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We examine an optimized nonparametric "jellium" model for polyatomic clusters that ensures 
the absolute minimum of the total energy of a system consisting of the delocalized electrons 
and a positive core with screened Coulomb interparticle interaction. We use the variational method 
to determine the optimal distribution of the charge density of the cluster core. The total 
cluster energy is minimized when the potential generated by the positive and negative charges 
are locally equal. Numerical calculations of the electron structure are done for alkali- 
metal clusters in the Hartree-Fock approximation. We discovered that screening of the 
interparticle interaction has a strong effect on the stability of the system and that there is a strong 
dependence of the electron structure on the distribution of the positive background. 
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1. INTRODUCTION 

Studies of the electronic structure of atomic clusters car- 
ried out in the last decade (see the paper by ~kard t '  and the 
review articles by de ~ e e ?  and   rack^) have shown that a b  
initio calculations of such objects are difficult even for the 
case of several atoms4 due to the large number of degrees of 
freedom in the system. At the same time it has been found 
that a number of approximate methods make it possible to 
considerably simplify the problem of calculating the struc- 
ture and the physical characteristics of clusters. An example 
is the successfully used "jellium" model,' in which a cluster 
is represented by two subsystems: the ionic background (or 
core) whose positive charge is distributed over the entire 
volume, and the delocalized valence electrons, forming a 
shell structure in the field of the core The first calcula- 
tions that made it possible to explain the formation of elec- 
tron shells in alkali-metal c~ustersl-~ were done with the 
model of a spherically symmetric uniformly charged core 
whose radius R, being the only macroscopic parameter of the 
model, was determined from the interatomic distance in the 
respective metal (the bulk material, or BM, model): 

where N is the number of atoms in the cluster. Here the 
stability of the system is determined by the total energy of 
the positive core charge and the delocalized electrons: 

It was found that the choice of distribution function for the 
core's charge density has a strong effect on the results of 
 calculation^.^-^ Attempts were made to "optimize" the dis- 
tribution function pco,(r) by varying its geometric 

but a common drawback of such an approach 
is the dependence on the choice of parameters in which the 
optimization is carried out. 

In Ref. 6 we suggested a nonparametric optimized jel- 
lium model (OJM) ensuring the absolute minimum of the 
tots[ energy of the system. The aim of the present investiga- 

tion is to generalize the optimized jellium model to the case 
of a non-Coulomb interaction between the core particles and 
the electrons and to study the effect of the interaction param- 
eters on the stability of the cluster system and its structure. 

In contrast to the traditional jellium model with an a 
priori fixed distribution pco,(r), the idea of an optimized 
jellium model is based on a self-consistent solution of the 
many-body problem involving the interacting electron sy s- 
tem and the positive background in conditions where the 
total cluster energy E,,  is at its absolute minimum. This 
requires simultaneously solving two problems: calculating 
the multielectron wave function in an external field, and cal- 
culating the external field generated by the positive charge 
with an unknown distribution ocOre(r)  that ensures the total 
energy of the system being at its minimum. Using a double 
variational procedure, we find the condition for the absolute 
minimum of the total energy EtOt of the system, under which, 
as we show below, the potentials of the positive and negative 
charges balance each other. Here the same nature of the ion- 
ion and ion-electron interaction (say, purely Coulomb) in 
the cluster leads to local electric neutrality of the system.6 
This results in a nonlinearity in the Schrodinger equation for 
the multielectron wave function and in the system of 
Hartree-Fock equations if the single-particle approximation 
is used for the system of delocalized electrons. Thus, the 
electron wave functions and energies and the "optimal" dis- 
tribution function for the positive-charge density, p,,,(r), 
are obtained as a result of numerically solving a system of 
coupled nonlinear integro-differential equations. It appears 
that the total cluster energy and, hence, the cluster stability 
depend not only on allowing for the nonlocal interelectronic 
i n t e r ac t i~n~ '~ '~  and the positive charge d i s t r i b ~ t i o n ~ ~ ~ , ~ ~ ~  but 
also on the nature of the interaction between the core ions 
and the electrons; for instance, on the screening of the ion- 
electron and ion-ion Coulomb interactions. 

Throughout the article we use natural units: 
f i=lel=me= 1. 
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2. VARIATION OF THE FUNCTIONAL OF THE TOTAL 
ENERGY OF THE SYSTEM 

According to the jellium model, the total cluster energy 
consists of the total energy Eel of the delocalized electrons 
moving in an external field U(r) and the potential energy 
E,, of the distributed positive charge, which can be as- 
sumed purely electrostatic if we ignore the motion of the 
core particles: 

(here and in what follows integration is over the entire clus- 
ter volume). 

The total energy of the electron system in the ground 
state is 

where T is the total wave function of the electron system 
(normalized to unity) satisfying the Pauli principle, and Hel 
is the Hamiltonian of the electron system in the potential 
U(r): 

Ai fie,=C i ( - l -u(s) )  +Z i + j  Ver-edri .rj), (3) 

where Vel-el is the interelectronic interaction potential (not 
necessarily the pure Coulomb interaction 
V~oul(ri ,rj) = 1 ri - rjI - 

To determine the condition for the minimum of the total 
cluster energy, let us assume that the interaction V(ri ,rj) 
between any two point unit charges in the system depends 
only on the distance between the points, monotonically de- 
creases as the charges are moved apart, and tends to zero at 
infinity: 

Note that this assumption simplifies the real picture, since we 
ignore possible nonlocal effects in the interaction that in- 
volve electrons of the inner shells of the core atoms. 

In the interaction between two unit point charges we can 
isolate the pure Coulomb factor VaU1 and a bounded func- 
tion K (nonnegative over the entire domain of definition), the 
latter allowing, in particular, for screening: 

where the coefficient E acts as the dielectric constant of the 
medium. We write the interaction of a charge with an arbi- 
trary charge-density distribution p(r) in the usual form 

where we have allowed for the condition that the interaction 
of point charges depends only on the relative distance (Eq. 
(5 ) ) .  

The condition for the minimum of the free energy F of 
the system in an equilibrium state at absolute zero is equiva- 
lent to the requirement that the total energy Em, be minimal, 

which for an electrically neutral cluster is reduced to deter- 
mining the conditions for stationarity of the functional6 

under small variations W * ( r )  and Sp(r), where p and A 
are arbitrary Lagrange multipliers. The last two terms on the 
right-hand side of Eq. (7) are related to the normalization of 
the wave function and the conservation of the total core 
charge for a neutral system! If we combine Eq. (7) with (I), 
(2), and (6), we can write 

where Vion- ion(r,rr)=Vion- ion()r- rr 1) is the interaction of 
two unit point charges from the positive core. 

Thus, we must find the solution of the following system 
of variational equations:6 

SG(*,**,p) 
m* = 0, (94 

Equation (9a) leads to the ordinary Schriidinger equation for 
the total wave function *(x) of the system of electrons in 
the potential field (6): 

where X={x, , x 2 .  . . . ,x i ,  . . . , x N } ,  x i=  (ri ,ui) ,  is the set 
of coordinates and spins of all N electrons, Eel is the total 
electron energy of the system, identical to the Lagrange mul- 
tiplier p in (7) and (S), Hel is the Hamiltonian (3), which 
together with (6) can be written as 

where p(r) = pCore(r) is the a priori unknown positive charge 
density distribution function, and Vion-Jr, r' ) 
- - - ~ ~ , , - , ~ ( / r ~ -  r' I) is the interaction of the ith electron with 

an elementary point charge from the positive core. 
Equation (9b) relates the electron charge density and the 

jellium charge density at the absolute minimum of the total 
energy: 
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which holds for an arbitrary variation of the positive charge 
density provided that the expression in parentheses vanishes. 
Allowing for (6), we can write Eq. (12) as follows: 

where Uion-el is the electrostatic potential generated by the 
total electron charge in the interaction with the core charge at 
point r ,  and Uion-ion is the interaction of the distributed posi- 
tive charge with itself. 

Thus, the basic conclusion that can be drawn is that the 
optimal distribution of the jellium charge is such that the 
potentials of the positive and total electron charges balance, 
which constitutes the condition for local equality of potential 
at the absolute minimum of the total energy: 
Uion-el(r)= Uion-ion(r). Here the distribution of the positive 
charge corresponding to the minimum of the total energy of 
the system can generally be determined, according to (6) and 
(12), by solving the inverse problem with respect to the de- 
sired function pcoR( r) : 

where the potential Uion-el(r) is determined, according to 
(6), from the distribution of the electron density I*(x)I2 
found by solving the Schrodinger equation 

consistently with (14). The fact that the system of equations 
(14) and (15) is self-consistent leads to nonlinear equations 
for the total wave function even for a single electron in the 
field of a positive charge. This sets the optimized jellium 
model apart from the traditional model of a rigid core with a 
given distribution of the charge density p,,(r), where Eq. 
(10) is linear in the wave function W(X). 

When the interactions of the elementary point charges, 
~ ~ ~ , , - ~ ~ ( ( r - r ' I )  and ~ ~ ~ ~ - ~ ~ , , ( l r - r ' l ) ,  are the same for neu- 
tral clusters, in which the core charge is equal to the total 
charge of the delocalized electrons, $pco,(r)dr= N, Eq. (12) 
leads to electrical local neutrality of the system: i.e., the 
optimal positive-charge density is equal to the total electron 
charge density at each point in the cluster volume: 

Such nonlinear dynamic interaction of the electrons with the 
particles belonging to the cluster core resembles polaron ef- 
fects in a solid," where a similar situation emerges in a 
system with a single electron. In metallic clusters we are 
forced to deal with a multielectron system. 

3. THE HARTREE-FOCK APPROXIMATION 

In a multielectron system an exact solution of Eq. (10) is 
impossible, with the result that we must employ the approxi- 

mate methods of many-body theory. In the present paper we 
use the Hartree-Fock approximation, in which we can write 
similar equations for the single-electron wave functions 
cpi(r) (normalized to unity) and energies Ei . For instance, in 
the optimized jellium model the system of self-consistent 
single-particle equations corresponding to Eqs. (15) and (16) 
can be written as follows: 

where summation is over all values of j (including j= i), and 
x= ( r ,a ) .  In the single-particle approximation, the total en- 
ergy of the system of electrons (Eq. (2)) is 

- (jiIVel-e1(r9r1)Iij))- (18) 

If the potentials of the ion-electron and interelectronic inter- 
actions are assumed equal (say, if there are only pure Cou- 
lomb forces, Vion-el(r,r') = Vel-el(r,r')= VCoul(r,rl) 
= I r- r' I - ' , in the system) and the jellium charge density is 
optimal, the Hartree terms of the direct Coulomb interaction 
are balanced by the terms describing the interaction with the 
positive charge except for the term with j= i. This term pro- 
duces the only "unbalanced" contribution from the potential 
well of the positive core, and it creates a spatial inhomoge- 
neity in the problem. From the standpoint of the electron 
system the term with i= j corresponds to the electron's 
"self-a~tion."~ Then the Hartree-Fock equations can be 
written as 

i.e., we have a system of nonlinear integrodifferential equa- 
tions for the single-particle wave functions of electrons 
coupled through a nonlocal exchange interaction, including 
self-action. 

The iterative procedure for the numerical solution of the 
system of equations (17) requires fixing the initial approxi- 
mation for the wave functions cpi(x). For these we used the 
Hartree-Fock wave functions of delocalized electrons calcu- 
lated for a cluster with a uniform positive charge distribution 
pcore(r). The system (17) of Hartree-Fock equations was 
solved for neutral metallic clusters with an optimal distribu- 
tion of the background charge on the assumption that the 
system is spherically symmetric, i.e., pco,(r)=pCore(r), 
which simplified the solution considerably because of sepa- 
ration of the angular and radial variables. In a spherically 
symmetric charge distribution with radial density 
a ( r )  = 4.rrr2p(r), where Jp(r)dr= $ ra ( r )d r=  N for a neu- 
tral cluster, the potential (6), after we allow for (5) and inte- 
grate over the angular variables, assumes the form 
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and the condition (13) for the total-energy minimum can be 
written as 

o r e i o n - e  - i o n -  ion(r))dr= 0, (21) 

where 6uc0,(r) is a small variation in the radial density of 
the positive jellium charge (provided that there is charge 
conservation, i.e., 6uc0,(r)d r = O), and the potentials 
UionPel and Uion-ion of the ion-electron and ion-ion inter- 
actions are generally defined in the following way: 

electron and ion-ion interaction potentials are equal: 
- 

ion- el and aion-ion= aion- el .  According to (12), 
this leads to local neutrality (Eq. (16)) in the "optimal" 
system. The interelectronic interaction in (17) was assumed 
to be pure Coulomb, i.e., E , ~ - , ~ =  1 and Ke,-,l(x) = 1, since 
in the first approximation the screening effect of the inner 
electron shells of the core atoms on the interaction of delo- 
calized valence electrons can be ignored. 

We calculated the single-particle Hartree-Fock wave 
functions, the delocalized-electron energies, and the total en- 
ergies Etot= Eel+Ecor, for neutral clusters, with the number 
of atoms N ranging from 1 to 92 both for an "optimal" 
distribution of the background charge density pco,(r) and 
for a positive core in the form of a uniformly charged ball of 
radius R ,  which corresponds to the bulk material model' for 
clusters consisting of sodium atoms (r, = 4 at. units). The 
calculations were done in both models for various values of 
the screening parameter a and the dielectric constant E .  

UCOE( r1 ) 4. A DISCUSSION OF THE NUMERICAL RESULTS 

Uion-ion(r) = 2~ion-ion(r) o I- r' Our calculations show that allowing for the interaction 
of the electron system with the unbalanced charge of the 

x Lrir' Kion-ion(()de dr ' .  (23) positive core in the optimized jellium model leads to consid- 
r-rrI  erable changes in the electronic structure of the cluster. Pri- 

In our numerical ca~culations we took for the point- marily this is manifested by a redistribution of the charge 
charge interaction potential (5) the screened Coulomb poten- density in the cluster as a result of "optimization," which 
tial, i.e., K(r) = exp (- ar): leads to local neutrality of the system. Thus, the jellium core 

exp ( -  a r )  exp(- rlD) acquires internal structure. The positive charge winds up dis- 
V(ri ,rj)=v(\ri- rjl) = - - , (24) tributed over the volume nonuniformly and forms regions of 

E r & r  maxima and minima corresponding to the equilibrium posi- 
where r = Iri- rjl, and D = a- ' is the screening radius. In tions of the ions in the lattice of the polyatomic cluster. This 
the solution we assumed that the parameters of the ion- irrevocably changes the other physical parameters of the 

el ( r ) ,  arb. units el (r ) .  arb. units FIG. 2. The electron density distrihu- 
I . . .  . I . . . .  tions p,,(r) in an optimal eight-atom 

a 
- 1.2- 

b .  cluster with the screened Coulomb inter- 
action (24). The calculations were done 
in the Hartree-Fock approximation for 
different values of the screening param- 
eter a and the dielectric constant 
E =  1.0 (a) and 1.025 (b). The dashed 
curves depict the positive charge distri- 
bution p,,(r) -po in the Na, cluster for 

0.2 - the BM model ( R = 8  at.units): 
a= 0.0001 (curves 1 ) .  0.01 (curves 2) .  
and 0.015 (curves 3). 

0 5 15 0 5 lo r ,  at. units lo r. at. units 
15 
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E-,, eV IP, eV 

1 a = D-', at. units:' a = D- , at. units:' 

FIG. 3. a) Hartree-Fock single-electron energy levels E i  of an eight-atom (ls21p6) cluster as functions of the screening parameter a of the interparticle 
interaction calculated in the hulk material model (dashed curves) and the optimized jellium model (solid curves) at E =  1 .  b) Ionization potentials for an 
OJM-cluster, I P ( a ) = E , ,  , at different values of the dielectric constant: E =  1.00 (curve I ) ,  1.01 (curve 2). 1.025 (curve 3). 1.05 (curve 4). 1.075 (curve S), 
and 1.10 (curve 6). The X's  stand for the ionization potentials: I and I1 stand for the experimental values of IP for the Na, and K,  cluster^,'^ and 111 stands 
for the results of calculations in the local density appro~imation.'~ 

"optimal" system in comparison to results obtained on 
the basis of the model with a uniformly charged core. In 
particular, the electronic Hartree-Fock levels transform 
considerably: especially in clusters with completely 
filled electron shells. Figure l(a) depicts the dependence 
of the total energy per atom, Eto,IN, on the number of 
atoms in a cluster calculated in the Hartree-Fock approxi- 
mation for two models (BM and OJM) with only Coulomb 
forces (i.e., K ( r ) =  1 and E = 1) in a spherically symmetric 
system. Clearly visible are the magic numbers1 corres- 
ponding to the most stable cluster configura- 
tions with closed electron shells. For some values of 
N, say, N=40 (ls21p61d102s21f142p6) and N=68 
(ls21p61d102s21 f142P61g182d10), the minima in the total 
energy are much more pronounced. The difference in the 
total energies of clusters with an OJM-core and with a uni- 
form background distribution in the BM approximation, 
( E ~ : ~ ( N )  - E:~(N))IN, in the case of pure Coulomb inter- 
particle interaction remains approximately constant and 
amounts to about 0.1 eV per atom. 

The dependence of the mean radius 
(r)  = Xi<  qTIrI qi> on the number of atoms6 also changes 
considerably as we go from the BM model to OJM: local 
minima appear in curves 1 and 2 in Fig. l(b) at N 
= 8, 20, 40, 58, 92, . . . , i.e., clusters with closed electron 
shells, whose spherical symmetry has been verified experi- 
mentally and agrees with computations done for the spheri- 
cal Nilsson model? form a more compact system as a result 
of modulation of the positive jellium by the electron density. 
On the whole, the size of clusters in OJM is somewhat 
greater than in the ordinary jellium model, i.e., they form a 
looser structure with a lower total energy. This is accompa- 
nied by enhancement of the "shell effect" in comparison to 
the BM model because of a redistribution of charge in the 
positive core, which acquires a shell structure. This results in 
the appearance of magic numbers in the dependence of (r) 
on the number N of the atoms. For instance, curves 3 and 4 
in Fig. l(b) represent the derivatives d(r)ldN and show that 
the mean radius calculated in OJM is much more sensitive to 
the population of electron shells than the BM model. 

As a result of studying the physical characteristics of 
clusters with different numbers of atoms we found that a 
multielectron system is extremely sensitive to minute varia- 
tions in the nature of the interparticle interaction forces. The 
distributions of the electron density in an optimal eight-atom 
system (ls21p6) clearly show (Fig. 2) that screening of the 
Coulomb interaction with a positive charge and especially 
the fact that the dielectric constant E in (24) differs from 
unity lead to significant suppression of the electron density at 
the center and to an increase in the mean radius of the sys- 
tem. The reason lies in the increase in the role of the un- 
screened Coulomb repulsion between electrons, but as Fig. 2 
clearly shows, the dependence on the screening parameters 
proves to be extremely strong. This affects the stability of the 
cluster system and the size of other parameters. 

Figure 3(a) depicts the Hartree-Fock energy levels Ei as 
functions of the screening parameter a calculated in the bulk 
material and optimized jellium models for an eight-atom 
cluster. Note the linear nature of the curves in both models. 
This behavior is exhibited for all values of the dielectric 
constant in (24), as is clearly visible in Fig. 3(b), which 
depicts the behavior of the ionization potential I P ( a )  of the 
same cluster. A similar linear dependence of the energy lev- 
els E , (a ) ,  whose slope, as we found, is independent of the 
core model and is essentially independent of the dielectric 
constant in the potential, is exhibited by clusters with more 
atoms, say N= 20 [Figs. 4(a) and 4(b)], with the "polaron" 
effect transforming the electron structure of the OJM-system 
and thus changing the order in which the 2s- and Id-levels 
appear. 

The dependence of the total energy of the system on the 
parameters of the screening of the interparticle interaction is 
also linear in both models and at essentially all values of the 
dielectric constant E .  Figure 5 depicts the curves represent- 
ing the dependence of the binding energy of an eight-atom 
cluster ( 1 s2 lp6) Eto,(a)IN, calculated in the Hartree-Fock 
approximation for the bulk material and optimized jellium 
models with a screened Coulomb potential (24) at E =  1.0. 
We found that the stability of the system strongly depends on 
the screening parameter and on the dielectric constant in the 
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FIG. 4. Hartree-Fock electron energy 
levels E ,  of a 20-atom 
(ls21p61d102sZ) cluster as functions of 

a, at. units-' a, at. units‘' 

interparticle interaction potential. For instance, even an opti- 
mized cluster becomes unstable (i.e., the total energy 
changes sign) at a screening radius D - 75 nat. units, which 
exceeds the mean radius of the electron system (r) = 6.5 nat. 
units by a factor of ten (Fig. l(a)). As Fig. 5 shows, the 
critical value of the screening parameter rapidly decreases as 
e grows. The differences in the behavior of electron systems 
with uniform and "optimal" positive charge distributions, 
induced by changes in the interparticle interaction forces, 
show up in the dependence of the total energy on the dielec- 
tric constant E (Fig. 6). The more adaptive OJM-system re- 
tains its stability over a much broader range in &, and the 
corresponding E,,, vs. E dependence acquires a nonlinearity, 
in contrast to the BM-model. 

The linear dependence of the total and single-particle 
energies on the screening parameter can be explained if we 
replace the exponential factor in (24) : 

Thus, in the first approximation and with allowance for (23), 
the potential energy of the positive core (Eq. (1)) can be 
written as (Fig. 7(a)) 

the screening parameter a calculated in 
the bulk material model (a) and the opti- 
mized jellium model (b) at E = 1 .O. The 
X's stand for the ionization potentials: I 
stands for the experimental values of 
I P  for the Na,, c l ~ s t e r , ' ~  and I1 stands 
for the results of calculations in the local 
density modeI.l3 

where aco,(r) = 41~r~~, , , ( r)  is the radial positive charge 
density, and Eco,(0) is the energy of a core with a pure 
Coulomb interaction (a=O). As Fig. 7a demonstrates for a 
20-atom cluster, the approximation (25) holds for a uniform 
distribution pcore(r) = po over essentially the entire range of 
a ,  and the slight deviation for the optimized jellium model 
can be accounted for by a shift of the charge density (posi- 
tive or negative) in the direction of large radii as a increases 
(Fig. 2), where we must allow for the higher-order terms in 
the expansion of K(r). 

Similarly, with allowance for (17) and (22), the total 
energy of the electron system Eel (Eq. (19)) can be written as 

Then as a result of adding (25) to (26) the total cluster energy 
El,,= Ecore+ Eel becomes 

N 2  
Etot(ff)-Et0,(O)+a~.  (27) 

For an optimal distribution, as a result of the condition 
(17) for local neutrality, the nonlinearities in Ec,,(a) (Fig. 
7(a)) and EeI(a), which are due to the redistribution of the 

E,,,, IN. eV 

E,,,, IN eV 

a= D-', at. units-' 

FlG. 5. Dependence of the total energy per atom, E,,IN, of an eight-atom 
cluster on the screening parameter a calculated in the Hartree-Fock ap- 
proximation for the bulk material model (curve I )  and the optimized jellium 
model (curve 1') at E =  1.0, and for an "optimal" system at different values 
of the dielectric constant: E = 1.025 (curve 2), 1.05 (curve 3), 1.075 (curve 
4), and 1.01 (curve 5). 

-0.5 

---- BM (Na8) 
- OJM 

FIG. 6. Dependence of the total energy per atom, E,,,IN, of an eight-atom 
cluster on the dielectric constant E in the interparticle interaction potential 
(24) for the bulk material nlodel (dashed curve) 'and the optimized jellium 
model (solid curve) at a = 0. 
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-0.8 1- OJM 

-1  .o 2-BM (N4,,) 
. 3-El, (0)+&/2~ 

a = D-', at. units-' a = D-', at. units-' 

FIG. 7. Positive-core potential energy 
per atom E,,IN (a) and the total energy 
per atom El ,  IN (b) of a 20-atom cluster 
as functions of the screening parameter 
a calculated for the bulk material and 
optimized jellium models at E = 1.0. 

charge density in the system, are balanced and the Etot vs. dEn 1 1 
-- 

a dependence for both models becomes linear (Fig. 7(b)). d a - ( & I -  E N~ - -N(N- 2e 1) - 
Allowing for screening of the interaction between delo- 

calized electrons constitutes a separate, more difficult com- 
putational problem. An estimate similar to that done above 
shows that when such screening is present, the total energy 
of the electron system (for an arbitrary distribution of the 
positive charge density) can be written for the special case in 
which the parameters of interelectronic and electron-ion in- 
teractions are equal, to first order in a in the expansion of 
KG-) ,  as 

and the total energy of the system, with allowance for (25), 
can be written as 

Thus, comparing (27) with (29), we see that allowance for 
screening in the electron system, while retaining the linear 
nature of the E,,, vs. a dependence, makes the system more 
stable against changes in the screening parameter than in the 
case of a pure Coulomb interelectronic interaction, and in- 
creases the value of the "critical" a at which the total clus- 
ter energy vanishes. This increase in the stability of the sys- 
tem resulting from screening of the Coulomb repulsion 
between delocalized electrons shows up more readily in clus- 
ters with a large number of atoms N, as expected. 

Here the first term between the bra and ket vectors appears 
because of electron-ion attraction, and the second and third 
appear because of electron-electron and ion-ion repulsion, 
respectively. The last term incorporates the nonphysical 
"self-action" of the positive charges, which is a conse- 
quence of using the jellium model. Equation (31) shows that 
in the general case we arrive at the same dependence of the 
total energy on a as we did in the Hartree-Fock approxima- 
tion (29). 

For a more realistic approach we can replace the system 
of positive ions in the cluster by a system of point charges. 
Then self-action is eliminated from the term describing the 
contribution of ion-ion repulsion to the energy, and the de- 
rivative of this term with respect to a is equal to 
N(N- 1 )/28. Here the dependence of the total energy on the 
small parameter a has the form 

Thus, comparing (29) with (32), we see that the jellium 
model and the point-ion model yield different results for the 
dependence of the total energy on the screening parameter 
a. 

5. CONCLUSION 

Allowing for the fact that the clusters become unstable at 
The results of our study of the dependence of the physi- 

small values of a , we can perform a more general analysis 
cal characteristics of a multielectron system on the param- of the linear dependence of the energy as screening of the 
eters of the interparticle interaction potential show that for 

pairwise interaction grows. This requires using parameter- 
the limiting cases of clusters with an infinitely rigid ionic 

dependent Hamiltonians. Indeed, if we employ the 
relationship1 core (the bulk material model) and an infinitely compressible 

ionic core (the optimized jellium model), not only does the 
distribution of the unbalanced positive charge in the cluster 

-- dEn(a) -($,,I$/ h) 
d a  (30) volume have a considerable effect on the properties of the 

system (on the optical response, in particular), but so does 
and the fact that the Hamiltonian H, which describes a clus- the nature of the forces acting in it. For instance, as a result 
ter system with positively charged-jellium and the same pair- of screening of the atomic nuclei by the inner-shell atomic 
wise interaction (24) as a whole, with only the potential en- electrons, an increase in the average radius (Figs. 1 and 2) 
ergy being a-dependent, we arrive at the following must lead to an increase in the dc dipole polarizability of the 
expression for the derivative on the right-hand side of Eq. system ancl a decrease in the frequency of the giant dipole 
(30): resonance.19" 
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In addition to clusters, these data can be applied to any 
finite multielectron system in which there is interaction with 
a positive background. 
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