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We calculate the retardation of a two-dimensional magnetic soliton with small radius in the 
exchange approximation based on the generalized phenomenological theory of magnetic relaxation. 
The soliton's viscosity coefficient is found to consist of two terms of different origin. The 
first term corresponds to the direct contribution of exchange relaxation. The second term reflects 
the variation in the length of the magnetization vector and can be explained by the following 
mechanism. Near the soliton the local value M of the magnetization vector differs from the 
equilibrium value Mo. As the soliton moves its energy is expended in causing M  to depart 
from its equilibrium value M o  in the given region of the magnetic substance, after which the 
deviation relaxes. O 1996 American Institute of Physics. O 1996 American Institute of 
Physics. [S 1063-776 1 (96)O 1906-31 

1. Such nonlinear excitations as topological solitons" 
play an important role in describing the physical properties 
of low-dimensional magnetic materials?-4 In particular, al- 
lowing for magnetic vortices (in the case of easy-plane an- 
isotropy) and localized 2D-solitons is important when deal- 
ing with two-dimensional (2D) magnetic materials (see the 
reviews by Bar'yakhtar and ~vanov? and Ivanov and 
~ o l e z h u k . ~  An important parameter in soliton dynamics is 
the viscous friction coefficient T, which determines the fric- 
tion force f acting on a soliton whose velocity is v, i.e., 
f=  - ~ v .  The coefficient enters into the formula for the soli- 
ton contribution to the correlation functions and determines 
the width of the central peak in the inelastic neutron scatter- 
ing cross section?-4 

Calculations of 7 for a domain wall that are based on the 
Landau-Lifshitz equation5 with the usual relaxation term of 
the Hilbert type lead to a number of contradictions with the 
experimental data6 Unphysical divergent expressions 
emerge for 2D-magnetic solitons (see a discussion of this 
aspect in Ref. 7). ~ a r ' ~ a k h t a r ~ ~  suggested a generalized phe- 
nomenological theory of relaxation in ferromagnets based on 
allowing for the real dynamic symmetry of magnetic materi- 
als. He introduced relaxation terms of different origin (ex- 
change and relativistic), which resulted in correct expres- 
sions for the dependence of the magnon damping constant on 
the wave vector and made it possible to describe several 
experiments in the dynamics of magnetic inhomogeneities. 
Bokov et a1.I0 noted that this theory allows for a quantitative 
description of the results of their measurements of the depen- 
dence of the viscosity coefficient of a domain wall on a mag- 
netic field perpendicular to the easy axis (a specific calcula- 
tion can be found in Ref. 11). Exchange relaxation, 
considered in Ref. 12, made it possible to explain the results 
of the experiments13 on retardation of a singular soliton, a 
Bloch point in a yttrium iron garnet. The material is known 
to have an extremely low coefficient of relaxation of spin 
waves and a low Gilbert damping constant. These experi- 
ments produced an unexpected result: the friction coefficient 
for a Bloch point proved to be extremely large-so large that 
the response of the Bloch point to a short pulse of the driving 

force was purely damped rather than oscillatory, whereas the 
ordinary relaxation theory6 predicts a well-defined oscilla- 
tory dynamics of the Bloch point in such an experiment. 

Here we calculate the viscous friction coefficient for a 
topological soliton and show that the application of the 
Bar'yakhtar generalized theory8 to non-one-dimensional soli- 
tons exhibits features not yet discussed in the literature. 

2. The Landau-Lifshitz equation for magnetization vec- 
tor M of a ferromagnet with an exchange relaxation term8 
can be written as 

where g= 21,uoll?i is the gyromagnetic ratio, y is a constant 
characterizing the intensity of exchange relaxation, and the 
vector F represents the effective field of the ferromagnet, 
which is determined by the variational derivative of the fer- 
romagnet energy functional W{M} with respect to the mag- 
netization: F = - SW{M}I SM. 

To describe solitons whose radius R is much smaller 
than A o ,  a quantity of the order of the domain-wall thick- 
ness, we write the ferromagnet energy in the exchange ap- 
proximation: 

Here cu is the inhomogeneous exchange constant, and the 
function f ( M )  determines how the ferromagnet energy de- 
pends on the absolute value of magnetization, M  = IMI , and 
has a sharp peak at M  = Mo,  where M o  is the equilibrium 
magnetization value (for details see Ref. 5). The energy re- 
laxation rate is determined by the dissipation function of the 
ferromagnet, dWld t=  - 2Q. The dissipation function corre- 
sponding to Eq. (1) can be written as8 

This expression is inconvenient for analyzing soliton re- 
tardation, since the dissipation function Q is defined in terms 
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of the effective field F rather than in terms of the time de- 
rivative of magnetization. To calculate the rate of soliton 
energy dissipation we must express F in terms of the mag- 
netization M and its derivatives. Thus, calculating the fric- 
tion force for a moving soliton, f = 2Qlv, where f = If( and 
v = lvl, or the viscosity coefficient q= e l v 2  requires deter- 
mining the effective field F. Since in the static case F=O, 
one should expect that at low soliton velocities IF1 v and 
Q cc v 2  hold, and that q remains finite as v 4 O .  

If the dissipation constant y is small (more precisely, the 
dimensionless exchange relaxation constant A introduced be- 
low is small), Eq. (1) yields for the effective field to lowest 
order in y the following: 

where m =  MIM is the normalized magnetization vector. In 
the nondissipative approximation the projection of F on m 
remains indeterminate. This is because, while in the nondis- 
sipative approximation ( y= 0 )  Eq. (1) has an integral of mo- 
tion M ~ =  M i =  const and can be written as an equation for 
the unit vector m, when the exchange dissipation term is 
taken into account we must also allow for variations in 
IMI. Note that this fact sets our approach, based on the com- 
plete system of equations of Ref. 8, apart from the ap- 
proaches developed say, in Refs. 7 and 14, which employ 
models for the dynamics of the unit vector. 

Now we derive an equation for F. To this end we mul- 
tiply both sides of Eq. (1) by m and use the explicit form of 
F, . The result is 

Here we have introduced the dimensionless exchange relax- 
ation constant A: 

where a is the lattice constant (see Refs. 13, 15, and 16). 
The formula for the dissipation function Q can be writ- 

ten in terms of the unit vector m and the longitudinal corn- 
ponent F of the effective field as follows: 

No approximations have been introduced, except for using 
(4) for F, . The only condition here is that A ( ~ / A ) ~  be much 
smaller than unity (where A is the characteristic scale of 
inhomogeneities), which is true for almost all magnetic ma- 
terials. If only this condition is taken into account, F is de- 
termined by solving the linear inhomogeneous differential 
equation (5) ,  whose right-hand side depends not only on the 
nature of the solution for the unit vector m but also on the 
variation in the absolute value of magnetization. Since the 
differential operator in (5) is positive definite and the equa- 

tion has no homogeneous solution decreasing far from the 
soliton, it is obvious that we have F=O at dM/dr=O. To 
leading order in the velocity we can assume M= M(5), with 
c= r- vt, where M(5) has the same form as M(r) in a soli- 
ton at rest. This means that for low velocities the value of 
F can be calculated by using the static soliton solution ob- 
tained with allowance for variation in the length of the mag- 
netization vector. 

For Bloch-point solitons, in which the magnetization 
length varies greatly (say, M=O at the center of a Bloch 
point), calculating F requires solving the equation for 
M = M(r) exactly. Only then can F be calculated (see Ref. 
12). However, the majority of solitons, which do not contain 
singularities, have another small parameter, the smallness of 
the variation of magnetization along the length, 
,u= M - Mo6Mo (actually, the longitudinal susceptibility 
XII is the small parameter). Taking all this into account, we 
can write dMl8t in terms of vector m. 

With this simplifying assumption in mind, we write the 
energy of the homogeneous exchange interaction in the form 

Here we have allowed for the fact that dfldM=O holds at 
M  = Mo and have introduced the longitudinal susceptibility 
XI, of the ferromagnet. Combining this with (2), we arrive at 
the following expression for F: 

If we now substitute this into Eq. ( 9 ,  we get the desired 
equation for determining F that depends only on the unit 
vector m: 

Thus, to calculate the retardation of a soliton with 
p 4 M o ,  it is sufficient to find its structure in the nondissi- 
pative approximation on the basis of the equation for the unit 
vector m. Then, solving (9) with allowance for the explicit 
form of m(r-vt), we determine F and after that calculate 
the value of the dissipation function. Note that Eq. (9) has 
the form of a partial linear equation with a right-hand side, 
and its solution can be expressed as the sum of the general 
solution of the homogeneous solution and a particular solu- 
tion of the nonhomogeneous equation. Clearly, the general 
solution contributes nothing to the dissipation function (6), 
so that we can use any particular solution of Eq. (9). 

It can easily be shown that for linear spin waves the 
right-hand side of Eq. (9) and, hence, F are proportional to 
rn: , where m, is the spin wave amplitude. Hence the con- 
tribution of the terms with F to the dissipation function (6) is 
proportional to m: and must be taken into account, and for 
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the magnon decay constant we arrive at the same expression 
as in Ref. 8. For nonlinear waves with a sizable amplitude 
(topological solitons), the contribution of F can be substan- 
tial. From Eq. (9) it immediately follows that F consists of 
two terms: one is proportional to xll and tends to zero as 
xll-+O, and the other contains no small parameters of the 
theory. Soliton relaxation based on Eqs. (6) and (9) was ana- 
lyzed earlier for periodic nonlinear magnetization waves,16 
domain  wall^,'^,'^ and Bloch points.12 In all these cases the 
first term on the right-hand side of Eq. (9) vanishes, and only 
the contribution of F proportional to XI! remains. Thus, in 
these examples we can formally assume xll--+O and, neglect- 
ing the contribution of F ,  we can calculate Q with allowance 
for only the first term in the dissipation function (6). Below 
we show that for 2D-solitons with a small radius the right- 
hand side of Eq. (9) and F contain both terms, including one 
without the small parameters of the theory, so that the ap- 
proximation F = 0 is never valid, even when XI[= 0. 

3. In the nondissipative approximation, Eq. (1) has a 
well-known solution of the two-dimensional soliton type, 
which in terms of the angular variables for m, i.e., 
m,+ imy = sin Oexp(iq) and m,= cos 0, corresponds to 

Here r and ,y are the polar coordinates in the plane of the 
two-dimensional magnetic material, v= -+ 1,+ 2, . . . is the 
topological charge of the soliton, qo  = const, and the func- 
tion O(r) is determined by the type of magnetic material (for 
more details see Refs. 1, 3, and 4). We assume that the soli- 
ton is moving with a constant velocity v and that 
dOldt= - (vV 0) and dqldt= - (vVq). If the soliton veloc- 
ity is low, we can use the explicit form of solution (10) and 
write 

(vV 0)= (ve,)(d O(r)ldr) , (vVq)= (vlr) (vex), 

where e, and ex are the unit vectors of the polar coordinate 
system. Now we can easily write the right-hand side of Eq. 
(9) explicitly: 

+ ( f ) sin's) cos 01 

where the prime stands for the derivative with respect to r. 
This implies that 

We were able to find the explicit form of the functions 
f l ( r )  and f2(r) only for the case of a localized soliton with 
a small radius R 4 A o ,  where A. is the domain wall thick- 
ness (note that only small-radius solitons are stable under 
collapse; see Refs. 13 and 14). In this important case the 
soliton structure is described by the well-known Belavin- 
Polyakov solution17 (see also Refs. 1, 3, and 4), 

where R is the soliton radius, and v= + 1,+ 2, . . . is the 
topological charge. Since the soliton energy E = 4.rrcr~iI  vl 
increases with v, we restrict our discussion to v= + 1. If we 
allow for the explicit form of O(r), formula (1 1) simplifies 
considerably and becomes 

4 
sin3 O( 1 + cos 0) - (vex) + 

Here it becomes possible to write the explicit form of the 
solution of Eq. (9): 

- 2rv 
- [sin *- 2 cos $1, 

g(r2+R2) 

where cos #=(ve,)lv and sin ~,b=(vE~)lv. Thus, F-+O as 
r+O or r+w, but at r-R the values of F are considerable 
even at x11= 0. 

4. Using the explicit form of F(r,,y), we can calculate 
the soliton dissipation function Q. As a result the desired 
formula for the viscosity coefficient of a small-radius soliton 
becomes 

We have thus established that in the exchange approxi- 
mation viscosity coefficient of the soliton contains two 
terms. The first term is proportional to ~a~ and can be inter- 
preted as the direct contribution of exchange relaxation. 
However, this contribution differs from that obtained in the 
simplest version of the generalized phenomenological 
theory, which does not take into account the contribution of 
F to the dissipation function (6). The second term is propor- 
tional to the parameter  xi/^, that is, it contains the ratio of 
the small parameters and A.  

The origin of the second term, containing the factor 
X ; / ~ ,  can be explained in the following way. Near the soli- 
ton the local value of M differs from the equilibrium value of 
the magnetization vector, Mo. Hence as the soliton moves, 
its energy goes into causing M in the given region of the 
magnetic material to depart from the equilibrium value 
Mo, after which this deviation relaxes. Consequently, the 
relaxation is caused by the variation in the absolute value of 
the magnetization vector. This is a typical example of relax- 
ation of excitations of a dynamical variable (in our case the 
unit vector m) caused by the interaction with another vari- 
able whose dynamics consists of pure damping. Note that 
this combination of parameters emerges in the description of 
what is known as slow (or longitudinal) relaxation in mag- 
netic materials with rare-earth ions, a phenomenon well- 
known in linear excitations, or magnons,18 and in moving 
domain walls.19 With all the differences in the physical pro- 
cesses taking place in these problems, a certain similarity 
manifests itself. In both cases the relaxation arises because 
the variation of the dynamical variable (the normalized mag- 
netization vector m in our case and the iron-sublattice mag- 
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netization vector MFe in the case of slow relaxation) dis- 
places from equilibrium the variable with purely damped 
dynamics (the length M of the magnetization vector and the 
rare-earth-sublattice magnetization vector MR , respec- 
tively). Here the contribution to the dissipation grows as the 
corresponding susceptibility XII increases and as the relax- 
ation constant h decreases. 

Clearly, these two contributions to the viscosity coeffi- 
cient of the soliton must have different temperature depen- 
dences. Estimating which of the two is dominant requires 
using specific values for the parameters XII and A.  For real 
quasi-two-dimensional magnetic substances these values are 
unknown. We note only that according the estimates of Ka- 
banov et al.13 done for materials of the ferrite-garnet type, 
the terms with X ; l ~  are greater than the direct contribution 
of exchange interaction by almost two orders of magnitude. 
Estimates involving realistic values of XII and X have shown 
that the contribution of the terms with F and Q is significant, 
and only by allowing for these terms the experiments of 
Refs. 10 and 12 could be interpreted. 
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