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We obtain equations that describe the relaxation of a large-scale vortex formation similar to a 
tropical hurricane, taking into account the variation of turbulent viscosity as a function 
of the vortex intensity. We calculate the Reynolds stresses by statistical averaging over small- 
scale turbulent fluctuations. When a mechanism for oscillation based on helical turbulence 
is included, our model can be used to describe the evolution and stationary states of large-scale 
structures. O 1996 American Institute of Physics. [S 1063-776 1 (96)O 1005-01 

1. INTRODUCTION 

The concept of helical turbu~ence'.~ has been used with 
great success in astrophysics. For this reason, in the last de- 
cade this concept has become the basis for modeling the 
generation of large-scale structures in an incompressible 
fluid, and the resulting models have been used to describe 
tropical  hurricane^^-^. When applied to the atmosphere, the 
concept of helical turbulence parametrizes such important 
factors in cyclogenesis as convection and the Coriolis force 
in a natural way, allowing systems of equations to be derived 
that contain the direct positive feedback between the solenoi- 
dal velocity fields that creates large-scale instability. Studies 
of this instability show that it leads to the formation of vortex 
structures with nontrivial topology, thereby providing a basis 
for a new generation of tropical hurricane models. 

The equations for modeling large-scale velocity fields 
are derived using the method of statistical averaging to de- 
termine the Reynolds stresses that correspond to the helical 
part of the turbulence correlation tensor. The Reynolds 
stresses that correspond to the nonhelical part of the turbu- 
lence tensor, which give rise to turbulent viscosity, were ob- 
tained previously in Ref. 9. These expressions have also been 
used in studies of the large-scale equations, leading to the 
derivation of expressions for the growth rate of the instabil- 
ity, and also the conditions for its appearance. 

It is natural to ask how such a vortex structure evolves to 
its steady state. The problem of deriving the steady-state 
structure requires the introduction of factors that limit the 
linear growth of the instability. Since the convective nonlin- 
earities that are typical of hydrodynamic systems do not play 
a large role in the dynamics of vortex structures of the type 
under discussion, the choice of basic nonlinear factors that 
mediate the evolution of the system to its steady state within 
the framework of the original formulation becomes an ex- 
tremely complicated problem. We might postulate that the 
intensity of the feedback will decrease in the nonlinear stage 
of evolution, and pose the problem in a form where nonlinear 
corrections to the helical instability mechanism are the lim- 
iting factor. However, this formulation is somewhat ideal- 
ized, since it is well known (see, e.g., Refs. 7 and 8) that the 
intensity of the helical component of turbulence is consider- 
ably smaller than the nonhelical component, which is the 
source of turbulent viscosity2. Therefore, the most natural 

approach is to focus on the dissipative processes. In fact, 
tropical hurricanes, i.e., intense large-scale vortices with 
horizontal dimensions that greatly exceed their vertical di- 
mensions, should experience considerable friction exerted by 
t h ~  underlying surface. As a result of the instability caused 
by the increase in shear of the horizontal component of the 
velocity due to friction, the large-scale flow should increase 
in intensity, leading to enhancement of the turbulence and, 
consequently, to an increase in the turbulent viscosity. This 
in turn should be especially effective in limiting the expo- 
nential growth of the large-scale structure. If so, we can limit 
our formulation of the problem (as in Ref. 9) to a prespeci- 
fied turbulent distribution, which corresponds to the absence 
of feedback from the mean field to the latter. A model that 
takes into account these factors should contain nonlinear vis- 
cosity caused by turbulence. 

The terms that describe the nonlinear viscosity, like the 
oscillatory terms associated with the helical component of 
the small-scale turbulence, can be computed by the method 
of statistical averaging, but now against the background of 
the more energetic nonhelical components of small-scale tur- 
bulence. In this case the turbulence must be treated as 
trapped by the external large-scale flow. 

The task of this paper is to formulate and investigate a 
model of the evolution of a large-scale vortex structure aris- 
ing from instability caused by the helical component of 
small-scale turbulence to a steady state due to enhancement 
of the turbulent dissipation. The steady state is determined 
by solving a boundary value problem that takes into account 
the finite amplitude of the hydrodynamic fields for a large- 
scale system with helical instability and nonlinear viscosity. 

2. LARGESCALE EQUATIONS 

The procedure of statistical averaging against a bakk- 
ground of small-scale helical turbulence, and the derivation 
of equations that contain terms responsible for the positive 
feedback between solenoidal components of the large-scale 
velocity, have been carried out many times, with the impo- 
sition of various  condition^."^ In Ref. 7, for example, a sys- 
tem of large-scale equations was derived under the assump- 
tion that small-scale convection develops, so that the 
Rayleigh number of the linear convection problem becomes 
equal to its critical value. On the one hand, this formulation 
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of the problem turns out to be technically simple, since it 
leads to elimination of the equation for the large-scale tem- 
perature from the system. This is because the actual tempera- 
ture profile coincides with the neutral profile by virtue of the 
intense small-scale motion. On the other hand, it physically 
corresponds to the fact that convection does not take place 
on the large scale. In this case, we can use the results of Ref. 
7 and write the following equation for the large-scale veloc- 
ity field Vi : 

In Ref. 7, Eq. (1) was used to describe the instability of 
large-scale flow in a layer of fluid with a thickness h that is 
small compared to its horizontal dimensions. The lower 
boundary of the fluid coincides with the xy plane; the z axis 
is directed vertically upward; rand A are the correlation time 
and correlation length of the large-scale turbulence; vT is the 
velocity of turbulent fluctuations; vT is the coefficient of tur- 
bulent viscosity; a is the helicity coefficient of the instabil- 
ity; ei is a unit vector directed along the z axis; E~~~ is the 
completely antisymmetric Levi-Civita unit tensor; 
Pi, = aim - V iVm I A is a projection operator that eliminates 
the irrotational part of the velocity field; the symbol Vk de- 
notes differentiation with respect to coordinates; H= 
(vT. V X vT) is the topological invariant of helical turbulence; 
Re is its Reynolds number; n is a parameter that character- 
izes the inertial subregion of convective turbulence; 
Ko=~a;l4, where Ra, is the critical value of the flow Ray- 
leigh number; and 17 is the aspect ratio of the small-scale 
convective cells. 

In order to study the later stages of evolution of the 
large-scale structure, the nonlinear limitation of its growth 
and establishment of a steady state, we must include nonlin- 
ear terms in the equation of motion (1). Let us assume that 
the primary nonlinear effect that limits the linear growth of 
the structure is increased turbulent viscosity due to enhance- 
ment of the intensity of the shear hydrodynamic fields. This 
effect can be studied directly within the framework used to 
address the Reynolds stress problem, which gives rise to tur- 
bulent viscosity? and the corresponding terms should be 
added to Eq. (1). These stresses can in turn be studied by 
formulating the problem of helical turbulence in an incom- 
pressible fluid under conditions of shear flow. We will pre- 
specify the small-scale motion by adding a random external 
force Fi(t,x) to the right side of the Navier-Stokes equation, 
which maintains a certain steady level of turbulence v in the 
liquid: 

The quantity II denotes the pressure divided by the density, 
which we assume to be constant. 

Following Ref. 9, we will assume that the velocity field 
ui consists of a sum of an average large-scale field Vi and a 
fluctuating part ui : 

u i=v i+u ;  

Statistical averaging of Eq. (2) over the small-scale fluc- 
tuations (denoted by angle brackets) leads to an equation for 
the average velocity, which contains the Reynolds stresses 

An equation that determines the fluctuating component 
as a function of the small-scale coordinates is obtained by 
eliminating the large-scale part from the original Eq. (2): 

Let us represent the average field Vk in the form of an 
expansion with respect to the coordinates 

Direct substitution of Eq. (5) into Eq. (4) would lead to 
the appearance of a convective term V ~ V ~ U ~  in the latter, 
which we can eliminate by a Galilean transformation if the 
source of the external force Fi moves along with the constant 
average flow v;. Sources of turbulence are ordinarily 
trapped in the surrounding flow under natural conditions; 
therefore, if our statement of the problem assumes that the 
random external force is natural, we should eliminate this 
convective term from consideration. Then the equation for 
the field ui takes the form 

The fluctuating component u[ is made up of the turbu- 
lent velocity field u r  caused by the random external force 
Fi(t,x) and a correction 6 corresponding to the presence in 
the turbulent medium of the large-scale average field Vi : 

If we collect all the nonzero terms that depend only on 
the turbulent field u r  in Eq. (6) for the fluctuating component 
u; , we obtain the following equation for the latter: 

Equation (8) is a complicated nonlinear system that describes 
the establishment of a steady-state level of turbulent fluctua- 
tions maintained by the external force Fi. As a digression 
from the study of the processes that generate and maintain 
the turbulent force F i ,  let us specify the turbulent field u r  
itself, assuming it is uniform, isotropic, and steady: 

(u;(~,x)u~(s,Y))= Q~T~(~-s,x-Y). (9) 
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The remaining terms in Eq. (6) make up an equation that 
determines the field 4 ,  which in lowest approximation takes 
the following form: 

Thus, the question of evolution of small-scale structure 
reduces to study of Eq. (3), in which the Reynolds stresses 
must be expressed in terms of the large-scale velocity using 
representation (7) for the fluctuating velocity component 
u !  , Eq. (10) for the field 6, and the information about the 
properties of the turbulence of the surrounding medium con- 
tained in (9). 

3. REYNOLDS STRESSES 

For convenience, let us introduce the diffusion operator 
D =  (dldt- vA), and rewrite Eq. (10) using this notation: 

We can write Eq. (1 1) in a form that is convenient for itera- 
tion by assuming that the turbulent field is weak: 

The first two terms in parentheses, which correspond to 
the Reynolds stresses studied in Ref. 9, describe the turbulent 
viscosity. In calculating the leading corrections with respect 
to the average field Vi contained in the remaining terms on 
the right side of Eq. (12), we should keep in mind that terms 
that are quadratic in the average field give no contribution to 
the turbulent viscosity; otherwise, the parameter for turbulent 
viscosity would depend linearly on the average velocity, and 
its sign would change when the direction of the velocity is 
changed. Thus, in the course of the iterative process, correc- 
tions that are quadratic in the average field drop out; hence, 
the lowest-order corrections we should include are cubic in 
the average velocity field. 

If we proceed to iterate and discard terms that are qua- 
dratic in the average field, we obtain to lowest approximation 
an expression that specifies the field: 

as a functional that depends on the fields V; and u r .  
The term ( u ; V k u ! ) ,  which describes the main stresses in 

Eq. (3) for the average velocity field Vi, can be expressed 
with the help of Eq. (7) in terms of the fields uy and 4 : 

By virtue of the incompressibility of the fluid, the first 
term on the right side of Eq. (14) reduces to zero because it 
is the total derivative of the average, which does not depend 
on the large-scale fields. The next term yields the leading 
correction in the field 6. Thus, within the framework of this 
approximation we can interpret the following symmetric 
combination of fields u r  and 6 as the Reynolds stresses 
Si : 

s i = ( u : v k 4 )  + (&vkuT).  (I5) 

The Reynolds stresses will be computed from the 
Furutsu-Novikov formula (see, e.g., Ref. 10): 

Because the field 6 depends linearly on the turbulent 
field u;  given by (12), the variational derivative in the 
Furutsu-Novikov expression can be computed without diffi- 
culty: 

Using Eq. (17) and Fourier transforming the coordinate 
dependence (dl dxi = iki), we obtain the following expres- 
sion for the one-point average ( U ~ G )  appearing in the defi- 
nition of the Reynolds stresses (15): 

(u;(t,x)g(r,x))= lim 
x p x  
I ds  $ ~ X P (  - i k x ) ~ L ( t  

- s,k)liir{Sfr exp(ikx2) S(t - s)). 

(18) 

Let us pick the simplest form for the Fourier transform 
of the correlation tensor in Eq. (18): 

where r and A are the correlation time and length. 
Calculation of the one-point average (uTiT) based on 

9 '  
Eq. (18) is very laborious. Without going outside the frame- 
work of the problem as posed, we will calculate the terms 
that are nonlinear with respect to the average field by assum- 
ing that the average large-scale velocity field Vi consists of a 
horizontally oriented vortex whose horizontal dimensions 
greatly exceed its vertical dimensions, and we will neglect 
derivatives with respect to the horizontal coordinates in the 
calculations. 

As a result we obtain a final expression for the Reynolds 
stresses: 
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The first term in Eq. (20) gives the Reynolds stresses 
that correspond to those obtained in Ref. 9 in this model. The 
second term is a nonlinear correction corresponding to a 
large-scale horizontally oriented vortex. The Reynolds 
stresses (20) should be substituted into the equation for the 
large-scale velocity (3). If we are studying the evolution of a 
vortex with this type of geometry, the nonlinear term 
(VkVkVi) in Eq. (3) will disappear, and the equation for the 
large-scale vortex (1) will take the form 

Equation (21) describes instability and nonlinear dissipa- 
tion of large-scale motion in an incompressible fluid due to 
small-scale turbulent fluctuations. The existence of nonlinear 
stabilization against a background of instability should lead 
to formation of stationary vortex structures of finite ampli- 
tude. 

Note that these results were obtained by assuming that 
the small-scale turbulence is weak, and that the amplitudes 
of the large-scale fields are small. This is associated more 
with the methodology of the calculations than with the physi- 
cal nature of the problem. Specifically, the ability of helical 
turbulence to lead to oscillation, which exists for small Rey- 
nolds numbers, cannot disappear for Reynolds numbers 
larger than unity without some definite topological reasons 
for doing so, since the oscillation effect is connected with the 
topologically nontrivial nature of helical turbulence and does 
not depend on the intensity of the latter. However, the nu- 
merical coefficients in the corresponding terms should, of 
course, depend both on the turbulent intensity and on the 
method of calculation. For exactly the same reason, although 
it would be unnatural to expect that the stabilizing influence 
of nonlinear dissipation arising from turbulence could be re- 
placed by a destabilizing influence as the amplitude of the 
field increases, there is no way to determine the required 
coefficients without the use of some computational method. 
Thus, it should be understood that the results we have ob- 
tained within the framework of this model have been derived 
under the assumption of small Reynolds numbers and for 
large amplitudes will be primarily qualitative in character. 

4. VERTICAL DISTRIBUTION OF HYDRODYNAMIC FIELDS 

It is convenient to write the large-scale velocity field 
Vi as a sum of poloidal Vr and toroidal V! components: 

v ~ = v ~ + v ~ ,  V'f'=VXVXezcp, 

v*= V x e,@. (22) 

In this case Eq. (21) for the large-scale velocity field 
V; must be written in the form of a system of equations for 
the potentials cp(t,x) and @(t,x). For this we let the opera- 

tors e z . V X V X  and e z . V X  act on Eq. (21), and isolate 
the corresponding poloidal and toroidal parts. Limiting the 
discussion to axially symmetric problems in cylindrical co- 
ordinates ( r ,  0,z) and neglecting the leading derivatives with 
respect to horizontal coordinates, we obtain the following 
system for the potentials cp(t,r,z) and rjl(t,r,z): 

= - aAzA,  cp, 

The vertical boundary value problem for the correspond- 
ing linear operator with various boundary conditions has 
been solved many times in investigations of large-scale 
instability.49577 In this paper we discuss a simplified approach 
to the boundary value problem starting with the fact that the 
vertical dimensions of the vortex structure under study are 
small compared to its horizontal dimensions an approach 
that, despite its simplicity, will allow us to investigate quali- 
tatively the basic characteristics of the large-scale vortex: 

In this formulation the boundary value problem can be 
solved only for the simplest boundary conditions along the 
vertical direction: 

resulting in a solution with the very simple form 

When we take Eq. (22) into account, it is easy to see that 
this solution corresponds to free-surface boundary conditions 
on the upper and lower boundaries of the layer for the poloi- 
dal component, conditions that are natural for this problem 
since under real conditions the profile of the horizontal flow 
usually corresponds to the presence of free boundaries in 
both regions except for a narrow boundary layer where the 
velocity reduces abruptly to zero. Thus, the formulation of 
free boundary conditions for the poloidal component implies 
a certain idealization that leads to definite simplifications 
without changing the problem in any essential way. 

For the toroidal field the situation is fundamentally dif- 
ferent. Its structure, which is uniform with the height of the 
flow, is such that it can reach considerable intensity when 
nothing constrains it. In fact, under real tropical-hurricane 
conditions, the toroidal component of the velocity field con- 
siderably exceeds the poloidal component in intensity. 
Within the framework of our model, this formally indicates 
that in the limit of a thin horizontal layer the linear operator 
for the vertical boundary value problem (23) allows us to 
determine the toroidal field only to accuracy up to an arbi- 
trary constant; thus, a degeneracy in the flow occurs which 
can only be lifted if we take into account factors that lie 
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outside our simple formulation. In this paper we limit our- 
selves to the simplest formulation of the boundary value 
problem (24), for which the toroidal field is fixed by bound- 
ary conditions (25). 

5. AMPLITUDE EQUATIONS 

In the present problem, the quadratic combination of ve- 
locities in the nonlinear terms of Eqs. (23) can be written 
thus: 

( v , v ~ ) ~ = K [ K ~ ( ~ ' ( ~ , ~ ) ) ~  sin2 KZ 

+(@'(t,r))2 c0s2 KZ]. 

Taking this into account, let us isolate the secular terms from 
system (23) by imposing conditions on its solubility: 

[(d/dt-2vTAI) + v ~ K ~ ] ( P '  + : @ ~ ~ ( 3 ( c p ' ) ~ K ~  

+(P'(I,V)~)=(Y(I + A I / ~ 2 ) ~ ' ,  

[ ~ - ~ ( d / d f -  vTAI)+ vT]$'+ $ @ K ~ ( K ~ ( ( P ' ) ~ $ '  

+3(*')3)= cup'. (27) 

Here the dashes denote differentiation with respect to the 
horizontal coordinate r: (p' = dqldr, #' = d@/dr. 

Condition (27) contains the first (lowest) approximation 
to the boundary value problem, which is satisfied identically 
by virtue of condition (26). In order to eliminate it, it is 
necessary to keep in mind that the derivatives with respect to 
time r and horizontal coordinate r are slowly varying, and 
thus, like the nonlinear terms, represent a small correction 
compared to the first approximation. Eliminating the first ap- 
proximation from the system (27), we write it in the form of 
a single equation for the amplitude of the poloidal field 
(P(t,r): 

In lowest approximation, the amplitude of the toroidal field 
is found to be 

The parameter a, is the increase in the absolute value of the 
helicity coefficient 1 a[ above its neutral value whK1vT: 

which controls the instability of the linear problem. 
It should be noted that Eq. (28), which describes the 

evolution of the poloidal field amplitude cp(t,r), contains 
information about the absolute value of the helicity coeffi- 
cient 1 a![ ,  but not about its sign. This implies that the sign of 
the helicity of the original small-scale turbulence, which in 
investigations of planetary atmospheres may be regarded as a 
result of the Coriolis force,' has no effect on the behavior of 
the vertical and radial flows in the large-scale structure. In 
contrast, Eq. (29) implies that the sign of the helicity coeffi- 
cient controls the direction of tangential flow in the structure, 
which corresponds to the fact that the direction of the hori- 

zontal rotation of air in a real tropical hurricane depends on 
the hemisphere in which it is formed, and persists throughout 
the entire period of its development. 

Equation (28) is the nonlinear Schroedinger equation, 
which describes the behavior of the amplitude of the large- 
scale structure as a function of external conditions described 
by the parameter a!,. In Refs. 5-8, the analogous linear 
Schroedinger equation was investigated, in which the shape 
of the potential well was specified by a power law; this 
makes it possible to describe the dependence of the large- 
scale structure on the horizontal coordinates in terms of La- 
guerre polynomials. In this paper we investigate a simpler 
formulation, in which the r-dependence of the parameter 
a1(7) mimics an axially symmetric well with vertical walls 
of radius R: 

In this case, the solution to this equation is cell-like, with 
fluxes rising upward in the center portion and a radial veloc- 
ity component that vanishes at the boundary. It has the form 

where Jo(kRr) is a Bessel function of zero order, and the 
parameter p is the first (nonzero) root of the first-order 
Bessel function. The equation for the amplitude cjbo(t) is de- 
termined once we separate out the secular terms in the form 
of conditions for solvability of Eq. (28): 

Here the parameters y and cp, denote the linear growth rate 
of the instability and steady-state amplitude of the structure. 
The coefficient M in the expression for the steady-state am- 
plitude (P, is determined by the expression 

The numerical value of this coefficient is approximately 
M - 0.252. 

Equation (31) for the amplitude cpo(t) is an ordinary 
nonlinear differential equation of first order, and is easily 
integrated, which determines the dependence of the ampli- 
tude rpo(t) on time through the expression 

(Pm ~ X P (  ~ t )  
(Po(t)= J = = -  

1 + exp(2 yt) 

Thus, the potentials of the poloidal and toroidal compo- 
nents of the large- scale velocity field take the final forms: 

883 JETP 82 (5), May 1996 P. B. Rutkevich and S. S. Moiseev 883 



Relation (33)  allows us to determine the vertical and 
horizontal components of the large-scale velocity field 

d$ 
~ $ ( r , r , z )  = curl, e ~ =  - - dr  

The solution (34) describes the evolution of a large-scale 
vortex structure in which the flow lines of the poloidal and 
toroidal components of the velocity field interpenetrate. The 
structure starts from a nucleation stage and ultimately arrives 
to a stationary level with flow amplitude ( ~ p l h R ) q , .  

Direct substitution shows that the convective nonlinear 
term (VkVkVi )  vanishes within the framework of this ap- 
proach; consequently, this nonlinearity plays no role in the 
development of the structure and formation of its stationary 
state. We should emphasize, however, that this assertion re- 
lates to the large-scale convective nonlinearity, whereas the 
oscillation term and linear and nonlinear viscosities in the 
equation for the large-scale velocity (1) are in essence dif- 
ferent forms of the Reynolds stresses and are the result of 
averaging the same convective nonlinearity in the original 
small-scale equations while taking into account various pa- 
rameters. 

6. CONCLUSION 

In this paper we have treated the problem of evolution 
and steady state of large-scale vortex structures of the tropi- 

cal hurricane type, which form as the result of the develop- 
ment of an instability caused by the helical component of 
small-scale turbulence of the surrounding medium. Since the 
convective large-scale nonlinearity does not make itself felt 
in this problem, the system is driven to its steady state by the 
nonlinearity connected with enhancement of the turbulent 
dissipation, which in turn is caused by an increase in the 
amplitude of the hydrodynamic fields. 

The system of large-scale velocity fields in this problem 
consists of linked cells. The dimensions of the vortex struc- 
ture are a result of the size of the region of small-scale tur- 
bulence that contains a helical component with sufficient in- 
tensity. 
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