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A new technique for solving the Schrijdinger equation based on an approach similar to 
perturbation theory applied to degenerate states is proposed. The method, however, is not limited 
to the case of small perturbations. In the initial stage of the calculation, the unperturbed 
wave function of the state under consideration and those wave functions which are connected 
with the initial function by the perturbation are selected. As a result, a system of algebraic 
equations replaces the Schrodinger equation. The technique has been tested by calculating energy 
levels of an anharmonic oscillator. Its energies in the ground and two excited states have 
been determined. The calculations are in a good agreement with exact values when the 
anharmonicity parameter is less than or of order unity. O 1996 American Institute of 
Physics. [S1063-7761(96)00305-81 

1. It is known that the Schrijdinger equation can be 
solved exactly only for a limited set of problems, therefore 
various approximate techniques are commonly used in cal- 
culations. The Rayleigh-Schrodinger perturbation theory is 
used most often, but this technique is applicable only when a 
perturbation is relatively small. Moreover, in some problems, 
such as an oscillator with a fourth-power anharm~nicit~,' the 
perturbation series for the energy levels is divergent even 
when the perturbation is small. For this reason, the search for 
perturbation techniques for the Schrijdinger equation with no 
limitations on the perturbation amplitude is, undoubtedly, an 
important problem. 

In recent years, several have proposed 
some versions of rapidly convergent perturbation techniques. 
An important point is that the application domain of these 
methods is not limited to small perturbations. Another ad- 
vantage of these methods over the Rayleigh-Schriidinger per- 
turbation theory is that, in contrast to the latter, they do not 
demand knowledge of the entire spectrum of unperturbed 
states. 

The paper is devoted to one approach to the Schrodinger 
equation which, in our opinion, may yield satisfactory results 
even if the problem does not have a small parameter in the 
traditional sense. The technique has been tested by calculat- 
ing energy levels of an anharmonic oscillator. The concept of 
this approach is quite simple. 

2.  Let us outline the general idea of the method. The 
Schrijdinger equation is written in general form as 

V=O. Then we only select the basis functions which are 
adhixed to In) by the perturbation operator V ,  i.e., the ma- 
trix element of V connecting these functions is nonzero. In 
accordance with the method proposed previously? the ad- 
mixed functions are treated, in a sense, on equal footing with 
In). This approach is quite similar to that of the perturbation 
technique applied to degenerate states, although the func- 
tions are not degenerate in our case. It is obvious that the 
state In) can be coupled to other states of the basis only 
when higher orders of the perturbation V are taken into ac- 
count. 

Let us assume for definiteness that the state In) is 
coupled only to the two states, Im) and It). Then, using the 
results of the previous publication? which contains various 
equivalent "matrix forms" of the Schrodinger equation, we 
obtain the following equation system for the expansion co- 
efficients c n  , c m  , and c ,  : 

where Vap is the matrix element of the perturbation between 
the states ( a )  and IP), and 

.%W=E*, % = S o + V ,  (1 )  
( 1 ) -  VakVk/3  C - 

where Xo is the Hamiltonian of the unperturbed system and Fa'- k(  t ..p.n.m,t) E - S K ,  
V is the perturbation. Given eigenfunctions of the Harnil- 
tonian X o ,  we can write the desired wave function W using 

F ~ J =  C V a k V k p V p ~  ,... 
these functions as a basis: J kp( + cr,p,n,m,t) (E-%kk)(E- mpp (4) 

(kf P )  

q=C cnln) ,  ( 2 )  It directly follows from this definition that 
n 

Fnn =Fnm =Fnt  =Fmn =Ftn=O. This property was taken 
where cn  are the expansion coefficients and the ket-vector into account in writing the system (3) .  
In) denotes the functions of the basis. Suppose that we are The condition for the existence of nontrivial solutions of 
seeking a solution of Eq. ( 1 )  which reduces to In) when Eq. (3) is that the determinant of the system of equations 
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TABLE I. Energies of the ground (N=O) and excited (N=2,4)  states of an anhannonic oxillator. 

Approximation 

FaB=O F,,=F;$ F , ~ = F ~ ~ + F ( , $  Exact solution ' 

should be zero, from which an equation for the energy levels 
can be derived. For the parameter A=E-Sfnn we have the 
equation 

From the formal viewpoint, this equation is exact and 
equivalent to the Schrijdinger equation because it has been 
obtained without any approximations. But in fact it cannot be 
treated as an algebraic equation of a finite degree with re- 
spect to E because the latter is contained in the infinite series 
which define FuD in Eq. (4). In this sense, the proposed tech- 
nique can be treated as a new version of the Brillouin- 
Wigner perturbation theory. There are many ways of solving 
the problem using this theory.1° 

In order to transform Eq. (5) to an ordinary algebraic 
equation, we propose the following. Let us assume in the 
first stage of the calculation that FaD= F:$. Then we can 
derive E from Eq. (5). Then let us include the next term in 
the series of FaD in Eq. (4)  and again derive E from Eq. (5). 
When the two values of E coincide to within a specified 
accuracy for a given perturbation potential V, we assume that 
we have obtained the final result. If the discrepancy is too 
large, we must include in our calculation the next term for 
Fap in Eq. (4) and once again derive E from Eq. (5). The 
comparison of intermediate results allows us to determine for 
what amplitudes of the perturbation V the procedure must be 
continued. The terms F&$,F$, ... may be considered in a 
sense as small parameters in the proposed approach to the 
Schrodinger equation. In this discussion we assume that the 
calculation is convergent. 

3. In order to test the efficiency of this technique, let us 
consider an anharmonic oscillator described by the Harnil- 
tonian 

Here p and x are operators of the momentum and coordinate, 
rn is the mass of the particle, o is its oscillation frequency in 
the harmonic approximation, and g is the constant of the 
anharmonic perturbation. This problem is  very important be- 
cause the model is used in various fields of physics. Numeri- 
cal solutions of this problem can be found in the review by 
Hioe et al." We recall that the problem cannot be solved 
using the conventional perturbation theory. Several 
 author^'"^-'^ investigated series of the perturbation calcula- 
tions for this problem in detail and found out that energy 
corrections increased in proportion to the factorial of the or- 
der. Interesting results concerning the problem were reported 
by Dolgov and ~opov?  who developed a version of pertur- 
bation theory based on the deviation from the asymptotic 
limit, which allowed them to solve the problem for 
arbitrary g. 

Let us consider a solution of the Schrijdinger equation 
with the Harniltonian 2% given in Eq. (6) for the ground 
state. This is the state which goes over to the state 10) with 
zero excitation quanta when g =O. One can easily determine 
that the state 10) is coupled by the perturbation to the 
states 12) and 14) with two and four excitation quanta, respec- 
tively. In the above equations, we take In) =lo), lrn) = 12), 
and lt)=14). Then the ground-state energy is determined by 
Eq. (5), in which the explicit form of Fa8 should be derived 
from Eq. (4). Note that calculation of matrix elements of the 
perturbation operator in the basis of eigenstates I N )  of the 
unperturbed Hamiltonian is quite easy. 

Table I lists calculations of the ground state energy of 
the anharmonic oscillator using Eq. (5) at several values of g 
in three cases: when the parameters FaD equal zero, F $ ,  and 
F:?+ F:?. Recall that we are only interested in the solutions 
of Eq. (5) which correspond to E = 112 (A=O) at g =O. Table 
I also lists exact energiesH calculated by numerically solving 
the Schrijdinger equation (we take rn = o= h= 1). 

Table I demonstrates that the best results were obtained 
in the approximation with F , ~ = F ~ ~ ,  whereas the approxi- 
mation with F a p =  F(')+ F?; yields values deviating further "B  
from the exact soluhon for large perturbation amplitude, 
g% 1. In this case the calculation error increases with g. This 
may be caused by the divergence of the sum at these values 
of g when higher-order corrections are taken into account. It 
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seems, however, that the issue of convergence of this calcu- 
lation is rather complicated. 

This calculation leads us to the conclusion that the ap- 
proximation accuracy is quite good in the range g 5 1. Note 
that Graffi and ~ r e c c h i ' ~  numerically solved the Schrodinger 
equation using the standard Rayleigh-Ritz method (refer- 
ences to publications about the problem solution using other 
approximations are given in their paper). The calculation for 
g=0.05 and g=0.5 with a 28x28 matrix yields the exact 
values of energy given in Table I. The distinctive feature of 
our approach is its simplicity, in fact the calculation can be 
performed without a computer. 

4. In addition to the ground state, on which our attention 
has been focused, Eq. (5) yields two other solutions corre- 
sponding to E=5/2 and E=9/2 at V=O. In other words, for 
g#O Eq. (5) yields two branches which tend to the states 12) 
and 14) at g+O. Strictly speaking, the calculation of these 
levels should also consider the states 16) and 16), 18) from the 
start. Nonetheless, it is interesting to observe how the calcu- 
lations of these energies listed in Table I change with g. The 
apparent tendency is similar to the case of the ground state, 

but the calculation errors of higher levels are notably larger. 
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