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The problems that arise in an "averaged" description of the dynamics of a passive scalar in a 
medium with convective flow are presented and solved in some simple examples. A 
regular method that takes into account the geometry of the problem is used to derive two one- 
dimensional equations with fractional derivatives with respect to the time that yield 
asymmetric quasidiffusion spreading and symmetric superdiffusion spreading of a cloud of the 
scalar. O 1996 American Institute of Physics. [S  1063-776 1 (96)02004-51 

1 .  INTRODUCTION P = ' P o / D B  1, 

In the most varied branches of physics, careful studies 
have recently been made of the transport of some scalar sub- 
stance n (which could be material, a temperature, a single- 
component magnetic field, etc.) in a continuous medium with 
given convective flow and diffusion. In other words, these 
studies have investigated the general properties of the equa- 
tion 

where the velocity v(r) and the diffusion coefficient 
D =const do not depend on n ,  this justifying the widely em- 
ployed term "passive scalar" (for the sake of variety, the 
term "admixture" is also used below). As a rule, the flow of 
the medium is assumed to be incompressible [this is already 
taken into account in (I)]: 

v v = o  

and fairly strong: 

v a B D  

[here a is the characteristic spatial scale of v(r)], i.e., the 
original diffusion in (1) has a "triggering effect." 

In this field of enquiry, the so-called averaged or effec- 
tive equations probably have the greatest interest. These de- 
scribe the long-time evolution of n ,  when the triggering dif- 
fusion, despite its smallness, can smooth the sharp gradients 
generated by the inhomogeneous velocity field v (see, for 
example, Ref. 1). Naturally, the form of these equations de- 
pends on the topology of the given flow of the medium. 
Unfortunately, an attempt is usually made to reduce the 
problem (at least at the level of the macroscopic equations 
and not at the level of the law of displacement of the indi- 
vidual particles of the admixture) to an ordinary diffusion 
equation with "renormalized" diffusion coefficient Deff  ap- 
preciably greater than D .  

In this paper, we analyze some special cases of convec- 
tive transport in a medium when the corresponding "effec- 
tive" equations differ from diffusion equations both in their 
appearance and in their properties. We are speaking here of 
two-dimensional (in the xy plane) "strip" [i.e., v={v ( y ) ,011 
flows with intensity (see above) described by the Piclet num- 
ber 

where q0 is the characteristic value of the flow function: 
v ( y )  = d'Pldy . This class of problems is fairly popular in the 
literature, first because it is often encountered in different 
practical situations and second because exact analytic results 
can be obtained (as the present paper also indicates), includ- 
ing answers to general questions that are important for any 
function v(r). The main attention is concentrated on the most 
rapid dynamics of the scalar n along the x axis, i.e., the 
corresponding effective equations are one dimensional 
(along the x axis, there is ordinary diffusion; see below). 

It should be mentioned here that the term "effective" is 
by no means used in the sense of a coarse or qualitative 
description of the transport of n but in the sense of the 
greater adequacy of the derived equations for practical re- 
quirements as compared with the original (1). The corre- 
sponding transition is entirely rigorous and correct. 

As a result, for the two cases considered in Secs. 2 and 4 
we obtain transport equations that are combined in this paper 
under the general designation of "quasidiffusion" equations 
in order to emphasize, on the one hand, how they differ from 
ordinary diffusion and, on the other, their similarity to diffu- 
sion as regards the property of "information loss" in the 
process of evolution-the tendency with time of any initial 
profile no(x)  to approach a universal (for each given equa- 
tion) self-similar profile. A further common property of the 
derived equations is the presence in them of fractional de- 
rivatives with respect to the time.2 In the choice and study of 
these two forms of convective flows, the present paper relies 
heavily on the results of Refs. 3 and 4, while from the philo- 
sophical point of view it is a direct continuation of Ref. 
5-an extension of the language of fractional derivatives to 
different problems of stochastic transport (i.e., the spreading 
of the initial profile of some physical quantity with "infor- 
mation loss"). 

At the same time, the physical systems described by the 
macroscopic equation (1) belong to a class that is different 
from those considered in Ref. 5. This can be seen even from 
comparison of the smooth microscopic motion of the indi- 
vidual particles of the admixture in (1) with the abrupt 
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instantaneous displacements in the cited study. The macro- 
scopic equations are also correspondingly different. More- 
over, Eq. (1) quite often describes systems for which there 
does not exist at all any real "microscopic level" of the 
motion. This applies, for example, to electron 
magnetohydrodynamics6~7-the rapid evolution of the mag- 
netic field in a plasma on a fixed ion background in the 
presence of a strong Hall effect: A magnetic field has no 
"particles." At the same time, this physical realization is 
very important, as can be seen just from the circumstance 
that both the original examples of Refs. 3 and 4 arose pre- 
cisely in this field. The role of the flow function is here 
played by the ion concentration a l ln ,  and the role of the 
Piclet number is played by the magnetization parameter 
W B e T e .  

On the other hand, direct use of (1) is rather complicated 
from the technical point of view, and for not too rigorous 
semiqualitative arguments one rather often does make use of 
the notion of microscopic m~t ion ."~  However, there is then 
the danger of losing sight of some fine details of the actual 
problem. A discussion of one of them, associated with the 
process of "averaging" in the derivation of effective evolu- 
tion equations for a passive scalar in the cases when these 
equations are diffusion equations is the subject of Sec. 3, 
which relates Secs. 2 and 4. 

Throughout this paper, we make wide use of the lan- 
guage of Laplace transformations with respect to the time. 
This is the most convenient tool for handling fractional de- 
rivatives with respect to t in physics  problem^.^ However, all 
the results could, of course, have been obtained without this 
formalism. 

2. QUASIDIFFUSION ALONG A NARROW FLOW 

In contrast to the following sections, we first consider 
here the case with (v)#O (throughout the paper, the angular 
brackets denote averaging over a plane, which in the major- 
ity of cases is equivalent to averaging over y )  but, neverthe- 
less, with "forgetting" of the initial state, i.e., still applying 
to the class of stochastic transport processes. 

Suppose that in a medium with triggering diffusion D at 
y =O there is a flow in the positive x direction having a small 
width a but high velocity vo (for what follows, the precise 
distribution over the width is unimportant), so that vo%=D. 
Then over times that exceed the time of diffusion of the 
admixture through the flow, 

the flow can be represented in the form of a S function: 

After integration of Eq. (1) with this v across the flow, we 
obtain the following balance of the convective and diffusion 
drift within the narrow flow: 

If the distribution of the scalar is symmetric with respect to 
the streamline y =0 ,  which is a rather natural and, more im- 
portantly, absolutely uncritical assumption (neither the type 
of the derived equation nor its properties depends on this 
assumption), then the entire influence of the flow reduces to 
the boundary condition 

and the dynamics of n for y>O can be described by the 
ordinary diffusion equation (since here v=O), in which, by 
virtue of the strong inequality 1,Sly of the instantaneous 
characteristic scales that follows from the large value of P 
(see below), we can omit the second derivative with respect 
to x: 

Equations (2) and (3) were used for the first time as 
basic equations in Ref. 3 (see also Ref. 7) to describe the 
rapid penetration of the magnetic field into a magnetized 
plasma along a highly conducting electrode, the condition (2) 
in this case corresponding to the absence on this electrode of 
a longitudinal component of the electric field (see the Intro- 
duc tion). 

Laplace transformation with respect to time converts(3) 
into 

where no is the initial distribution of the scalar. The solution 
of this equation with allowance for the boundary condition 
nply-+m=O can be written in the form 

where d p ,  as everywhere below, takes positive real values 
for positive and real p, and C is an arbitrary constant deter- 
mined by the boundary condition on y =O. The required ef- 
fective equation now arises from substitution in the Laplace- 
transformed (2) of d n p l d y  I , ,  from (4) expressed in terms 
of n,=n(x,O):  
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where on the left-hand side we have the fractional derivative 
b'2/dt'/2 (Refs. 2 and 5). 

Equation (6) without the right-hand side arose for the 
first time in Ref. 3, which we have already cited more than 
once. However, the nonrigorous method of derivation used 
there made it impossible to choose formally the sign of the 
fractional derivative (it is easy to see that in the present deri- 
vation the correct sign of ,/ p in (5) is due to the presence in 
(4) of one decreasing exponential in the free term, i.e., it is 
due to the boundary condition at infinity with respect to y) 
and was suitable only for the case no=O. This circumstance 
meant that it was only possible to consider in Ref. 3 
boundary-value problems with respect to x, the solutions of 
which for the given "half" equation are identical to the so- 
lutions of the complete ordinary diffusion equation, admit- 
tedly with diffusion coefficient multiplied by p2/4, i.e., in 
Ref. 3 the authors obtained the important result that the evo- 
lution is accelerated with respect to x by a factor PI2 com- 
pared with the evolution with respect to y (which justified 
the assumption 1,s 1, made above). 

The actual existing differences of (6) are manifested in 
the behavior of the solutions of the initial-value problem, i.e., 
in them the decisive role is played by its right-hand side, 
which has been found for the first time in this paper. It is 
easy to see that for functions no(x,y) of "general form" it 
behaves at short times like no(x,O)l and at large times 
like l / ~ ~ t ) J ~ n ~ ( x , ~ ) ~  dy, which in order of magni- 
tude corresponds to multiplication of the initial asymptotic 
behavior by tO/t, where t o - y i l ~  is the time of diffusion of 
the admixture through the initial profile no (strictly speaking, 
the concepts of long and short times are defined precisely 
compared with to). The possible deviations from these laws 
in the specified cases can also be readily surveyed. For ex- 
ample, for no (x,O)=O, the right-hand side of (6) behaves in 
the initial stage as dno(x,y)ldyly,o. 

The general solution of the effective equation (6) de- 
scribing rapid quasidiffusion of the admixture along the nar- 
row flow can be expressed in terms of its Green's function: 

J - r n  Jo 
no(xl,y)G(x-xl,y)dy dx' (7) 

with 

where 8(x) is the Heaviside function. As is always the case 
for equations of stochastic transport?8 at times appreciably 
exceeding the time for the initial profile to spreading 
x[ tS-x ; l (~~~)] - the  time of "information loss"-the so- 

lution of (6) tends to a universal self-similar profile deter- 
mined by the form of G. Indeed, when with the passage of 
time the width of the Green's function with respect to x 
begins to be significantly greater than xo it [the function in 
(7)] can be taken in front of the sign of the integral over x' [it 
is sometimes helpfu15,8 to retain as well the following terms 
in the expansion with respect to the parameter xollx 
- xo l ( ~ f i ) ] .  A specific feature of the given case is that it 
is here possible to distinguish two limiting cases of the self- 
similar regime. The first is when the change of the initial 
profile with respect to y is still small, i.e., we have the in- 
equalities 

and the second is when the profile with respect to y has also 
become universal: 

In the first case, the instantaneous values of the scales satisfy 
l ,~P1,=Py0,  and 

i.e., the solution tends to the Gaussian profile multiplied by a 
factor 2 (in reality, its left-hand boundary is smeared to the 
extent of the initial width xo). In the second case, 1,-Ply , 
and 

It is possible that all this can be more readily seen from the 
Laplace-transformed equation (7) with replacement in the 
above inequalities of t by llp. 

Thus, although the self-similarity of Eq. (6) is identical 
with ordinary diffusion self-similarity (it is for this reason 
that the term "quasidiffusion" is most appropriately applied 
to it), the behavior of its solutions differs strongly from the 
classical equation: The spreading with respect to x occurs 
very asymmetrically-the reason being, of course, the fact 
that (v)#O in the original problem-and at large times there 
is also nonconsewation of the integral J?: n ,(x, t)dx, 
which decreases in accordance with a It,/ t law, this being 
naturally due to the broadening of the layer occupied by the 
admixture with respect to y. In other words, in this problem 
not only the appreciable acceleration of the evolution of n 
but also other effects are very important. 

We can now somewhat generalize the problem by con- 
sidering the influence in (5) and (6) of the opposite sign of 
,/ p (the fractional derivative). This will make it possible, on 
the one hand, to analyze more deeply the details of the 
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method of investigation proposed in the present section and, 
on the other, to relate it in the following section to some 
problems of the traditional averaged-diffusion description of 
the evolution of a passive scalar.' As we already noted 
above, the absence in (4) of a growing exponential is due to 
the boundary condition at infinity. If, however, at a suffi- 
ciently large distance b%-a---+O from this flow there is an- 
other such flow (second electrode in a plasma with strong 
Hall effect) but with oppositely directed velocity (which, of 
course, already corresponds to the case with (v)=O), then its 
effect must add to (5) a term with the opposite sign of ,/ p. It 
is initially small, but for t>b2/D already has a very impor- 
tant effect on the structure of the effective equation (6) and 
the properties of its solution (7). 

Let these two flows be situated on the lines y = -b/2 
(the velocity along x is positive) and y = + b/2 (the velocity 
is negative). Then the evolution of the passive scalar in the 
strip between the flows will, as before, be described by (3) 
with the boundary conditions (2), specified now for y = ? bl 
2. The arguments used in the derivation of (5) now give 

Gnlp ~ 0 t h  n + t d  I )  
- & n2p 

coth q-tanh q 
2 2 

- & n2p 
coth q+tanh q 

+ & n I p  
coth q-tanh q 

2 2 

where q = JplDb12, nlV2= n(x, 7 bl2,t). Here, to avoid ex- 
cessive details, the initial profile no(x) is assumed to be in- 
dependent of y. For teb2/D(q  S l ) ,  this system decomposes 
into exponentially weakly coupled quasidiffusion equations 
for the transport of the admixture along the flows in the 
opposite directions, going over in the opposite limit to the 
joint ordinary diffusion equation. Indeed, we can derive from 
it the following equation, which contains only n : 

which in the limit tanh 7;rl corresponds to (5) [strictly, it is 
also (5) after application of the operator 
(PI2)dldx - m] while for q * 1, when the influence of 
the second term on the right-hand side on the solution be- 
comes small, it is identical to the diffusion equation. In the 
intermediate region, (8) describes an interesting transition of 
the self-similar "half" Gaussian profile into a complete one 
(since by virtue of the chosen form of no only the first pos- 
sibility analyzed above can be realized). 

The necessity for such a transformation of the effective 
equation follows from the simple circumstance that for 
t S b2/D the boundary condition (2) is transferred to the 
complete strip between the flows, and the level lines of the 
function n (for given t) become straight lines inclined at the 
small angle 2/P to the x axis (more precisely, at a small 

angle with this tangent). The evolution in this region is by 
pure diffusion, but it is, of course, at right angles to the level 
lines (along Vn), and therefore the effective dynamics that 
arises from the double "projection" of the original equation 
onto the x axis remains a diffusion dynamics while still 
appreciably-to the extent that the angle is small- 
increasing its rate. The most important thing for what fol- 
lows is that the value of the effective diffusion coefficient 
Deff=(p2/4)D does not depend on the distance between the 
flows b (although the time of establishment of this diffusion 
regime does depend on it). 

3. CORRELATED MEAN FREE PATH IN THE AVERAGED 
DIFFUSION DESCRIPTION 

It is easy to see that at the end of the previous section we 
have actually solved the problem of establishing the effective 
diffusion regime for a medium with periodic arrangement of 
strip convective flows in alternating directions-the assumed 
symmetry conditions of the function n(y) with respect to 
each flow corresponds precisely to a periodically repeating 
picture. The regime established in this problem has been 
known for quite a long time, at least since the work of 
~el'dovich?. A simple generalization to the nonlinear regime 
v a n ,  i.e., to the case of a not completely passive scalar, 
which is extremely characteristic of electron magnetohydro- 
dynamics (in which, as we have already noted, the compo- 
nent of the magnetic field perpendicular to the xy plane plays 
the role of the scalar), was implemented in Refs. 6 and 10 
independently of Ref. 9. 

It is a paradox that the exact solution to the problem [we 
see here the convenience of the case *(y); see the Introduc- 
tion] is in apparent contradiction with the no~igorous 
method based on investigation of the displacement of the 
individual particles of the admixture used to study the topo- 
logically more complicated convective flows with arbitrary 
functions q(x,y). The present section is devoted to estab- 
lishing the reasons for this contradiction and to formulating 
the problems that arise in the semiqualitative "scaling" ap- 
proach to the effective equations that was presented in the 
review of Ref. 1 (see also the original study of Ref. 11). 

Thus, a very simple rigorous method of calculating the 
effective diffusion coefficient for flows with arbitrary pen- 
odic * (i.e., with any a and b and any distribution laws of 
v within a ,  see Refs. 1, 6, 7, 9, and 10) yields the answer 
(q2)lD (more precisely the nontrivial part of the averaged 
q2, i.e., ((*-(\~r))~). In the given case, the mean value of '4' 
with respect to y is equal to the mean value over the period, 
and it is readily seen that for a e b ,  when in the greater part 
of the plane (outside the flows) 9 takes the values +voa/2, 
this answer agrees with the p2D/4 given above. The method 
of the previous section also makes it possible to investigate 
the transition in time to the diffusion regime (for its gener- 
alization to the case of arbitrary a and b,  see the previous 
section). 

It must be said that such a picture of the flow-the trans- 
port of particles of the admixture to large distances in narrow 
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flows that are separated by a large distance compared with 
their width-is also characteristic of many non-one- 
dimensional functions *(x,y) (Ref. I), including the 
"single-scale" function of Ref. 11, which has been studied 
in very great detail. Of course, here we do have v#O be- 
tween the flows, but this evidently is not important, since in 
the nonrigorous method of Ref. 1 presented below the mo- 
tion of the particles in this region is not considered. Impor- 
tant differences appear only in the fact that in topologically 
complicated cases these flows are very sinuous and 
branched, forming so-called fractal clusters, and their "ef- 
fective" width decreases with length. Both these features of 
the behavior are characterized by certain fractal exponents, 
which occur in the res~lt.'~" Naturally, in the general case no 
rigorous analytic methods are known for deriving DeM from 
the macroscopic equation (I), and use is made of the follow- 
ing nonrigorous argument based, as already said above, on 
the details of the microscopic motion of the individual par- 
ticles of the admixture. 

A contribution to the effective diffusion is made by par- 
ticles carried in narrow flows for the time T of their diffusion 
migration from the flow in the perpendicular direction (in the 
strip model analyzed here, this is a 2 1 ~ )  over a distance 
X = V T  (here v o a 2 1 ~ ) ,  which plays the role of an "effective 
mean free path." It is possible to calculate Deff in accordance 
with the classical formula with allowance for the circum- 
stance that this transport actually takes place in a small frac- 
tion a of the area of the two-dimensional medium occupied 
by the corresponding flows (here alb), i.e., the diffusion co- 
efficient "averaged" over the area is (see Refs. 1 and 11) 

(in this method, we are not concerned with the numerical 
coefficient), which in the simple example at hand is in fla- 
grant contradiction with the rigorous solution, which, as em- 
phasized earlier, does not depend on b. 

The reason for such a gross discrepancy is very simple. 
The effective mean free path in the diffusion coefficient is 
the correlation length over which the particle "forgets" its 
original motion (one often speaks of "loss of phase"). How- 
ever, in the given example, even if a particle has escaped 
from a narrow flow it has a very high chance of returning to 
it and being carried again in the same direction. Such a dis- 
placement will be correlated with the previous displacement, 
i.e., even if the particle of the admixture repeatedly and for a 
long time escapes from the flow, making a random walk 
between the flows, on each of its returns the mean free paths, 
and not their squares, are added. This means that during pro- 
longed nonparticipation in the transport the particles "re- 
member" their phase. True "loss of phase" occurs only 
when they get into the other flow at a large distance from the 
first one. 

The correct form of the "microscopic" arguments is as 
follows. The time required by the particles to diffuse over the 
distance b is ?,,-b2/~, and during this entire time they 
have a chance of returning to the original flow in a correlated 
manner. Since the Brownian (diffusion) trajectory fills the 
plane uniformly, the total time T' the particles are in the 

original flow is T,, reduced in proportion to the fraction of 
the area occupied by the flow: T' = T,, alb. Hence, the effec- 
tive diffusion coefficient is equal to 

i.e., to the correct value. 
The effect of correlated drift analyzed here in a simple 

example is unavoidably present in many more complicated 
flows. Unfortunately, this subtlety remained unnoticed and 
undiscussed both in the original study of Ref. 11 and in the 
review of Ref. 1. From this one must not conclude that the 
nonrigorous method is incorrect (this is why we use the word 
"subtlety"). In topologically complicated flows, we are con- 
cerned with the correct choice among fairly numerous and 
diverse fractal exponents of the one that takes into account 
this effect. As we have already noted, the effective width of 
the flows in the two-dimensional problem, in contrast to the 
considered quasi-one-dimensional problem, is variable, and 
in the corresponding law of decrease one must take into ac- 
count the parts of the fractal cluster of the flow (see Ref. 1) 
into which the particle can pass after the original exit from 
the flow. It is evident that in Ref. 11 the correct choice was 
made though without explicit recognition of the problem; 
nevertheless, this question requires additional investigation. 

In any case in which nonrigorous calculations of D,, are 
made for different flows testing for the effect of correlated 
drift makes it possible to reject in a simple and reliable man- 
ner unacceptable methods of averaging over the plane. For 
example, if in the problem with a "single-scale'' q(x,y) we 
were to use, to represent the fraction of the area occupied by 
the flows, the so-called "internal dimension" exponent of 
the cluster (d, on p. 993 in Ref. l), this would certainly be 
incorrect, for this quantity characterizes the presence in the 
cluster of "internal voids," from which the particle, having 
entered them, necessarily returns to the same flow-it simply 
has nowhere else to go. 

4. SUPERDIFFUSION IN THE LIMIT (**)do3 

As can be seen from the previous exposition, at the 
present time it is regarded as obvious that for any *(x,y) 
with finite (q2) and (v)=O the two-dimensional problem (1) 
reduces to an effective diffusion, albeit, possibly, with a dif- 
ferent functional (power-law) dependence of DeH on (q2). 
This can even be proved rigorously12 (admittedly, it is very 
rare that one can calculate the value of the diffusion coeffi- 
cient as rigorously-its numerical value is known only for 
three cases, including the one analyzed in the previous sec- 
tion, which is also interesting in that it gives the maximum 
possible value of Deff, see Refs. 1 and 12). At the same time, 
finiteness of the mean square of the flow function is by no 
means an essential attribute of the real situation. It is again 
obvious that if this condition is violated, the process of 
spreading of the cloud of a passive scalar must be more rapid 
than in a diffusion process, i.e., we must be considering 
superdiff~sion.'.~ 

Nevertheless, at the present time there are no examples 
of rigorous derivation of macroscopic equations correspond- 
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ing to such a regime. On the other hand, as early as 1972 a 
simple example was known of superdiffusion in a flow with 
*(y) in which the estimates at the microscopic level of the 
motion of the individual particles of the admixture are 
trivial4 (typically, this example also arose from investigation 
of the evolution of the magnetic field in the framework of 
electron magnetohydrodynamics). We are refemng here to 
"strip" flow, which is a set of contiguous flows of equal 
width a and constant velocity vo whose sign is random, i.e., 
in each individual strip, the drift occurs with probability 112 
in the positive or negative direction of the x axis indepen- 
dently of the sign of vo in the neighboring strips. 

Such a choice of *(y), which ensures the absence of a 
regular averaged drift (v), nevertheless differs very strongly 
from the example considered above with alternating sign of 
vo (and b=O), creating a stronger impression of "turbu- 
lence." Indeed, in the presence of diffusion motion at right 
angles to the system of flows, a particle of the admixture 
crosses N - JDi/a of them during the time t, as in the pre- 
vious example, but because the direction of the velocity in 
each of the N flows is determined independently, the differ- 
ence between the number of positive and negative signs of vo 
in this sequence is AN- JN (which is equivalent to diver- 
gence of the flow function at large scales * a Jy), whereas 
for the periodic case it is less than 1. The corresponding 
unbalanced (more precisely, insufficiently balanced) drift 
leads, as is readily seen, to the following law of displacement 
with respect to x (Refs. 1 and 4): 

The existence of such a clear and transparent microscopic 
picture offers the possibility of using the analytic advantages 
of the "strip" geometry of *(y) mentioned in the Introduc- 
tion and already justified in the previous sections and also 
deriving a macroscopic transport equation, i.e., to answer in 
a special case a question that exists in general form. This can 
indeed be done; moreover, it appears that the most compli- 
cated obstacle in the way of solving the problem is the 
choice of the correct language for describing the "random- 
ness" of the function * (or v) in the macroscopic equation 
(1). 

It is first of all necessary, as is generally accepted in this 
field (Refs. 1, 6, 9, and lo), to separate in (1) the density of 
the passive scalar into smooth and strongly oscillating (with 
respect to y) components: 

[it follows from the final equations that 6'n-(a2/~t)114], 
the evolution of which is described by the equations 

We have here omitted the second derivatives with respect to 
x-in (9) compared with the analogous operator with respect 
to y and in (10) compared with the retained superdiffusion 

operator-but, in contrast to the case with periodic * (see 
the cited literature), we have not omitted the time derivative 
in (9). Further, it is convenient to make a Laplace transfor- 
mation with respect to the time: 

[it is assumed here that d,,o=~, since asymptotically at 
r%-a2/D the contribution of the initial condition to the solu- 
tion (1 1) is nevertheless small] and operate with equations 
precisely in this representation. By averaging over the plane 
in (12) we must obviously mean 

+ L  d* diq, 
lim - dye 

The subsequent sequence of operations is very simple: 
The solution of (1 l), expressed in terms of the Green's func- 
tion of this diffusion equation in the p representation, 

must be substituted in (13), and then the indicated limit 
in (12). It is readily seen that if * is finite, then after 
some integrations by parts the corresponding term on 
the left-hand sides of (12) and (10) tends in the limit 
p-+O ( t -m)  in accordance with a readily established law to 
the known form ( (*2 ) l~ )d2np ld~2  (see the previous 
section). In the case of a "random" *, the product 
(d*(y')ldyt)dW(y)ldy =v(y1)v(y) occurring in the 
double integral (over y' and y) must be understood as the 
correlation function of the flow velocity (and this is the cor- 
rect representation for the macroscopic problem): 

which possesses the property that J?: f(z)dz converges 
rapidly at distances of order a (this is a certain generalization 
of the example of DreKzin and Dykhne). Thus 

(...) = lirn 
L- tm 

For tS-a2/D, we deduce from this (by going over from 
integration over y'  and y to integration over y - y' and 
Y+Y')  

and after multiplication of (12) by , / p  and the inverse 
Laplace transformation this carries (10) into 
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i.e., into a typical equation with fractional derivative 
d 3121dt312 (Refs. 2 and 5). [In the nonlinear case of electron 
magnetohydrodynamics, the ordinary diffusion operator on 
the left-hand side of (15) goes over into a nonlinear operator: 
(dldx)n2dnldx)]. 

It can be seen that the representation employed for 1I' 
(correlation function) differs from the representation in the 
microscopic problem of Ref. 4 (in practice, from the spec- 
trum with respect to k: Wk a lldk, see Ref. l), although, of 
course, it possesses similar properties. Very probably it was 
too strict adherence to the microscopic language that pre- 
vented the authors of Ref. 13 from solving this problem. 
They succeeded in deducing an effective equation, not for 
the process of spreading of the given cloud of admixture in a 
form averaged over the plane, but only for the characteristic 
spreading of different clouds averaged over different realiza- 
tions of the flows (or experiments). Despite the apparent 
similarity of the problems, they are in reality very far from 
each other (see Ref. 14; the question is analyzed with par- 
ticular care in Ref. 15). The second is usually "simpler," 
but, since it is not written in the usual physical space, it 
possesses quite different properties: In it, as a rule, we do not 
find the symmetry properties with respect to r and t that are 
in the original physical (I), and in Ref. 13 this is precisely 
the case. 

The solution of (15) for any initial no(x) can be ex- 
pressed in terms of the self-similar Green's function 

where the integration contour C in the complex plane of 5 
consists of two rays with polar angles cp= +-3d4. Asymptoti- 
cally for 14 %- 1 

(cf. Ref. 5). As in any stochastic transport, (15) describes the 
tendency of an initial profile of no to tend to the universal 
finite-parameter (one can change the amplitude and position 
of the maximum) function G (Ref. 5). 

To conclude the section, we must consider two impor- 
tant circumstances. First, the present method can be readily 
generalized to other classes of random functions v (y) differ- 
ent from the example of DreKzin and Dykhne (an attempt in 
this direction was also already attempted in Ref. 13): If the 
correlation function of the velocity f has a power-law "tail," 
ensuring divergence of J t 3 ( z ) d z  at large lzl , then instead 
of (15) there arises a superdiffusion equation with a different 
(of higher degree) fractional derivative with respect to I. Sec- 

ond, here it is indeed (see the Introduction) necessary to 
work with a completely different type of superdiffusion 
equations compared with the one introduced in Ref. 5, in 
which exclusively fractional derivatives with respect to x (or, 
rather, fractional powers of the Laplacian A) were obtained. 
It appears that also for general problems of the transport of a 
passive scalar the new type of equation is more 
characteri~tic,'~'~.'~ although it should by no means be con- 
cluded from this that fundamentally macroscopic physical 
systems (such as electron magnetohydrodynamics) cannot be 
described by other equations. For example, the rather stan- 
dard skin problem of the diffusion of the magnetic field in a 
thin film is characterized by an equation with All2 (Ref. 17). 
Thus, equations with an ordinary diffusion operator (the La- 
placian) and a fractional derivative with respect to the time 
can describe physical processes with both sub- and superdif- 
fusion, whereas the alternative form (fractional power of A 
and ordinary dldt) is suitable only for superdiffusion. The 
obstacle here is purely mathematical-a superdiffusion equa- 
tion of such type cannot ensure that its Green's function is 
positive definite.5 

5. CONCLUSIONS 

Thus, considering the example of a topologically simple 
class of flows *(y), we have analyzed in this paper aspects 
of the effective stochastic transport of an admixture that are 
also present in the general problem. We have presented a 
regular derivation of the corresponding macroscopic equa- 
tions, which we can also expect to encounter in other forms 
of convection (of course, with different fractional expo- 
nents). At the least, the simple topology is often encountered 
in practice. 

Equations of this type are characterized by the following 
properties. 

1. Despite the fractional nature of the time derivative 
(which, in general, can have any degree), to solve the initial- 
value problem for these equations it is necessary and suffi- 
cient to know only n ( ~ , ~ ) l , , ~ ,  as in the original equation 
(1). We may mention in passing that for some reason the 
problem of solving the initial-value problem has not been 
investigated at all in the mathematical literature on fractional 
derivatives-see the monograph of Ref. 2. 

2. They possess an "ineradicable" difference from 
equations with derivatives of integer degree. Investigators 
are very often tempted to eliminate the unusual nonlocal op- 
erators by double (or multiple) application of fractional de- 
rivatives to the derived equations (see, for example, Ref. 3). 
But for equations of the class in question this device does not 
work (or rather, it does not give the desired result)-the pres- 
ence of no on the right-hand side [see (6) and (15)] is an 
obstacle. For example, it is only for no-0 that Eq. (6) can be 
transformed into the classical diffusion equation (cf. Ref. 3 
and the remark in this connection in Sec. 2); in other cases, 
the "correction" of the left-hand side is done by transform- 
ing the right-hand side [cf. (6) and (8) in the limit q-m], so 
that the solutions of the initial-value problem for equations 
with fractional derivative with respect to t will never be the 
same as the solutions of ordinary equations with the familiar 
[vanishing in the ordinary (x,t) space] right-hand side. 
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These two features can be combined by the remark that 
the right-hand sides of the equations of the class determine 
their type, and also the properties of the solutions, to no less 
an extent than the "standard" left-hand sides. Once again, 
we must regret the absence of a discussion of this problem in 
Ref. 2. 
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