
gular core. The uniqueness of the new vortices and their 
similarity to Abrikosov vortices together with their Joseph- 
son character gave rise to the term Abrikosov-Josephson 
v~r t ices .~ '~  

Gurevich and cooley8 considered the interaction of an 
Abrikosov vortex with an Abrikosov-Josephson vortex and 
showed that the interaction allows for strong pinning of the 
Abrikosov vortex. The study in Ref. 8 established a new 
possible physical cause for the strong pinning of Abrikosov 
vortices, which can be of great practical importance. It speci- 
fies, in particular, one of the important motivations for an 
experimental search for manifestations of anomalous Joseph- 
son junctions with a large critical current density. There is 
already an in the literature that such anomalous 
Josephson junctions can form, for example, on twin planes in 
YBaCuO (Refs. 9-1 1) or on thin ribbon inclusions of a-Ti 
in Nb-Ti superconductors,'2-'4 which have become widely 
used in technology. There are clearly numerous similar natu- 
ral and artificial plane defects (see, for example, Ref. 8). 

Since, generally speaking, interacting Abrikosov and 
Abrikosov-Josephson vortices can move together in some 
directions in the plane of a junction, it would be interesting 

to understand the possibility of the pinning of an Abrikosov- 
Josephson vortex at some site in this plane. However, the 
pinning of Abrikosov-Josephson vortices themselves has not 
hitherto been examined, although this question was consid- 
ered long ago for ordinary Josephson v~rtices. '~ Below we 
fill in this gap to a certain extent. 

Section 2 discusses a linear perturbation scheme, which 
makes it possible to elucidate the perturbation determining 
vortex pinning, for which the linear perturbation scheme is 
unsuitable. The general form of this perturbation is estab- 
lished in Sec. 3. Section 4 is devoted to a time-independent 
nonlinear perturbation scheme that makes it possible to de- 
termine the displacement of a vortex under the action of a 
local perturbation of the critical current in a tunnel junction. 
Section 5 gives a general description of the nonlinear evolu- 
tion of the position of a vortex when it is pinned. In addition, 
in the last two sections the general assumptions of the 
scheme are applied to the case of a solitary vortex (a 27r 
phase kink) in a tunnel junction between two bulk supercon- 
ductors. The necessary treatment of a solitary vortex in a 
tunnel junction between two superconducting films is per- 
formed in Sec. 6. Finally, Sec. 7 summarizes the results. The 
pinning force is considered in the Appendix. 

2. In this section we present some assumptions underly- 
ing linear perturbation theory, which point out the route to be 
followed below in considering the pinning of Abrikosov- 
Josephson vortices. 

We write the equation for the phase difference cp(z,t) 
between the Cooper pairs on the two sides of a tunnel junc- 
tion in the form (compare Ref. 15) 

Here w j  is the Josephson frequency, and acp] is a linear 
operator, which reduces in local electrodynamics to the dif- 
ferential operator A;(d2cpldz2), where Xi is the Josephson 
length, and is an integral operator in the nonlocal electrody- 
namics of Josephson junctions. Below we shall discuss, in 
particular, the consequences pertaining to the clearly ex- 
pressed nonlocal limit, in which the operator acp] reduces 
to l H [ q , ] ,  where 
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is a Hilbert transf~rmation,'~ and 1 = A?/A is the characteris- 
tic length defining the region where the energy of the 
Abrikosov-Josephson vortex is localized. 

The right-hand side of Eq. (2.1), as usual,15 is the per- 
turbation: 

where p is determined by the dissipation caused by the tun- 
neling of normal electrons through the barrier, q,,, is asso- 
ciated with the dissipation of normal electrons parallel to the 
barrier, i is the normalized distributed current density mak- 
ing a contribution to the energy, and, finally, the last sum 
describes the contributions of local regions with an increased 
Josephson current (microshorts, thin spots, etc.).15 

We are interested in how the perturbations affect the 
stationary state q o ( z )  specified by the equation 

In the case of (2.2) several solutions of such an equation 
were obtained in Refs. 2 and 3 for Abrikosov-Josephson 
vortices. 

We, first of all, consider the consequences of the linear 
perturbation scheme, in which 

Here we define the perturbation Sq using the linearized 
equation 

The consequences of this equation are analyzed using the 
eigenfunctions $, and the corresponding eigenvalues of the 
equation 

that were obtained for several stationary states q o ( z )  in Ref. 
7 .  In particular, for the sine-Hilbert equation, in which we 
have q]  = l H [ q Z ] ,  for the state 

which corresponds to the solitary Abrikosov-Josephson vor- 
tex obtained by ~urevich: according to Ref. 7 ,  we have the 
following system of orthonormalized eigenfunctions: 

( z 2 -  12)cos qz+  212 sin qz 
*+(z ,q )=  

J;;(z2+12)  I 4 q ) =  1 + q l ,  

( z 2 -  12)sin 92-212 cos qz 
* - ( z , q ) =  I 9 2 0 .  

J;;(z2+12)  
(2.10) 

Here the continuum states are doubly degenerate and are 
represented by even and odd eigenfunctions, respectively. 

The solution of Eq. (2.6) can be written in the form 

where, according to (2.6) and (2.7), for the expansion ampli- 
tudes we have the equation 

which specifies the amplitudes C ,  in terms of the assigned 
right-hand side. 

According to Refs. 3 and 7 ,  e n  is nonnegative for the 
stable states q o ( z ) .  If E ,  is positive, the solution of Eq. 
(2.12) for time-independent perturbations has the form 

If the spectrum of eigenvalues contains a zero eigenvalue 
( E ,  = es = 0 ) ,  as occurs in the case of (2.9), it can be stated 
that the linear perturbation scheme has a stationary solution 
only when the following orthogonality condition holds: 

A secular time dependence, which violates the condition 
that Sq be small as the time increases, appears for the non- 
stationary perturbation scheme, according to (2.12), when 
there is a zero eigenvalue ( e n  = E ,  = 0 )  and when the condi- 
tion (2.14) is violated. The simple and, to some extent, trivial 
conclusions of this section will make it possible below to 
formulate a simple intuitive nonlinear perturbation scheme 
that describes the pinning of Abrikosov-Josephson vortices. 

3. Thus, it has been shown that the linear perturbation 
scheme does not permit a consistent description of the per- 
turbation of stationary Abrikosov-Josephson vortices that is 
associated with the influence on the state with the zero ei- 
genvalue E , = O  and is described, in particular, by Eq. (2.9). 
We now show, first, that the presence of such an eigenstate 
of Eq. (2.7) is a general assumption and, second, that just this 
state is of special significance for the question of interest to 
us, the pinning of Abrikosov-Josephson vortices. 

In fact, for the model of an infinitely long junction, in 
which, for example, (2.2) holds, a stationary vortex state can 
be described both by the function q o ( z )  and by the function 
qo(z+  A ) ,  where A is a constant shift. Therefore, along with 
Eq. (2.4) we can write the equation 

sin q o ( z + A ) - % q o ( z + A ) ] = O .  (3.1) 

Expansion in powers of A in this equation and consideration 
of Eq. (2.4) make it possible, in particular, to obtain 

A comparison of this equation with (2.7) reveals that in the 
case of an arbitrary stationary vortex state, (3.2) describes 
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the eigenstate of (2.7) with the zero eigenvalue E =O. Here 
the general assumption is that the eigenfunction of such a 
state has the form 

where C is a constant, as occurred in the special case of Eq. 
(2.9). 

The eigenfunctions $,(z) of (2.7) clearly describe the 
displacement in space (shift) of Abrikosov-Josephson vorti- 
ces within the perturbation scheme. The corresponding am- 
plitude C, in the expansion (2.8) determines the magnitude A 
of this spatial displacement: 

The linear perturbation scheme does not allow one to find the 
amplitudes that determine the displacement of the vortices. 
Therefore, a nonlinear perturbation-theory approach, in 
which the expression (3.4) is small compared with unity, will 
be considered below. For example, in the case of (2.9) this 
corresponds to the condition A 4 1. 

4. Unlike (2.6), the nonlinear perturbation scheme re- 
quires retention of the next powers of Scp. More specifically, 
we now use the following equation: 

The next assumption, which lies at the basis of the approxi- 
mation used, is that the amplitude C, in the expansion (2.1 1) 
is significantly greater than the amplitudes of the remaining 
eigenstates. This is naturally surmized on the basis of the 
secular increase in this amplitude when the condition (2.14) 
is violated or on the basis of the undefined (infinite) nature of 
the response of the stationary linear perturbation scheme. 
According to this assumption (which, of course, will be jus- 
tified below), as an approximation we set 

We first consider the situation of a stationary perturbed state. 
Then, multiplying Eq. (4.1) by +Jz) and integrating over the 
coordinates, we obtain 

where 

dz cos cpo(z) #:(z). 

The cubic term is retained in Eq. (4.3) because of the occur- 
rence (see below) of a symmetry in which the coefficient A 

vanishes. However, even if we have A # 0, the amplitude of 
the shift state is of order ,u1I2, and if we have A =0, it is of 
order p1I3 and is thus certainly greater than the amplitudes of 
order p described by Eq. (2.13) for the remaining terms in 
the expansion (2.1 1). Therefore, the assumption that C, is 
much greater than the other expansion amplitudes is justified. 

To make the equations that follow specific, we assume 
the following stationary perturbation of the vortex structure 

Then 

We now consider the role of the perturbation (4.7) in 
determining the position of the solitary stationary Gurevich 
vortex (2.8), whose position is given according to (2.9) and 
(3.4) by the formula 

In this case we have 

and A = 0. The latter leads to the relation 

As a result of the pinning action of the perturbation (4.7), the 
Gurevich vortex (2.8) is displaced by the distance 

If the perturbation takes place at only one site and we have 
a k S l ,  then A=(32rk12/5rr)113(l/ak). 

5. We now turn to the temporal evolution of a vortex 
under the assumption that a perturbation having the form 
(4.7) acts at r>O. To complete the description of this evolu- 
tion, we separate the term with a first derivative with respect 
to time from (2.3) as the main part of the equation describing 
the evolution of the phase difference cp. Within the assump- 
tions previously advanced, this allows us to write the follow- 
ing equation instead of (4.1): 
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where the right-hand side of (5.1) is given by Eq. (4.7). Ac- 
cording to the approximation (4.2), for the case of A = 0 we 
obtain the following equation for the evolution of the ampli- 
tude of the shifted state C,(t): 

where pfS is defined by Eq. (4.4). 
When j? is not very large, the dissipative term in (5.2) 

can be neglected at moderate evolution times. Then the evo- 
lution of C, is described by the equation 

which is similar to the equation describing the nonlinear os- 
cillations of a particle with mass o,r2 in a field with the 
potential energy 

We note that the bottom of the potential well (5.4) has the 
value C,= C,(w), which is described by Eq. (4.12). 

The nonlinear vortex displacement oscillations are char- 
acterized by the following solution of Eq. (5.3): 

where E is an integration constant and C,(O) is the initial 
value of the amplitude of the shift state. 

In the initial stage, when dissipation has not yet entered, 
it can be assumed that at t=0,  C, and dC,ldt are equal to 
zero. This corresponds to E=O. Then Eq. (5.5) gives (see 
Ref. 17, 3.166, 23, p. 277): 

where F(cp,k) is an elliptic integral of the first kind, 

Equation (5.6) enables us to describe the nonlinear vortex 
oscillations explicitly in the following manner: 

where 

The elliptic cosine cn (~ ,k )  has a period 4K(k), which is 
determined by the complete integral of the first kind. 

Equation (5.10) allows us to write the following condi- 
tion for neglecting the dissipation in Eq. (5.2): 

The coefficient on the right-hand side of Eq. (5.9) differs 
from the stationary amplitude of the shift mode by a factor of 
2U3. This means that the oscillatory deviations of the vortex 
from its initial state exceed the time-independent deviation, 
and oscillations occur about this position. The characteristic 
time of the nonlinear oscillations of the position of the 
Gurevich vortex then appearing is given by the formula 

According to (4.13), an estimate of this time can also be 
written in the following simple form: 

With the passage of time, damping decreases the amplitude 
of the nonlinear vortex oscillations at times t S t o  Accord- 
ingly, the amplitude approaches the bottom of the potential 
well (5.4), which corresponds to the stationary value 
C,(m). Then, it becomes posible to have small weakly 
damped oscillations for 

which can be described by the equation 

near the stationary value. The frequency of these linear os- 
cillations equals 

and the damping rate equals P12. 
On the other hand, a qualitatively different situation, in 

which the conductivity of the tunnel junction is so great that 
the inequality opposite to (5.1 1) holds, is possible. Then the 
second derivative in Eq. (5.2) can be neglected. Accordingly, 
the nonlinear relaxation of the vortex displacement is then 
described by the equation (for A = 0)  

The solution of this equation corresponding to the initial con- 
dition C,(t = 0) = 0 is described by the relation (see Ref. 17, 
2.143, 4, p. 77) 

t of 1 J l + y + y 2  1 
2J3 113 - 1 = (p.fs) B t - g n  

Y J3 + - arctan - 
f r  P 6 2 + y '  

where 

For a sufficiently large time, 
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the stationary solution is established according to a linear 
relaxation law: 

In the limit Ln%l, where D-t4Ln,  these equations cor- 
respond to the theory for a Gurevich vortex. In the opposite 
limit, 

which corresponds to a tunnel junction between supercon- 
ducting films, the properties of an Alfimov-Popkov vortex 
are especially simple, since (2.1) becomes the sine-Gordon 
equation when Xcp] = 21LnpZ,. We now treat specifically 
this limit, in which 

D=ITJ~L;;~. (6.7) 

For a Gurevich vortex 

Thus, there are two possible regimes for establishing the sta- 
tionary displacement of a vortex under the perturbation (4.7). 
The first is the weak-dissipation regime corresponding to the 
inequality (5.1 l), under which nonlinear oscillations de- 
scribed by the comparatively simple laws of a nonlinear os- 
cillator appear over the course of a comparatively long time. 
The amplitude and period of the oscillations vary simulta- 
neously. Then, the dynamics of a linear oscillator with weak 
damping is observed in the final stage of the relaxation pro- 
cess. The second regime corresponds to strong dissipation 
and is realized under conditions that are the reverse of in- 
equality (5.1 l), under which the vortex displacement relaxes 
according to the nonlinear nonexponential law (5.18), which 
naturally transforms into a linear exponential law in the final 
stage of the relaxation process. 

6. Let us now consider the pinning of an Abrikosov- 
Josephson vortex in a Josephson junction between supercon- 
ducting electrodes of finite thickness. As was shown in Ref. 
18, in this case we have 

In this limit 

and 

2 sinh(rrz1D) 
sin qo(z) = - 

[cash( I T Z ~ D ) ] ~  ' 

Accordingly, 

Here the normalized shift eigenfunction has the form 

According to (3.4), the latter formula enables us to charac- 
terize the displacement of an Alfimov-Popkov vortex sub- 
ject to pinning in the following manner: 

dz' dv (z l )  
T . (6.1) 

sinhl,(z'-z) 

Here 2Ln is the distance between the superconducting elec- 
trodes between which there is a Josephson tunnel junction of 
negligible thickness. 

It was shown in Ref. 18 that the solution of Eq. (6.1), 
which describes a solitary Abrikosov-Josephson vortex at 
rest, has the form of the following 2 IT phase-difference kink 
of the superconducting pairs: 

Since, as in the case of a Gurevich vortex, we have A = 0, to 
apply the theory developed above we must know the quan- 
tities (4.4) and (4.6). Equations (6.9)-(6.11) allow us to ob- 
tain 

Pfs= P I '  
with D > 4Ln and is found from the equation 

where 

Since 
In accordance with Eq. (4.12), the stationary vortex shift 

(6.8) is determined by the stationary amplitude 

it is not difficult to prove that 

and the stationary shift itself has the form 
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Finally, we write the relation that specifies the characteristic 
time to, which determines the nonlinear regime of the vortex 
oscillations (5.9): 

According to (5.16), this time also determines the frequency 
of the small linear oscillations (5.15). 

Finally, for the strong-dissipation vortex relaxation time 
(6.8) we have 

Thus, the vortex pinning in a Josephson junction between 
superconducting films obeys the general laws of the nonlin- 
ear perturbation scheme established and is characterized by 
its own, qualitatively different vortex size parameter (D) and 
perturbation parameter (p  

7. Summarizing the material presented, we can say that 
we have studied the pinning of Abrikosov-Josephson vorti- 
ces caused by local regions of a tunnel junction with an 
enhanced Josephson current (microshorts, thin spots), which 
are characterized by the perturbation (4.8). Within the per- 
turbation scheme described, the displacements of the 
Abrikosov-Josephson vortices associated with are small 
compared with the characteristic scale of the variation of the 
phase difference between the superconducting pairs. In the 
case of a Gurevich vortex this scale equals l =  A21A and in 
the case of the vortex (6.8) it equals D =  a A j ~ a .  In our 
treatment these scales are always much smaller than the Jo- 
sephson length A j .  Despite the comparatively small vortex 
displacements, the dynamics of these displacements is sig- 
nificantly nonlinear. In the weak-dissipation limit with a 
small conductivity in the tunnel junction, the nonlinear oscil- 
lations are weakly damped, and after a large number of such 
oscillations they go over to a linear oscillation regime. In the 
strong-dissipation limit with a large conductivity the relax- 
ation regime is also nonlinear (5.18), and only when station- 
ary vortex displacement is approached does the relaxation 
law become purely exponential. The qualitative difference 
between the temporal characteristics of the evolution of a 
Gurevich vortex and the vortex (6.8) is determined primarily 
by the difference between their scales (1 and D). In addition, 
the qualitative difference between these vortices is mani- 
fested in the dependence of the perturbations po and pl  on 
the distance from the vortex to the site of the perturbation in 
the Josephson current. For example, while in the case of a 
Gurevich vortex po decreases according to the power law 
rk(llak)3, in the case of an Alfimov-Popkov vortex this de- 
crease is characterized by the exponential law 
pI-rk exp(-2.rraklD). This difference is due to the different 
types of localization of the 2 7 ~  phase-difference kink in the 
tunnel junction: according to a power law in the case of (2.8) 
and according to an exponential law in the case of (6.8). A 
theory describing the pinning force of Abrikosov-Josephson 
vortices is presented in the Appendix. We stress that the 
entire uniqueness of the Abrikosov-Josephson vortices is as- 
sociated with the assumption of a large value for the Joseph- 

son critical current that we used, under which the Josephson 
length is shorter than the London length for the penetration 
of a magnetic field into a superconductor. 

APPENDIX A: PINNING FORCE OF AN 
ABRIKOSOV-JOSEPHSON VORTEX 

To determine the force acting on a vortex due to a per- 
turbation of the form (4.7), we turn to a treatment of the 
energy of the interaction of a vortex in a tunnel junction with 
such a perturbation. This energy is specified by the perturba- 
tion Sjc of the Josephson critical current density according to 
the equation (see for example, Ref. 15) 

dz Sj,(z)[ 1 - cos cp]. 

Equation (4.7) corresponds to 

To simplify the presentation, we assume that the spatial de- 
pendence for the unperturbed phase difference corresponds 
to q(z-zo), where a. corresponds to the position of the 
middle of the vortex on the z axis. Then, when (A2) is taken 
into account, Eq. (Al) can be written in the form 

We note that (Al) and (A3) give the energy per unit of 
length along the y axis. 

Equation (A3) enables us to write an expression for the 
force F exerted by the perturbation (A2) on a vortex per unit 
of length along the y axis: 

dSE fij, F=--=-C r k  sin cpo(ak-zo) dqo(ak-zo) 
dzo 214 k dak 

644) 

To make this expression consistent with equations in the 
main body of the text, we set z=O. Then 

If instead of the usual perturbation (A2) we do not make an 
assumption regarding the form of Sj,(z), in the general case 
instead of (A5) we obtain 

Recalling Eqs. (2.9) and (4.1 I), we can write the follow- 
ing expressions for the force exerted by the perturbation (A2) 
on a Gurevich vortex 

According to (A6), in the general case we have 
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The equations (6.1 1) and (6.14) allow us to write the expres- 
sion 

for the force acting on an Alfimov-Popkov vortex in a tun- 
nel junction between thin superconducting films. For a gen- 
eral the perturbation of the Josephson critical current density 
we have 

In writing both Eq. (A8) and Eq. (AlO), we note here that in 
the general case the expression for pfs used above can be 
written in the form 

where j, is the unperturbed position independent Josephson 
critical current density and C is given by the ratio 

according to Eq. (3.3). 
We note that for estimates it is convenient to use the 

quantity 

As was shown above, this quantity is determined not only by 
the coordinate dependence Sj,(z),  which determines, in par- 
ticular, the distance separating the perturbation from the vor- 
tex, but also by the coordinate dependence q o ( z ) ,  i.e., the 
structure of the vortex itself. The estimate of the pinning 
force is written using (A13) in the form 

It can be assumed that the present expressions for the 
pinning force of Abrikosov-Josephson vortices are also suit- 
able when the perturbation (A2) is not small. These expres- 
sions are valid at least as long as the vortices are not de- 
formed significantly during their evolution. 

Comparing the present treatment of the pinning of 
Abrikosov-Josephson vortices with the classical treatment 
of the problem of the pinning of ordinary Josephson 
vortices,15 we stress, first, its qualitative uniqueness, which is 
due to the totally new spatial scale of the new vortices and 
the short London length, and, second, the qualitative differ- 
ence between the spatial laws for vortex pinning in a tunnel 
junction joining bulk superconductors and for vortex pinning 
in a junction joining superconducting films. Finally, the sim- 
plicity of the description of the unique properties obtained in 
the analytical laws of our treatment should be stressed. 
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