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A theoretical model is developed for the description of high-harmonic generation in a field of 
two waves interfering in a homogeneous or inhomogeneous dispersive medium (in a gas 
or rarefied plasma layer). It is shown that the use of two crossing or counterpropagating beams 
in high-harmonic generation experiments provides a means for canceling or partially 
canceling dispersion, significantly enhancing the generation efficiency, and producing harmonics 
that emanate from the layer at different angles. O 1996 American Institute of Physics. 
[S 1063-776 1(96)00607-51 

I. INTRODUCTION 

The high-harmonic generation observed when atoms or 
ions in gas or in a rarefied plasma536 are exposed to 
intense light is one of the most interesting objects of inves- 
tigation in modern laser physics. It takes place in light beams 
with intensities of 1013 w/cm2 or higher, depending on the 
properties of the atomic particles. For stimulating radiation 
of sufficiently high intensity, a broad plateau containing doz- 
ens of odd harmonics and having a relatively sharp high- 
frequency cutoff is observed in the harmonic spectrum. 

High-harmonic generation can be interpreted roughly as 
the periodically repeated tunneling ionization of particles and 
subsequent radiative recombination of its products. The pe- 
riodicity of the process imparts a discrete structure to the 
spectrum. It follows from symmetry considerations that the 
spectrum must contain only odd harmonics (provided that 
the stimulating radiation is smoothly activated). The width of 
the spectrum can be estimated from the conservation of en- 
ergy. The low-frequency limit of the plateau must be close to 
the ionization energy of the atom. (Actually it is usually 
shifted toward the low-frequency end.) According to theo- 
retical studies?8 the high-frequency limit must lie in the 
range of quantum energies close to h w = I +  3 U, where I is 
the ionization potential, and U is the ponderomotive electron 
energy. The uncertainty of the intensity at which generation 
actually takes place makes it difficult to verify this relation 
experimentally, but experiments show, on the whole, that the 
energy of harmonics obtainable from certain atoms is higher, 
the more stable those atoms are against ionization. The very 
shortest wavelengths obtained to date lie in the vicinity of 6 
nm (Ref. 4). It seems likely that further advancement down 
the wavelength scale should be possible by using ions, which 
have higher ionization potentials and greater stability in the 
presence of a field than atoms. Experiments on the genera- 
tion of high harmonics in a plasma are reported, for example, 
in Refs. 5 and 6. 

In principle, high-harmonic generation can emerge as an 
important practical method for the production of coherent 
x-rays. As a rule, unfortunately, the efficiency of this process 
is very low. Most studies published so far have addressed the 
generation of harmonics of the highest possible order and 
frequencies. The problem of optimizing the efficiency is 

mentioned, for example, in Ref. 3, where the choice of ex- 
perimental conditions was such as to achieve an efficiency of 

in the conversion (in xenon) of neodymium laser radia- 
tion into the 17th harmonic. The efficiency measured in the 
same paper for conversion to harmonics with wavelengths in 
the vicinity of 8 nm was approximately lop9 (in neon). 

One cause of the low efficiency is dispersion of the 
working media, which limits the number of particles in the 
layer where generation can be assisted by mode locking. In 
principle, mode-locking conditions can be established by uti- 
lizing resonances of the medium and a special choice of fre- 
quency of the stimulating radiat i~n.~ The exploitation of this 
possibility appears to be limited to the range of intensities at 
which resonance transitions are still weakly excited. In the 
case of media whose refractive index exhibits a monotonic or 
almost-monotonic frequency dependence (e.g., plasma) it is 
virtually impossible to satisfy the mode-locking conditions in 
experiments on high-harmonic generation in a conventional 
single-beam geometry. 

In this study we discuss the feasibility of satisfying the 
mode-locking conditions for high-harmonic generation in 
crossing or counterpropagating beams. In this kind of geom- 
etry, processes other than the usual 

where (o,k) denotes a quantum of energy hw and momen- 
tum hk, and n is an integer, are also possible; for example, 

If the frequency n o  is situated in the plateau region and 
if the number j is not too high, the elementary processes (1.1) 
and (1.2) can have comparable efficiencies. On the other 
hand, the mode-locking condition in processes (1.2) can be 
guaranteed, for example, by the proper choice of density of 
the medium or angles between k, and k2, even if the refrac- 
tive index of the medium varies monotonically with the fre- 
quenc y . 

In principle, the setup of experiments on high-harmonic 
generation in "colliding" beams (Fig. 1) can lead to signifi- 
cant enhancement of the generation efficiency. It can also 
provide new information about the physics of the phenom- 
enon. Consequently, a preliminary theoretical analysis of the 
efficiency of such generation is very timely. The main objec- 
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FIG. 1 .  Geometry of an experiment on high-harmonic generation in crossing 
beams. 

tive of the study is to develop a simple algorithm for describ- 
ing high-harmonic generation in interfering waves and to 
show that it can be more efficient than generation in a single 
traveling wave. Consequently, we shall not analyze in detail 
the problem of satisfying the mode-locking conditions in 
processes (1.2) in the general case. We merely note that if 
the angle at which the beams cross is not restricted in any 
way, the mode-locking conditions can be satisfied (by the 
proper choice of angles) in media whose dispersion varies 
over a very wide range. The angles of greatest practical in- 
terest are those in the vicinity of zero or .rr (Fig. 1). At small 
angles the mode-locking conditions can be satisfied in 
slightly dispersive media. Conversely, if the beams are di- 
rected almost head-on, these conditions are satisfied only in a 
highly dispersive medium. For example, in a plasma for 
j= 1 they are satisfied if the electron density is equal to 
4/(n+2) times the critical density at the fundamental (see 
below). 

In formal analysis for the case of a homogeneous me- 
dium we do not restrict the angles at which the beams cross. 
In the case of an inhomogeneous medium we assume that the 
beams are incident on a plane layer from opposite sides sym- 
metrically with respect to reflection in the layer (Fig. la) or 
from the same side symmetrically about the normal to the 
layer (Fig. lb). The estimates apply to a plasma in which the 
beams are directed almost head-on. 

2. STRUCTURE OF POLARIZATION WAVES: 
PHENOMENOLOGICAL ANALYSIS 

Processes of the type (1.2) can be described as follows in 
the language of wave theory. Let two plane waves of ampli- 
tude a and b, polarized in the z. direction, propagate in a 
medium. The y axis is directed along the bisector of the 
angle formed by the wave vectors. The following equation 
can then be written for the total electric field: 

In this situation the polarization of the medium at the 
harmonic frequency n o  is represented by the expression 

Nd,(E)exp[- in(wt- k,y - p)] 

where N is the density of generating particles, dn  is the am- 
plitude of the dipole moment, and 

The amplitudes d,,, depend only on the amplitudes a 
and b have nonzero values only for even values of In - ml . 
Consequently, a set of polarization waves at the frequency 
n w is excited in the medium. If for a certain m 

and the amplitude d,,, is not small, radiation of frequency 
n o  can be efficiently generated in the direction (m k, ,n k,) . 
Generally speaking, this direction does not coincide with the 
direction of any of the excited waves. If the boundary of the 
layer in which generation takes place is arbitrarily oriented, 
the differences in the directions of propagation are preserved 
outside the layer as well and, in principle, can be used to 
isolate the required harmonic. We note that Eq. (2.4) can be 
satisfied only for m f n in a medium whose refractive index 
varies monotonically with the frequency. The amplitudes 
d,,, will be calculated in the next section. Here we discuss 
the influence of inhomogeneity of the medium on the gen- 
eration process. 

We shall assume below that generation takes place in a 
plane layer with a density that varies along the x axis (Fig. 
la). The harmonics then propagate outside the layer in the 
same directions as the exciting waves. For the inhomogene- 
ity of the medium to be taken into account, the product k,x 
must be replaced by the integral SxkXdx' in all the relations 
(2.1-2.3). 

We disregard the dependence of the amplitudes a and b 
on x,  assuming that the thickness of the layer and the devia- 
tion of the refractive index from unity are small. We write 
the field of the nth harmonic in the form 

Transforming from the wave equation for the field to the 
truncated equation for the amplitude En and integrating it 
with allowance for (2.2), we obtain 

where where 
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FIG. 2. Ratio N,,n+z  IN?; vs thickness of an inhomogeneous layer. 

Nn,,= 1 N(xIexp[i ~xKn ,m(x ' )dx '  1 dx, 

2 2 
K,,, =mkx- Jk2(nw)-n k,. 

Consequently, the generation efficiency is determined by 
the value of the integral (2.7). Let us compare its possible 
values for n = n and m # n. For definiteness we assume that 
the medium in question is a plasma with dielectric constant 
~ ( n w )  = 1 - N, 1n2~ , , ,  where N, and N,, are the electron 
density and its critical value at the fundamental. We also 
assume that NIN, = const and N,  IN,,^ k:l(k: + k;). Then 

w m 
7 - cos 8, 

c 2(m - n) cos 8 N,, 
(2.8) 

where 6= arctan(ky lk,) is the angle of incidence. 
Simple calculations show that irrespective of the form of 

the function N,(x), the quantity N,,, does not exceed the 
value 

where X is the wavelength of the fundamental radiation. 
We have calculated N,,, numerically for m # n in a 

plasma with a Gaussian density profile 
N,(x) = ~ , ( ~ ) e x ~ ( - ~ l h ~ ) ,  where h is a constant. We set the 
quantity [m/2(m - ~)][N,(o)~N,~]cos-~ 6 in (2.8) equal to 
1 f f?, where f? is a small positive quantity, which can serve 
as an optimization parameter. The dependence of 
Nn,n+21Nt,: on 2hlX, calculated for /3=0.0023, is shown in 
Fig. 2. 

The calculations show that the inhomogeneity of the me- 
dium slows the growth of the possible values of NnVn2 as the 

interaction length increases. Nonetheless, for a moderate in- 
teraction length 2h = 800X and N,(O) = 4N,, cos2 8/(n+2) 
we find that NnVnf2 is approximately 400 times the value of 

N;:. 
We conclude with the observation that if waves are in- 

cident on a plane layer from one side at angles of incidence 
differing only in sign (Fig. lb), according to the above-stated 
choice of coordinate axes, the density of the layer varies 
along the y axis in such a way that k,=const and 
ky= JR. To analyze high-harmonic generation in this 
case, it is necessary to replace the product kyy in expressions 
(2.1) and (2.2) by the integral SYkydy' and to write the field 
of the nth harmonic in the form of the sum 

Expressions for En,, can be obtained from (2,6) by re- 
placing nky with mk,; in (2.7) the integration with respect to 
x must be replaced by integration with respect to y, with 
K,,,(Y) given by the expression 

We call attention to the fact that waves of different orders m 
exit from the layer in different directions in this case 
(mk,, Jn2w2/c2-m2kf). 

3. CALCULATION OF THE DIPOLE MOMENT AMPLITUDES 

The integrals (2.3) can be evaluated if a not too complex 
and more or less realistic algorithm is available for comput- 
ing the dependence d,(E). A great many theoretical papers 
have been written on high-harmonic generation. Unfortu- 
nately, they are based either on very elaborate numerical 
calculations, the results of which cannot be used here, or on 
relatively crude models that yield analytic results. The most 
realistic of the models amenable to analytic treatment is the 
one used in Ref. 8. The expressions derived there for the 
functions d,(E) are very elaborate and involve integration 
and summation between infinite limits. For our calculations 
of dn(E) we use a model that is conceptually similar that in 
Ref. 8, but is based on a different representation and can lead 
to simpler expressions that do not involve summation. 

In the ensuing analysis we use the model of a single- 
electron atom, whose states satisfy the Schrodinger equation 

where EjF is the interaction energy of an electron with the 
wave field. We replace this equation by the equivalent sys- 
tem 

q = q v + q F ,  (3.2) 
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(the sum of Eqs. (3.3) and (3.4) coincides with (3.1)). 
The interaction Hamiltonian can be written in the A rep- 

resentation in the long-wavelength approximation: 

The term proportional to A2 is omitted. This limits the va- 
lidity of the model (we shall not overstep these bounds be- 
low), but simplifies the ensuing analysis considerably. 

We assume that VF=O up until the time the field is 
applied, whereupon it follows from Eqs. (3.4) and (3.5) that 

1 t 

1 )- . 1 dtld lp  exp 
F - h  -, 

- ~ ~ l l ~ A d r ] ~ c p p ) ( c p p l  f i  rnc $ ~ ( t ~ ) l * ~ ( t ~ ) ) ,  

where cp, is a momentum eigenfunction. The function qF 
can be written in the form 

q v = a o  exp - cpo+S@, i i:r) 
where cpo and Eo are the eigenstate and energy of the atom, 
and (cpol S*) = 0. Within the scope of the present study we 
disregard the term S@ in (3.7) and assume that the amplitude 
a. varies slowly, i.e., Iaolao19w. The validity of this as- 
sumption in the specific situation is tested by means of the 
equation 

which is a consequence of (3.3). Finally, in computing the 
integrals, we assume that 

c E 
Jl ' ,~dT= - -+cos or- cos or1) .  

W 

The following expression for the average momentum can 
now be obtained from Eqs. (3.2), (3.6), and (3.7) for 
S@= 0 and a. = const: 

where 

J ,  is a Bessel function, and pt=2ml ~ ~ 1 .  In the derivation of 
Eqs. (3.10) and (3.1 1) we have not assumed that the term 
qF in (3.2) is small, nor have we resorted to approximate 
methods for evaluating the integrals. Consequently, the spec- 
trum p, represented in (3.1 1) is determined entirely by the 
stated assumptions and not by the approximate computa- 
tional procedure. (This consideration is important, because 
the amplitudes of high harmonics are relatively small, so that 
the approximate transformation of the function p,(t), while 
not altering it appreciably, can significantly distort the spec- 
trum of these harmonics.) The subsequent simplifications in 
(3.1 1) no longer require high accuracy. We implement them 
on the assumption that cpo is the ground state of the hydrogen 
atom, so that I(cpol cpp)I2= 8m-2pi(p2+Pt)-4. 

The integration over the transverse components of the 
momentum in (3.11) is carried out by the stationary phase 
method. To integrate with respect to the longitudinal compo- 
nent p, ,  we assume that the quantity (pt+p2)-2 in the in- 
tegrand can be regarded as a slow variable. The integral then 
reduces to a tabulated form. We ultimately obtain 

where 

n I 
Fn(x)= exp ( 4 - i - ? r - ~ - x + ~ Y ) [ J , ~ + , , , ~ ( Y )  h o  

2U 1 - cos x 
y = -  

e 2 ~ 2  
, U = y .  no x 4m w 

The denominator of the integrand in (3.12) is written on the 
assumption that the main contribution to the integral with 
respect to p, is from the vicinity of p,, , where 

This assumption can be justified for n62Ulho .  For all other 
harmonics it can be shown that 

The vector potential in (3.5) is monochromatic by as- 
sumption, so that the amplitudes of the mechanical and ca- 
nonical momenta coincide at harmonic frequencies. The am- 
plitudes of the dipole moment are therefore related to (3.12) 
by the linear equation 

e Pn d =-i-- 
n m n o '  

The remainder of the discussion applies to the 25th har- 
monic. A graph of d25(E) calculated numerically from Eqs. 
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FIG. 3. Amplitude of the 25th harmonic of the dipole moment (in units of 
poelm,o) vs amplitude of the electric field. 

(3.12) and (3.13) for I=20fio is shown in Fig. 3. It agrees 
qualitatively with the results of other papers, for example, 
Refs. 8 and 10. 

It is important to note that the assumption of slow varia- 
tion of the amplitude a.  fails to the right of the first maxi- 
mum of the du(E) curve. We mainly use the parts of the 
graph to the left of the first maximum to calculate 
d25,,(a,b) from Eq. (2.3). 

Figure 4 shows the spectra of the amplitudes 
d2,,,(a,b), normalized to dz5( d m )  and calculated us- 
ing Eqs. (2.3), (3.12), and (3.13) for various ratios bla and a 
fixed value of a2+b2 .  The operating point 
(dm, d25(J=)) is marked by a cross on the 
dz5(E) curve in Fig. 3. Naturally, the results depend on the 
choice of this point, but the qualitative trends illustrated in 
Fig. 4 are typical. For b = a the amplitudes with m close to n 
are small. The dependence of d,, ,  on m exhibits complex 
behavior at small m. Its shape is strongly related to the large 
range of the amplitude E, which attains values at which 
d,(E) does not vary monotonically, and Eq. (3.12) is incor- 
rect. By and large, therefore, Fig. 4a is illustrative in nature. 

As b decreases, the maximum in the distribution of 
d, , ,  shifts toward values of m close to n and gradually nar- 
rows. At b=O only the amplitude with m =  n still has a 
nonzero value. It is evident from Fin. 4b that for small ratios - 
bla the amplitudes d,,, with m = n - 2, n + 2 can attain val- 
ues comparable with d,( d m ) .  

IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS 

For parameters of the medium corresponding to the 
rightmost point in Fig. 2 and for parameters of the field cor- 
responding to Fig. 4c the amplitude E25,27 is more than two 
orders of magnitude higher than the maximum possible am- 
plitude of the 25th harmonic generated for the given value of 
NIN, in a single beam of intensity corresponding to the op- 
erating point represented by the cross in Fig. 3. As the inter- 
action length increases, of course, further growth of the am- 
plitude E25,27 is observed. In principle, this length is bounded 

FIG. 4. Amplitudes dZ5,,(a,b) normalized to d,,(-). a) bla= 1 ;  b) 
0.1; c) 0.04. 

by the durations of the pulses a2( t )  and b2( t ) .  If the pulses 
propagate almost head-on, the length at which, for example, 
the leading edge of the pulse a2( t )  is situated in the field of 
the pulse b 2 ( t )  is approximately equal to crb/2, where rb is 
the duration of the pulse b2( t ) .  In this sense it is important to 
realize that the maximum values of the amplitudes d,,,+2 are 
attained for small ratios b2/a2= so that in experimen- 
tal work one can use relatively low-intensity pulses b2( t )  
with a duration much longer than that of the stronger pulse 
a 2 ( t )  and sufficient for providing a long interaction length. 
The cross section of the low-intensity beam can also be made 
fairly large (and not necessarily circular) to ensure not using 
overly small angles at which the beams collide. In principle, 
it is even possible to use pulses with different carrier fre- 
quencies, but this complicates the theoretical analysis of the 
problem. (Perry and crane" have described experiments on 
the generation of high harmonics and combination frequen- 
cies in a two-color beam made up of light with wavelengths 
of 0.527 p m  and 1.053 pm.) 

Interference of the incident and reflected waves can also 
be assumed to play an important role in high-harmonic gen- 
eration in a plasma produced when the surface of a thick 
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target is irradiated with high-intensity laser pulses.12~13 Ac- 
cording to the model developed in Ref. 14, such generation 
is associated with collective motions in the plasma. How- 
ever, this model is not the only one possible. In every case 
experiments12 have definitely revealed the formation of an 
extended corona, in which it is possible for high harmonics 
to be generated by the same mechanisms as in a rarefied gas 
jet (the generation of even harmonics is attributable to the 
presence of a static field1'). In Ref. 13 the corona could have 
been generated, in principle, by the "pedestal" of the laser 
pulse. 

A plasma layer with the parameters used in the calcula- 
tions can be created, for example, by in vacuo laser heating 
of a film or foil. An almost-Gaussian density distribution is 
formed in such processes.16 

We have thus developed a theoretical model suitable for 
describing high-harmonic generation in a field of two waves 
interfering in a homogeneous or inhomogeneous dispersive 
medium (gas or plasma layer), and we have shown that two 
crossing or head-on beams can be utilized in high-harmonic 
generation experiments to cancel or partially compensate the 
dispersion of the working medium, to significantly enhance 
the generation efficiency, and to produce harmonics that 
emanate from the layer at different angle. 
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of quantum-mechanical models of high-harmonic generation. 
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