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Simple methods are developed for obtaining the solutions of the time-dependent Schriidinger 
equation that describe the passage of electrons through quantum-size structures in weak 
high-frequency fields both with and without a dynamic space charge. Problems with simple 
analytic solutions are examined as an example of application of the theory. The exact steady- 
state solutions of the time-dependent Schrijdinger equation in free space with a strong 
uniform high-frequency field are found in the absence of a constant electric field and in the 
presence of such a field. Finally, a method is developed for solving problems of electron passage 
through systems of rectangular and triangular wells and barriers for an arbitrary amplitude 
of the uniform high-frequency field. 63 1996 American Institute of Physics. [S1063- 
7761 (96)02005-71 

1. INTRODUCTION 

The development of modem nanoelectronic technology 
has led to the emergence of new physical objects that make it 
possible to study macroscopic manifestations of quantum ef- 
fects in experiments. In particular, in recent years devices 
such as semiconductor diodes and transistors with resonant 
electron tunneling have appeared in which the quantum me- 
chanical interaction between the electron flux and a high- 
frequency (hf) electric field during passage of the electrons 
through semiconductor structures consisting of several po- 
tential wells and barriers (quantum-size structures) has a 
strong effect of the characteristics of the devices. In this 
connection a new broad class of problems of considerable 
physical and practical import has emerged, problems that 
require finding the steady-state solutions of the time- 
dependent Schrodinger equation. At low amplitudes of the hf 
field all these problems, at least in principle, can be solved 
by employing the techniques of standard time-dependent per- 
turbation theory (described, for instance, in Refs. 1 and 2). 
To all appearances, however, the technical difficulties that 
emerge in analyzing such problems have ruled out the direct 
use of standard time-dependent perturbation theory, with the 
result that other methods are employed. The various ap- 
proaches used, say, in analyzing the dynamics of resonant 
electron tunneling and based on the lifetime approximation? 
the numerical calculation of the passage of Gaussian 

the Wigner kinetic equation? the nonequilibrium 
Green's functions: and the analytic properties of the trans- 
mission coefficientg either completely ignore the special fea- 
tures of the interaction of electrons and the hf field or are so 
complicated that they produce results contradictory in many 
respects even for double-barrier structures with a single 
quantum well (see, e.g., Refs. 5 and 6) and in most cases do 
not make it possible to obtain solutions in analytic form. 

The irony of the situation is that before the author's 
papers89 appeared, the basic problem of the passage of elec- 
trons through a rectangular potential barrier in the presence 

of a variable hf field had not been solved completely, not- 
withstanding its extreme simplicity and serious studies in 
this area of resear~h.'~." In Ref. 8 only a sketchy description 
was given of a simple variant of the time-dependent pertur- 
bation theory, which thanks to the special features of the 
problems mentioned earlier makes it possible to find their 
solution in an extremely simple and graphic way. Moreover, 
some cases where the electrons pass through quantum-size 
structures give rise to problems that require solving the time- 
dependent Schrodinger and Poisson equations in a self- 
consistent manner. However, while various methods are 
available for the self-consistent solution of the time- 
independent Schrijdinger equation with allowance for a 
space charge (for the case of double-barrier resonant- 
tunneling structures see, e.g., Refs. 12 and 13), practically no 
studies have been conducted of the effect of a static space 
charge (not to mention a dynamic space charge) on the in- 
teraction of the electrons with the hf field in such structures 
(a closely related problem has been studied only 
n~mer ica l l~ '~) .  

The aim of the present work is to give a description 
more general than that in Ref. 8 of a variant of the time- 
dependent perturbation theory applicable to problems in 
which the electrons interact with an hf field in quantum-size 
structures, and to demonstrate the application of this ap- 
proach by simple and novel examples. A simple method is 
developed on the basis of this variant that allows us to obtain 
solutions of the self-consistent time-dependent Schriidinger 
and Poisson equations describing the passage of electrons 
through quantum-size structures in weak hf fields with a dy- 
namic space charge. Also, a problem is given in which this 
solution can be obtained analytically. Finally, a simple 
method is presented that makes it possible in some cases to 
obtain solutions of the Schriidinger equation describing the 
passage of electrons through quantum-size structures in a 
uniform hf electric field of arbitrary amplitude. 
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2. THE PERTURBATION-THEORY VARIANT 

Let fro be the time-independent Hamiltonian of an un- 
perturbed system and let the time-dependent Schrodinger 
equation be 

where Q= V- (x)ei"'+ V+ ( ~ ) e - ~ " '  is a small time- 
dependent periodic perturbation. We wish to find the steady- 
state solution of Eq. (1) that is independent of the initial 
conditions and corresponds to fixed boundary conditions 
(say, at x= - co the flux of particles moving from left to right 
is fixed). The solution of the unperturbed problem is as- 
sumed to be known. What makes this problem special is that 
one must find not all solutions but only the steady-state ones. 
It is more natural, therefore, not to use the general formulas 
of standard perturbation theory (Ref. 1, Chap. VI) but rather 
to obtain the solution of the problem directly from the Schro- 
clinger equation (just as is done when the potential energy is 
considered a perturbation; see Ref. 1, Chap. VI). Since the 
V,(x) are small, the solution of Eq. (1) can be sought in the 
form $= $o(x,t) + $l(x,t), where $o(~, t )  = $o(x)e-i"t is 
the solution of the unperturbed problem, and I t+bl14 1 $01, 
with wo= E ~ / A ,  and EO the electron energy in the stationary 
state. The function satisfies the equation 

We look for in the form8 

The functions $, satisfy the equation 

Since the solution of the unperturbed problem is known, so 
are the general solutions of Eq. (3). A particular solution of 
Eq. (3) can be found by the variational method ,I5 and in 

many cases of practical interest (say, the passage of electrons 
through systems of rectangular or triangular barriers in a hf 
field whose coordinate dependence is described by a finite- 
degree polynomial), such solutions can be found analytically 
(see Sec. 2.3), while in other cases they can be expressed in 
terms of special functions (see Sec. 4) or in the form of 
power series.16 

The continuity of the wave function and its derivative at 
each moment in time implies that the functions $+ and $- 
are independent of each other, a fact that enables finding 
these functions for given boundary conditions, and hence 
finding the wave function of the entire system. 

The solutions of Eq. (3) can also be obtained by employ- 
ing the Green's function, which in many cases may prove 
more convenient (say, in computer calculations). 

Let us assess the applicability of the given method. Sup- 
pose that 1 v:=I is the maximum value of I V, (. We examine 
Eq. (3) over a narrow range in which V+(x)-V:" . In this 
range it is natural to look for the particular solution of Eq. (3) 
among the class of functions close to t,bo, which immediately 
leads to $+ - ? (V:=l hw) d ~ ~ ,  and the necessary condition 
for the applicability of the perturbation theory is 
(v:"lhwl4 1. 

Let us now take the important practical case in which the 
potential energy U(x) in the unperturbed Hamiltonian and 
the perturbation V,(,, change significantly over the range 
O<x<a, while for x<O we have U(x)=V,(x)=O (this 
situation is typical of most electronic devices mentioned 
above). The wave function of a stationary state normalized to 
one electron (for the sake of definiteness we assume that the 
electrons move from left to right) has the form 

exp(ikx) + Doexp(- ikx), x<O, 

A0f(x,wo)+B0g(x,w0), O<x<a, (4) 

~ ~ e x p ~ i q x -  a)], x>a. 

Here f(x,w) and g(x,o) are the linearly independent 
solutions of the equation fro$= E $, k = J-, 
and F= J2m*[eo-~(a)]/f i~,  with m* the effective elec- 
tron mass. Then the functions $, have the form 

where ~ ~ ( x )  are the particular solutions of Eq. (3) for O<x<a, 
2 [ V, (a)lh w] Coexp[i&x-a)] are the particular solutions 
of Eq. (3) for x>a, and the coefficients A,, B+ , C, , and 

k* = , D, are found by matching the wave function and its deriva- 
tives at the boundaries at each moment in time. In matrix 
form the system of equations for these coefficients is 
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Expressions for higher-order perturbation-theory ap- where 
proximations can be obtained in a similar way. Moreover, 
the theory can be generalized in a natural manner to multi- 
frequency fields and to the case where the potential energy in E(t)= - E(x,t)dx 
the unperturbed Hamiltonian has a complicated form and the a '1" o 
general solution of Eq. (3) can be found analytically only if 
the interval from zero to a is partitioned into several charac- 
teristic regions. 

Another important feature of the problem must also be 
mentioned: the matrix of the system of equations (6) has the 
same form as the corresponding matrix describing the static 
passage of electrons in the given problem. Therefore, it can 
be expected that under certain conditions there will be a re- 
lationship between the special features of the static passage 
of electrons through the system and the dynamical properties 
of the same system. 

Ignoring second-order terms and allowing for the form 
of the steady-state wave function and the hermiticity of the 
permutation operator, we arrive at the following expression 
for the current density ( j =  jo+ j,= jo+ j+ ,+ j- ,) outside 
the interaction region: 

where q is the electron charge. The energy acquired by elec- 
trons from the hf field (or acquired by the field from the 
electrons) during an oscillation period T= wI27r is 

In some cases, however, say in designing electronic de- 
vices, it is convenient to describe energy transfer between 
electrons and the field in terms of what is known as the 
induced current17 

Here in the quasistatic approximation we have 

=(ji(t)E(t))aT= TI j i l ~ a  cos Aqi, 

is the average electric field, Aqi is the phase shift between 
the induced current and the field at frequency w, and ( a  . . ) 
stands for averaging over an oscillation period. For further 
discussion it is convenient to introduce the complex-valued 
conductivity u of the structure, equal to the ratio of the 
complex-valued amplitude of the output current and electric 
field. We denote the corresponding quantity for the induced 
current by ai . Then the expression for the transferred energy 
(the interaction energy) is 

from which, with allowance for (8) and the form of the wave 
function, we obtain 

This approach makes it possible to obtain only the real 
part of the conductivity, but it enables one to monitor sepa- 
rately the energy fluxes related to the interaction of the elec- 
trons and the hf field in the transmitted wave, W(a), and the 
reflected wave, W(0). To simplify the description, we for- 
mally introduce conductivities in the transmitted and re- 
flected waves: 

These formulas are valid only if no<  eo and 
ho< eo - U(a), in which case the general solutions of Eq. 
(3) for the +- with x<O and x>O are plane waves. If 
h o > e o  and i i ~ > e ~ - U ( a ) ,  the functions +- assume the 
form 
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thus leading to the appearance of a current 

x (x- a )+  jot]+ c.c., (14) 

which decays exponentially with distance. Here the solution 
$- can be interpreted as a special state that appears in the 
region with the hf field (we call it a dynamically bound 
state), and in which electrons are localized. This becomes 
especially evident at V,(a) = 0, when the wave functions 
@- for x<O and x>O have the same form as the wave 
functions of electrons in a well with a level &= EO- 60  (see 
also Sec. 2.2). Note that although in the steady-state regime 
for o> wo there can only be transitions with photon absorp- 
tion, the localization of electrons in the hf field region and 
their motion in this region leads to generation of a variable 
field, which for a sufficiently high concentration of electrons 
in the wave incident upon the structure can become compa- 
rable to the field of the modulating signal, and this can sig- 
nificantly change the nature of the interaction of the entire 
electron flux with the hf field. (Generally, these aspects re- 
quire additional investigation and lie outside the scope of the 
present work.) 

As examples of application of the theory we examine the 
passage of electrons through a periodically varying jump in 
the potential, thin (delta function) and rectangular barriers, 
and double-barrier structures (V, (x) = - qEx, where 2E is 
the field strength and q is the electron charge). For the sake 
of simplicity we assume that the edges of the region where 
the hf field is localized coincide the boundaries of the struc- 
ture. 

2.1. Periodically varying jump in the potential 

Let us assume that the electrons interact with the high- 
frequency field within an interval of infinitesimal length a. 
Then the perturbation assumes the form V,(x) 
= - q Ea B(x) , where B(x) is the Heaviside step function. In 
this case the perturbed part of the wave function has the form 

The matching conditions for the wave function and its de- 
rivatives yield 

We see that in the interaction with a periodically varying 
jump in the potential the electrons give their energy to the 
field, and the shift of the current with respect to the field 
amounts to m. Note that since the interaction is point-like, 
the conductivities in the electronic and induced currents (see 
Eqs. (17) and (18)) are equal, and the energies given by the 
electrons to the field in the transmitted and reflected waves 
are also equal (W(x<O) = W(x> 0)). 

2.2. Tall thin barrier applied hf field 

It has proved convenient in analytic studies to replace a 
tall thin barrier with a delta-function barrier of the same ef- 
fective "strength" a = J: U(x)dx. (The delta-function bar- 
rier approximation is applicable to thin and tall barriers when 
2m*aalh261, e 4 U  or kfi2/a%-U; see Ref. 18.) Then Eq. 
(2) becomes 

X[PS(x)+ ~B(x)l@o, (19) 

where ~ = q ~ a ' ,  and y= qEa. The perturbed part of the 
wave function has the same shape as in the previous case; the 
continuity conditions at the delta-function barrier (see Ref. 
18) and the solution of the corresponding system of equa- 
tions lead to the following re~u l t :~  

C,=Co am* - ih2k, 

Substituting (20) into (7) and allowing for the form of Co, 
we find that 

(k+k-)a + 2i + eiw'+ C.C. 
am* - ih2k- 
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Analysis of (21) shows that this case differs dramatically 
from the previous one: as o tends to zero, the phase shift 
Acp between field and current also tends to zero (note that 
here and in what follows we assume in all cases that 
1 q ~ a 1 9 f i w ) .  The value of Acp increases with frequency, 
while for a%-fi2klm* the phase shift is small, and the taller 
and thinner the barrier, the smaller the phase shift. This re- 
sult agrees qualitatively with the expression for the time of 
flight of electrons through a barrier obtained in Ref. 11. At 
the same time, at low frequencies and for small barrier thick- 
nesses ( m * a 4 f i 2 k 2 ) ,  (21) can be reduced to 

which implies that for w/w0>(4am*a/f i2) '" ,  a thin poten- 
tial barrier has negative dynamic conductivity (just as a pe- 
riodically varying jump in the potential does). 

At first glance it would seem that the negative dynamic 
conductivity of a thin barrier is related exclusively to the 
harmonic variation of the potential behind the barrier, as is 
the case with a periodically varying jump in the potential. To 
check this assumption we eliminate any variation in the po- 
tential [we put y=O in Eq. (19)l. Then, substituting (20) into 
(8), we find that here too, if k+k->(am*)2 / f i4 ,  the elec- 
trons give their energy to the hf field, which means that 
periodic variation of the height (strength) of a thin barrier in 
itself is sufficient for negative dynamic conductivity to 
emerge. Moreover, in the absence of a barrier, i.e., a = 0 (a 
delta-like source of oscillations), this effect is observed for 
all values of k  and w ,  as it is in the case of a periodically 
varying jump in the potential. 

Harmonic delta-like variation of the potential can serve 
as a convenient object for studying dynamically bound 
states. Let us consider a delta-like potential well of strength 
a .  Suppose that the frequency of the source exceeds the 
natural electron frequency, o> wo.  Then the perturbed part 
of the wave function +- has the same form as the eigenfunc- 
tion of electrons in the well: 

where C - can be formally obtained from (2) by substituting 
i ~  for k- and - a  for a ,  i.e., C -  = c o m * ~ / ( f i 2 ~ -  a m * ) .  
However, the difference between an ordinary level in a well 
( K ~ =  am*l?i2) and a dynamically bound state is evident. As 
K+ KO,  ( C -  1 tends to a, i.e., for an ordinary level there is 
resonant interaction between the electrons and the perturba- 
tion (the use of first-order perturbation theory in this case is 
clearly unjustified). For a dynamically bound state there is no 
resonance. 

2.3. Resonant passage of electrons through a rectangular 
potential barrier in hf fields 

In this case, just as with a periodically varying jump in 
the potential and with a barrier-free transit section,19 one 

FIG. 1. The transmission coefficient for the passage of el-ns through a 
rectangular potential barrier of thickness a=250 A and height 
U=200 meV as a function of the normalized electron energy &/E,, 

(e,=200 meV). 

must directly use system (6). In the region where the Hamil- 
tonian ko is independent of the coordinates and its eigen- 
functions are such that &= -+ k2+,-, and V, (x )  = Vxn,  it is 
natural to look for the solution of Eq. (3) in the form 

+ +-- + - a  ~xn+o+b~-Ixn-l+~+a~-lxn-'+o+ + 

from which at V,(x)  = -qEx  we can find the particular so- 
lution of Eq. (3) in the form 

This immediately yields expressions for C +  and D, . The 
problem has been examined in detail in Ref. 9, so that here 
we restrict our discussion to the example (not examined in 
Ref. 9) of the resonant passage of electrons above an 
AlGaAs rectangular barrier. As noted earlier, in this case the 
transmission coefficient G is small, and the phase shift be- 
tween current and field for w<wo is small, too. Near the 
resonant passage of electrons above the barrier (Fig. 1) the 
nature of the dependences considered here changes consid- 
erably: below the resonance (at low frequencies) negative 
dynamic conductivity appears (Fig. 2). At high frequencies 
this effect can be observed even for electron energies at 
which the transmission coefficient increases with E ,  i.e., 
there is no low-frequency negative dynamic conductivity; 
moreover, under certain conditions, the function Reui(w) 
can take on negative values in several regions. Note that 
negative dynamic conductivity disappears at frequencies for 
which G ( E  - ~ W ) P J G ( E  + h w ) ,  and, in addition, Regi has 
its extrema approximately at those points where the function 
f ( W )  = G ( E  + h W )  - G ( E  - fi w )  has a maximum or mini- 
mum. The fluxes of electrons that have released or acquired 
the energy fi w  behave accordingly (here we are dealing with 
the total fluxes in the transmitted and reflected waves; Fig. 
3): they have minima or maxima near the respective extrema 
of G ( E  k f i w ) .  A similar picture is observed for double- 
barrier structures. '6.20 

It appears that for the given problems the static transmis- 
sion coefficient acts as a density of states: the probability of 
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FIG. 2. Dependence on the normalized frequency wloo (oo= eo /fa) of the 
real part of induced-current conductivity, reduced to the barrier thickness, 
for electron passage through a rectangular potential barrier of thickness 
a=  250 A and height U=200 11leV. Electron energies: eo=200 meV 
(solid curve), E = 1 .063eo (dashed curve), E = 1 . 1 2 6 ~ ~  (dot-dash curve), and 
E = 1 . 1 8 9 ~ ~  (dotted curve). Electron concentration: n= 10"cm-'. 

electrons moving into a region where the transmission coef- 
ficient is large is much higher than that of moving to a region 
where this coefficient is small. These features of time- 
dependent transport are mostly likely related to the fact that 
the matrices describing static and dynamic passage of elec- 
trons through a barrier are identical in form. In the case at 
hand, when the electrons pass through a rectangular potential 
barrier, the absolute value of the determinant of the matrix of 
(6), 1 A 1, has a minimum at exactly those electron energies 
E = go at which G(Zo) is at its maximum. Since the absolute 
values of the determinants of the matrices obtained from the 
matrix of (6) by replacing the corresponding column with the 
column on the right-hand side of Eq. (6), (Ao[ and 
IAD,I, have no significant features at g o ,  
IC+l=IAc+lllAl and I D + I = I A ~ + ~ ~ ~ A ~  if ~ + f i w = g ~  or 
I c - l = l A c - l / l ~ l  and l ~ - l = l ~ ~ - l / l A l  if ~ - h w - g ~  as- 
sume their corresponding maximum values. 

Hence, basing our reasoning on the fact that the matrices 
describing static and dynamic passage of electrons through 
quantum-size structures have the same form, we expect that 
high-frequency negative dynamic conductivity can be ob- 
served not only in electron passage through rectangular po- 
tential barriers and double-barrier resonant-tunneling struc- 

FIG. 3. Dependence on the normalized frequency oleo (o0=eo/h,  
en=200 meV) of the ratio of the fluxes of electrons that have interacted 
with the hf field in the transmitted wave, j(++(a)) (solid curve) and 
j(+-(a)) (dot-dash curve), and the reflected wave, j(t,h+(O)) (dashed 
curve) and j(+-(0)) (dotted curve), to the total flux 
ljpl=lj(++(a))l+l~(+-(a))l+lj(++(0))I+ Ij(+-(o))l for e l m ?  pas- 
sage through a rectangular potential barrier of thickness a=250 A and 
height U =  200 meV. Electron energy: e = 237.8 meV= 1.189eo. 

tures, but also through other quantum-size systems with a 
rapidly and nonrnonotonically varying transmission coeffi- 
cient. 

2.4. Resonant interaction of electrons with an hf field in 
doublebarrier structures 

The above assumptions are confirmed in the case of the 
resonant interaction of electrons and a hf field in double- 
barrier resonant-tunneling structures. Here the system (6) 
contains not four but eight equations in eight unknowns. The 
problem can be simplified considerably, however, if the real 
barriers are replaced by delta-like barriers, as we did in Sec. 
2.2. 

For a symmetric double-barrier structure with thin barri- 
ers of height rpb , thickness b ,  and strength a = rpbb and with 
the distance between the barriers being a, the time- 
dependent Schrijdinger equation has the 

With a perturbation ?(x,t) = V- (x)eiot+ V+ (x)e-'@', for 
the given system the corrections to the ground-state wave 
function assume the form 
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where P, = 2 (V,(a)lho)@o(a), and x,(x) are the corre- 
sponding particular solutions of Eq. (3). In matrix form the 
system of equations for the coefficients A, , B, , C, , and 
D, is 

1 0 - 1 

ik, - y k 2 0 
0 sin(k,a) cos(k,a) - 1 

0 - k,cos(k,a) k,sin(k,a) ik, - y 

where 

with y = 2m*alh2. The solutions of Eq. (27) have a straiglrt- 
forward and yet somewhat cumbersome form, which makes 
them an inconvenient object for analytic studies. In some 
cases, however, they can be simplified considerably. 

As is known, in double-barrier resonant-tunneling struc- 
tures the transmission coefficient has a distinct resonant char- 
acter, and the magnitude of the wave vector determining the 
resonant levels at which the transmission coefficient is unity 
can be found by solving the following transcendental 
equation: l8  

kh2 2k 
tan(ka) = - - = - -. 

am* y 

Here the unperturbed electron wave function normalized to 
the electron concentration n is 

exp(ikx) , x<O, 

Aosin(kx) + Bocos(kx) , 0 < x< a ,  (29) 

Coexp[ik(x- a)], x>a ,  

where 

The determinant of the system (27) is 

Suppose that a monoenergetic electron beam passes 
through the resonant level with number K and that the fre- 
quency of the electric field corresponds to transitions to the 
resonant level with number M. For transitions to a nonreso- 
nant level A-k,y, while for sufficiently strong barriers 
(y * k,) and a value of the wave vector corresponding to a 
resonant level, the determinant is small: 
~ = 2 i k i ( -  I ) ~ + ' .  Hence for narrow resonant levels 
(y%k) only the transition probability between two levels is 
important. In the case of wide levels (y - k), however, the 

probabilities of transitions with absorption or emission of 
quantum h o  can become comparable. Moreover, the small- 
ness of A in transitions to a resonant level implies that in 
nonresonant electron passage through a double-barrier 
resonant-tunneling structure, the probability of transitions to 
the energy range where the transmission coefficient is large 
is higher than to the range where the coefficient is small. 

For y S- k, , the determinants needed for finding C, and 
D, (D,=AD,lA and C+=Ao1A), with allowance for 
the form of the functions f in (27) and the fact that 
V,(x) = -qEx (see Eq. (24)), are approximately the same: 

From (28) it follows that cos(ka)<O and sin(ka)>O for odd 
resonant levels and cos(ka)>O and sin(ka)<O for even reso- 
nant levels, so that for a double-barrier resonant-tunneling 
structure with sufficiently strong barriers (y S-k,) we have 

for transitions in which the level number changes from odd 
to even or from even to odd, and 

for transitions in which the level number changes from odd 
to odd or from even to even. Hence, with ySk,  only the 
first type of transition is important. This can be explained by 
the symmetry properties of the wave functions and the per- 
turbation. 

Using (1 l), we find the following expression for the ac- 
tive conductivity (without allowing for the space charge) of a 
double-barrier resonant-tunneling structure involved in elec- 
tron transitions between resonant levels (ak, - ITM): 

A more rigorous calculation that allows in the expressions 
for Ac, and AD+ for terms not containing y yields 

It would be interesting to see how accurate the above 
formulas are in describing conductivity in real structures. 
Figure 4 depicts the dependence of the relative error in active 
conductivity, as given by (33) and (34), on barrier thickness 
for electron passage through the eighth resonant level of a 
structure of width a = 275 A. The dependence of 2kly on 
barrier thickness is also depicted. We see that for thin barri- 
ers (b < 20 A and 2kly > 0.5) in 8 +7  transitions the con- 
ductivity is better described by (33). The reason is that in a 
structure with thin barriers not only are transitions to the 
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to other (narrower) resonant levels, Eq. (34) is essentially 
always more accurate. For thicker barriers 
(20 A< b < 40 A and 0.2% 2kly <0.5), Eq. (34) describes 
the conductivity much more accurately than (33). When the 
thickness of the structure is increased still further, calcula- 
tions with (33) and (34) are essentially identical, as expected, 
and the formulas provide an extremely accurate value of con- 
ductivity. 

3. SELF-CONSISTENT SOLUTION OF THE SCHRODINGER 
EQUATION 

Here we must find a steady-state solution of Eq. (1) that 
is independent of the initial conditions and agrees with the 
given boundary conditions with allowance for a dynamic 
space charge. We assume that the solution of the unperturbed 
problem is known. 

With the first-order perturbation theory for calculating 
the corrections to the ground-state wave function, 

FIG. 4. Dependence on barrier thickness of the relative error 
A =  (u-c?)/u in calculations of the resonant active conductivity IF, with the variation in the electron concentration has the form 
Eq. (34) (solid curves) and C2 with Eq. (33) (dashed curves) and of the 
&meter 2kly (dot-dash curve) for ek3mn passag: through the eighth 
level of a double-barrier structure of width a=275 A (the height of the An(x,t)= [t,bo$T + t,bgt,b-]eio'+[+$ JI+ + ~,b~~,bT]e- '~'  - 
barriers is qb=  1.04 eV). 

seventh level important, but so are transitions to the ninth Let US consider the case in which the potential energy 
resonant level, and a maximum in conductivity is realized at U(x) in the unperturbed Ilamiltonian and the perturbation 
an energy somewhat below the resonant value (Fig. 5). Here, V*(x) vary considerably in the region O<x<a, with 
however, Eq. (34) provides a better description of the maxi- U(x)=V,(x)=O. 
mum possible conductivity in 8 4  7 transitions. In transitions Let rl(x), . . . ,&(x) be a complete set of functions over 

the interval [O,a] for which the potential energies are known: 

10 20 30 v, THz pm(x) = - ~ \ ~ \ ~ ' ~ m ( x " ) d x ' d x ~ 1 + G f X + G ; 5 , ,  

A I 
where K is the dielectric constant of the semiconductor, N is 
the normalization constant with dimensions of concentration, 
and the constants Gf and G: are found for each specific 
case from the boundary conditions. The number L of basis 
functions employed is determined by the desired accuracy. 
Suppose that we know the particular solutions $(x) of 
Eq. (3) at v,$ p,(x), which means we know the corre- 
sponding corrections ry",(x) to the wave functions and the 
solution of the problem for a uniform hf field, 
c= - q~ox(eiw'+ e-'Or). In this case, each solution ry",(x) 
corresponds to a definite variation of concentration, 
An,(x,t) = An,(x)cos[ot+Pm(x)], shifted in relation to the 
main signal by Pm(x), a variation that can be represented as 

FIG. 5. Dependence of the active conductivity of a double-barrier resonant- L 
tunneling structure on the normalized frequency o / o o  (oo= e0  l h )  for ele$- 
tron passage through the dghth level of the structure (a=275 A, Anm(x,t) = k =  1 n k , c $ k ( ~ ) ~ ~ ~ ( ~ t + p k ) .  
qb= 1.04 eV, and b= 11 A). Electron energies: E = E8= 64.8e0 (solid 
curve), E = 6 4 . 2 ~ ~  (dashed curve), and e = 6 5 . 4 ~ ~  (dot-dash curve), with 
e0=6.91 mev. We have the following correspondence: 
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L 

-qEox cos ot+Ano(x,t) = x nt6k(x)cos(wt+ lk), 
k= 1 

L 

q1(x)c0s ot+Anl(x,t)= 2 n i ( k ( ~ ) ~ ~ ~ ( o t + & ) ,  
k= 1 

Let a uniform electric field E(t) = Eocosot act on the interval 
O<x< a. This field changes the concentration by 

and brings about a corresponding change in the potential 
energy: 

V(x,t)= - qEoxcOs("t) + 2 akcpk(x)cOs(wt+ yk) 
k =  1 

On the other hand, this variation in potential energy corre- 
sponds to the following variation in concentration: 

To obtain a self-consistent equation we equate the right- 
hand sides of Eqs. (37) and (39). The result is 

Equation (40) must hold for each coordinate at every 
point, so that it splits into a system of L equations: 

Each equation in (41) must hold at any moment in time, so it 
splits into two equations each of which contains terms only 
with cos(wt) or only with sin(or). After determining the val- 
ues of ai and y' from the 2L equations we can use (38) to 
find the potential at x= a, and then find the corresponding 
perturbed wave functions. 

Let us examine the simplest case, in which only one 
basis function el (L= 1) is needed to describe the space 
charge. (Note that usually this approximation is sure to be 
invalid for conductivities 1 a1 9" K ,  when the space charge 
has a strong effect on electron dynamics.) Then the system 
(41) becomes 

By equating the coefficients of cos(wt) and of sin(ot), we 
arrive at the following expressions for the coefficients a l  
and yl: 

~ c o t ( 1 '  +pi) -n~[cot ( l l+p~)cosp~+sin~~]  
cot y1 = 

~ + n ~ [ c o t ( l ' + ~ ~ ) s i n ~ ~ - c o s ~ ~ ]  , 

We can now use (37) to find An(x,t), and then determine 
the perturbed part of the system's wave function 
**= *lt(Eo)+ *,[cp1(An(x,t))l. 

3.1. Space charge in transit sections and double-barrier 
structures 

We demonstrate the application of the method by study- 
ing the simple examples of a short transit section with a 
localized hf field and a double-barrier of width a with 
thin (delta-like) barriers, assuming that An(x,t) 
=A ~ ( x ) c o s ( w ~ + ~  (L= 1)  and that the dynamic space 
charge is independent of the coordinates 
(An(x) = An=const). In this case it is convenient to calcu- 
late the concentration variation using the current flowing 
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across the boundaries of the structure, j(0,t) and j(a,t) ,  in- 
stead of Eq. (35). Indeed, qa(dAn1dt) = j(0,t) - j(a,t) ,  so 
that 

Note that the approximation An(x) = An = const is inappli- 
cable when An(x) changes sign along the structure's length 
(this is possible when the structure is much longer than one- 
half of the electron's wavelength). 

Calculations of the passage of electrons through a transit 
section and a double-barrier structure in hf fields has been 
described in detail in Ref. 16 and 19, so that here we discuss 
only the features related to the space charge. Allowing for 
the symmetry of the structure and perturbation, we get 

When 0 < x < a the particular solutions of Eq. (3) for such 
structures at V,= -qEx have the form (24). while at 
V,(x) = - q 2 A n x 2 / 2 ~ = ~ x 2  they have form 

For different forms of the potential we have the following 
correspondence: 

-qEox cos wt+nAcos(ot+l1), 

from which, combining (43) and (37), we find the variation 
of the electron concentration and the correction to the sys- 
tem's wave function. 

Figure 6 depicts the frequency dependence of the active 
conductivity Re ai of a gallium arsenide transit section of 
length a = 100 A calculated for different electron concentra- 
tions at an electron energy E = 20 meV. The results imply 
that allowing for a space charge at this electron energy 
changes the sign of Re ai at low frequencies, and the higher 
the electron concentration, the greater the frequency at which 
negative dynamic conductivity appears. Note that as as- 
sumed in Ref. 19, allowing for a space charge removes the 
divergence in Re ui when o t  wo.  Here the lower the elec- 
tron concentration, the larger the value of IRe ail. 

Figure 7 depicts the results of calculating Re ai(w) for a 
double-barrier GaAsJAlGaAs structure with barrier height 
qb= 1.04 eV, barrier width b = 11 A, and distance between 
barriers a=65 A (the first resonant level is at 
El=  101 meV) for different electron energies. The electron 
concentration in the flux of monoenergetic electrons passing 
through the structure is n=  1017 ~ m - ~ .  We see that the field 
of the electron space charge can have a strong effect on the 
interaction of the electrons and the hf field, changing Re ai 
and lowering the upper frequency at which negative dynamic 
conductivity still exists. Figure 8 depicts the frequency de- 
pendence of Re ai for different electron concentrations. We 

1 2 3 4 v, THz 

FIG. 6. Dependence on the normalized frequency w/wo of the active con- 
ductivity of a transit section of length a=  100 A with a localized hf field 
(wo=eolfi, with so=20 meV). Calculations without a space charge (solid 
curve) were done for an electron concentration n= 5 X loL7 ~ m - ~ .  Calcula- 
tions with a space charge were done for n=5 X loL7 cm-3 (dashed curve) 
and n =  lo1* cm-3 (dot-dash c w e ) .  

see that here an increase in electron concentration, and hence 
an increase in the space-charge effect, lead to a change in the 
frequency at which the active conductivity is at its maxi- 
mum: for Re a i > O  this frequency rises, while for 
Re a i < O  it falls. 

3.2. Effect of a dynamic space charge on resonant 
interaction with the hf field in double-barrier structures 

As noted earlier, the approximation An(x) = const works 
if a concentration perturbation does not change the sign 

1 2 3 4 v. THz 

FIG. 7. Dependence of the active conductivity of a double-barrier structure 
on the normalized frequency wlwo(wo= so lfi). The solid curves represent 
calculations without a space charge, and the dashed curves calculations with 
a space charge. Electron energies: curve 1 -~=0 .90&~,  curve 2- 
E = 0.95EE , CUNe 3-E = El , curve 4-E = 1 .05EI , and CUNe 5-E = I. I El 
(the first resonant level is at El= so- 101 meV). 
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FIG. 8. Dependence of the active conductivity of a doublebarrier structure 
on the normalized frequency olo,,(wo=eolfr). Calculations without a 
space charge for an electron concentration n= lot7 cm-' are represented by 
the solid curves. Calculations with a space charge: n= lot7 cm-' (dashed 
curves), and n = 5 X lot7 cm-' (dotdash curves); for convenience 
Re C= Re ui/5 is also shown. Electron energies: curves 1-8 = 0.85Zft , and 
curve 2-E = 1.158, (the first resonant level is at 8,- 101 meV). 

along the length of the structure. As applied to a double- 
barrier resonant-tunneling structure, this means that all the 
electrons, those that have interacted with the hf field and 
those that have not, pass near the first resonant level. For this 
reason the approximation is inapplicable in one of the most 
interesting cases, the resonant interaction of the electrons in 
the double-barrier structure and the hf field. But for a struc- 
ture with thin and fairly tall barriers the problem of the effect 
of a space charge on the resonant interaction of electrons and 
the hf field allows for a rigorous analytic solution. Let us 
discuss this problem in greater detail. 

The active conductivity Re ai of a quantum-size struc- 
ture (determined by the ratio of probabilities of absorption 
and emission of a quantum fiw by an electron) and the den- 
sity j(a) of the current exiting the structure with the wave 
functions (4) and (5) are described by Eqs. (7) and (11). 
Comparison of these equations with allowance for Eqs. (31) 
and (32) shows that in a double-barrier structure with reso- 
nant transitions between the narrow levels the induced cur- 
rent, which determines the active conductivity, is much 
higher than the current flowing across the boundaries of the 
structure (Re ui a y and j a y '1. The space charge outside 
the double-barrier structure therefore has no significant effect 
on the resonant interaction of electrons and the hf field. 

In studying the effect of a spatial charge on the resonant 
interaction of the electrons and the hf field, we restrict our 
discussion, to simplify calculations, to transitions from the 
second to the first resonant level (K = 2 and M = 1 ). Then for 
the wave function (26) we have 

Substituting these equations into (26) and leaving only terms 
in the highest power of y, from (35) we get 

According to this relation, the perturbation of the electron 
concentration does indeed change sign along the length of 
the structure and, since q <O, lags behind the variation of the 
field by i.rr(ll = - i.rr) and behind the variation of the poten- 
tial by i12r.  

For variations of concentration of the form 
N sin(kx) sin(k-x) and with allowance for the fact that the 
field of the space charge is weak at the boundaries of the 
structure (in contrast to the two cases considered earlier), the 
potential is 

The sine and cosine expansions of the functions 
~,b~[(k-k-)x] and $ocos[(k+k-)x] contain terms with the 
wave vector k- that is the characteristic number of Eq. (3) 
for the given ~tructure.~' Since k-2k- and w=$oo in struc- 
tures with thin and tall barriers ( k e y )  involved in resonant 
transitions from the second level to the first, here the pertur- 
bation V- (x) = qcp(x) can be represented as 

Substituting (59) into (3) and allowing for the fact that for 
the given stricture k- is a characteristic number of Eq. (3), 
we find the particular solution of Eq. (3): 

from which, calculating the function f in (27), we obtain 

For the variation of the electron concentration (35) with al- 
lowance for (26), (29), (54), and (55) we obtain 

5avy4n 
An(V)- sin( or)  sin(kx) sin(k-x) . (56) 

24?iok? k 
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We see that the variation of the electron concentration 
caused by the potential of the space charge lags behind the 
potential of the space charge (P: = - fr m) by $71 and has the 
same form as the variation of the concentration associated 
with a uniform electric field. Hence, using only one basis 
function, t l (x)  = sin(kr) sin(k-x), for an accurate descrip- 
tion of the variation of the concentration proves sufficient in 
such a structure with resonant interaction of the electrons and 
the hf field and with k e y .  Here for the coefficients nA and 
n: in (42) we have 

Combining (42) and the relations 11=  - 312m and 
pi = - 1/27r, we obtain 

FIG. 9. F vs ( U ~ ~ ~ O J K  for electron transitions from the second resonant level 
to the first. 

age U applied to the structure (here W is the power imparted 
to the electrons by the hf field or imparted by the electrons to 
the hf field), although here we can also formally introduce 
the average field E = U/a , and Re ai = a G . Hence, combin- 
ing (68) and (69) and allowing for the fact that 
I c - I = I D - I ,  we find that 

For further calculations it proves convenient to introduce 
the complex-valued charge and potential: 

n(t) = (N,+ i ~ ~ ) e ~ ~ ' +  c.c., (59) 

cp(a,t)=[cp,(a)+icpY(a)]eiw'+ C.C. 

In this case 

which when combined with the form (51) of cp(N) and (52) 
yield 

Figure 9 depicts F as a function of ( u ~ ( / o K .  We see that 
the active conductivity of a double-barrier structure with 
resonant transitions from the second level to the first has a 
maximum I G,,1-0.680~/a at laEl = 1.360~.  For 
luE] /w~<0.7  the space charge has a small effect on the 
probability of such transitions. As parameter ~ u ~ ( / o K  grows, 
the space charge first limits the transition probability and 
then drives it down. 

As in (63). for the constant C- in (26) we can write 

C -  = C - ( E ) + C - ( V ( N x ) ) + i C - ( V ( N y ) ) .  (66) 

Next, substituting (48) and (54) into (66), allowing for (61), 
(62), and (57), and introducing the notation (see (33)) 

4. SOLVING THE SCHRODINGER EQUATION FOR AN HF 
FIELD OF ARBITRARY AMPLITUDE 16q2m*a4n I U E I  

[= - 457r2 
a ~ =  - 

mfi603 K O '  '=256' (67) The linearly independent solutions of the time-dependent 
Schrodinger equation we obtain 

a@ fi2 a2@ ifi-=-- 
at 2 m * Z  

- U* cos o t ,  

with U=const are given by the wave functions1' 

Generally, in calculations involving a space charge one 
should use not the specific active conductivity Re ai as re- 
lated to the amplitude of the variable field, 
Re ai=2wlaE2,  but the specific active conductivity 
G = 2 WIU' as related to the amplitude of the variable volt- 

When electrons travel through the barrier-free section 
with a localized uniform hf field (@o(x, t) = exp(ikx-i%t)), 
to within second-order terms the electron wave function (24) 
is 
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2iqEk 
sin w t + . y c o s  o t  . 

m*w I 
(74) 

We can assume that the exact solution of the equation 

at fi2 a2$ ifr-= - - 
at 2m* T - qEx$ cos wt 

can be represented as follows: 

iq Ex iqEk 
sin o t +  7 cos wt+ f(t) 

m w 

where for the time being f(t) is an unknown function. Sub- 
stituting (76) into (75) and equating the left- and right-hand 
sides, we get 

I iqEx iqEk 
$(x,t)=exp ikx-ioot+ - sin cut- -2 cos wt 

fiw m*o 

The second linearly independent solution of Eq. (75) can be 
obtained from (77) by substituting - k for k. 

When electrons travel through triangular potential barri- 
ers or other regions with a static uniform field such that the 
coordinate part of a periodic perturbation has the form 
V+(x) = Vxn, the particular solution of Eq. (3) can be found 
in the form of power series.16 But in the case of a uniform hf 
field it is more convenient to obtain this solution from the 
exact solution of the Schrodinger equation 

a$ fi2 a2$ ifi-=-- 
at 2 m * T  

-qEox$-qEx$ cos wt. (78) 

As in the previous case, if we take advantage of the proper- 
ties of the Airy functions22 Ai(x), we can look for a solution 
in the form 

iqEx 
$(x,t)=Ai[- c+P(t)]exp sin o t+f ( t )  , I 

(79) 

where [= (2m*qEo ~ f i ~ ) " ~ ( x +  elqEo) (see Ref. 1, Chap. 
111), and the functions P(t) and f(t) are yet to be found. 
Substituting (79) into (78) and equating the left- and right- 
hand sides, we get 

i q 2 ~ E o  sin 2wt 
f(t)= - m,fiw3 sin o t -  

The final result is 

i q 2 ~ ~ o  
sin of- sin wt 

m*iio3 

The second linearly independent solution of Eq. (78) can be 
found from (82) by substituting Bi for Ai (see Ref. 22). 
Expanding (82) in a power series in the small parameter, we 
arrive at the solution of Eq. (3) at $o= Ai([): 

The wave functions (73), (77), and (82) make it possible 
to solve rather simply the problem of electron passage 
through systems of rectangular and triangular wells and bar- 
riers in a strong uniform variable field. Suppose that a uni- 
form hf field is localized in the region 0 < x < a .  There can 
either be no constant field in this region (the transit section, 
rectangular barrier or well), or such a field may be present 
(the transit section with the field, a triangular barrier or well), 
and electrons with energy E = fioo move from left to right. 
Then the wave function at x<O consists of a set of plane 
waves: 

At x> 0 the wave functions have the form 

m 

$3(x,t ,~)= I = - m  .C. Cj$u(x,t,wO+ jw), (85) 

where the qU are the solutions of Eq. (72) at U=qEa. Fi- 
nally, at 0 <x  < a we have 

where and qE2 are the corresponding linearly indepen- 
dent solutions of Eq. (75) or (78), and G0=oo 
- (q~)2/4m*fio2. 

In Eqs. (84)-(86) the index j formally runs through all 
values from - 03 to + 00, but it is obvious that starting with a 
certain number n depending on the amplitude of the hf field, 
multiphoton processes in which the number of participating 
photons is greater than n have a low probability of occur- 
rence. 

Here is a simple estimate: 
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(88) 

Since in factorizing [(eiot-e-iot)/2i]n the terms with the 
maximum frequency have the form ein"'l(2i)" and 
e-inwt/(2i)n, it is obvious that for (qEa/2fiw)"ln!91, 
terms with I jl >n can be ignored in (85). Similar estimates 
can be made for (77) and (82). Hence, depending on the 
required accuracy of the solution, the number of terms in 
Eqs. (84)-(86) can always be kept finite. 

The matching conditions imposed on the wave functions 
at the boundaries of the region lead to the following system 
of equations: 

which must hold at all times. The solution of this system 
yields the desired wave function describing the passage of 
electrons through a given structure. 

There are at least three ways of solving the system of 
equations (89). 

(1) Functions are equal if all the corresponding Fourier 
components are. Expanding the functions ~ , b ~  and $3 in an 
appropriate way, we can reduce (89) to a system of linear 
equations for the coefficients A  j ,  B j ,  C j  , and D  and solve 
the new system with the required accuracy. However, while 
for functions like (73) the Fourier expansions exist in a con- 
venient form," for functions like (77) or (82) these expan- 
sions have apparently yet to be found. 

(2) Functions are equal if at a certain moment all their 
time derivatives are. Differentiating the system (89) the re- 
quired number of times at an arbitrary moment, we arrive at 
a system of linear equations for the coefficients A  j ,  B j  , 
C j ,  and D j .  

(3) However, the simplest way to solve the system (89) 
is to employ the requirement that the equations in the system 
be valid at all times. Partitioning the period T=2?r/o into 
M intervals, with M determined by the required accuracy, 
and calculating the functions in (89) at each moment 
t=TsIM (s=0,1, . . . ,M- l ) ,  we can reduce (89) to a sys- 
tem of linear equations for the coefficients A j ,  B j  , C j  , and 
D j .  

The problem for structures consisting of an arbitrary 
number of rectangular and triangular wells and barriers can 
be solved in a similar way. 

5. CONCLUSIONS 

We have developed simple methods for obtaining the 
solutions of the time-dependent Schriidinger equation, which 
describes the passage of electrons through quantum-size 
structures in weak hf fields both with and without a dynami- 
cal space charge. For an example illustrating the use of the 

theory we obtained analytic expressions for the hf current 
and the energy transferred by electrons to the field during 
their passage through a jump in the potential that varies pe- 
riodically with time, through thin barriers, and through the 
resonant levels of double-barrier structures. We demon- 
strated the negative dynamic conductivity of a potential jump 
and of the thin potential barriers, and the localization of elec- 
trons in the regions with a hf field. 

We studied the resonant interaction of electrons and the 
hf field in the passage of electrons through rectangular po- 
tential barriers, and double-barrier structures. We showed 
that the probability of interaction increases sharply at fre- 
quencies corresponding to transitions to the range of energies 
at which the transmission coefficient is at its maximum. 

We investigated the effect of dynamic space charge on 
the passage of electrons through the transit sections and 
double-barrier structures. We found analytic solution of the 
self-consistent time-dependent SchrGdinger and Poisson 
equations describing the resonant interaction of the electrons 
and the hf field in double-barrier structures. We showed that 
in such structures, a dynamic space charge limits the prob- 
ability of resonant interaction of the electrons and the hf 
field. 

Finally, we found exact steady-state solutions of the 
time-dependent Schrodinger equation in free space in a 
strong uniform hf field, in the absence of a constant electric 
field and in the presence of such a field. We developed a 
method of solving for the passage of electrons through sys- 
tems of rectangular and triangular wells and barriers in a 
uniform hf field of arbitrary amplitude. 
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