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A dynamic theory describing the time-dependent broadening of spectral lines due to both isolated 
impurities (homogeneous spectral diffusion) and ensembles of impurities (nonhomogeneous 
spectral diffusion) has been developed. The homogeneous spectral diffusion is caused by 
interaction between an impurity and long-lived tunneling excitations (tunnelons) in polymers 
and glasses and is diagonal with respect to electron indices. The inhomogeneous diffusion is due 
to off-diagonal interaction. The well-known results of the stochastic theory of spectral 
diffusion can be derived from the dynamic theory proposed. The effect of the initial 
nonequilibrium tunnelon distribution on the impurity spectral line broadening is discussed. 
Experimental data which confirm some conclusions of the dynamic spectral diffusion 
theory are considered. O 1996 American Institute of Physics. [S 1063-776 1 (96)00703-91 

1. INTRODUCTION 

The effect of spectral diffusion on impurity spectra of 
polymers and glasses has attracted a lot of attention by both 
experimenters1-6 and theorists7-l3 in the recent years. Spec- 
tral diffusion has the strongest effect on spontaneous time- 
dependent broadening of dips in spectralv2 and on the depen- 
dence of the optical transverse relaxation time T ,  on a 
characteristic time of an experiment, such as the waiting time 
t ,  between the second and third pulse in experiments with 
three-pulse optical ethos?' 

Spectral diffusion was originally detected in spin echo 
experiments by measuring T2 as a function of the pause du- 
ration 7.14 Klauder and ~nderson'' proposed a stochastic 
theory accounting for the spectral diffusion effect. Their sto- 
chastic approach was a cornerstone of most theoretical stud- 
ies of spectral diff~sion.~,~,",'~,'~~~~ 

According to the stochastic theory, the main contribution 
to spectral diffusion results from the spontaneous relaxation 
of two-level systems undergoing a tunneling transition, 
which exists in polymers and glasses. These spontaneous 
transitions cause fluctuations of electron transition frequen- 
cies in impurity centers that result in the time-dependent 
broadening of optical spectral lines. 

It is common knowledge that the stochastic technique 
yields a relatively simple theory of optical line broadening, 
but is absolutely inadequate for an interpretation of the in- 
tensity distribution among spectral lines in impurity spectra. 
A typical spectrum usually contains a narrow zero-phonon 
line, and a neighboring broad phonon sideband, which some- 
times has fine structure and vibronic lines for the molecular 
impurity center. On the other hand, all these features of the 
impurity spectrum, as well as the zero-phonon line broaden- 
ing, are easily interpreted in terms of the dynamic theory of 
optical band  shape^.'^ 

The dynamic approach based on the impurity system 
Harniltonian and the respective density operator is more gen- 
eral than the stochastic method and therefore more useful in 
interpreting experimental data. Hence spectral cliffusion can 
undoubtedly be described in terms of the dynaniic theory. 

With this end in view, the dynamic theory described in the 
paper has been developed. 

A preliminary study of spectral diffusion using the dy- 
namic approach produced fundamentally new results.13 It 
was found that there are two types of the spectral diffusion- 
homogeneous and inhomogeneous. Homogeneous spectral 
diffusion is a time-dependent broadening of a homogeneous 
line, hence it should also affect the line width of an isolated 
impurity center. Inhomogeneous spectral diffusion affects 
only line widths of ensembles of molecules because it results 
not from the broadening of a homogeneous spectral line, but 
from its shift. This shift is actually observed in experiments 
with isolated molec~les.~ 

This paper demonstrates that the stochastic theory takes 
into account only homogeneous spectral diffusion and ig- 
nores inhomogeneous diffusion. The dynamic approach to 
spectral diffusion reveals some inconsistencies in the sto- 
chastic theory that were overlooked in previous studies. The 
dynamic theory of spectral diffusion, which is free of these 
contradictions, predicts a slightly different time dependence 
of the homogeneous line width. Finally, the dynamic theory 
reveals a new problem concerning the nature of initial non- 
equilibrium states of two-level systems undergoing tunneling 
transitions. The above statements demonstrate the impor- 
tance of the dynamic approach for studying spectral diffu- 
sion. 

2. DIAGONAL AND OFF-DIAGONAL INTERACTIONS 

Let us consider an impurity center in a polymer or glass. 
Besides phonons, tunneling excitations responsible for struc- 
tural changes occur in such materials. The system Hamil- 
tonian can be expressed as 

where c f  and c j  are Fermi creation and annihilation opera- 
tors of excitation in the jth tunneling system, and s j  is its 
excitation energy. The operator H,, describes the relaxation 
of tunneling excitation. It is known that low-temperature 

434 JETP 82 (3), March 1996 1063-7761/96/030434-08$10.00 O 1996 American Institute of Physics 434 



properties of polymers and glasses are controlled by tunnel- 
ing excitations,19 which we shall call tumelons for brevity. 
This assertion also applies to optical properties, so we shall 
ignore the phonon contribution to spectral line broadening at 
low temperatures, and phonons are not included in the 
Hamiltonian in Eq. (1). 

Electronic excitations affect the adiabatic Hamiltonian of 
the impurity-lattice system, which can be given by 

Here Eo,  B : ,  Bo, and Ej ,  B; , Bj are the energies of elec- 
tronic excitations of the impurity center and of host mol- 
ecules, and creation and annihilation operators of respective 
excitations. The electron-tunnelon interaction is described 
by the operators 

The operator D,  which is diagonal with respect to electronic 
indices, describes the effect of tunnelons on the resonant 
frequency. Its analog in the phonon system is the quadratic 
electron-phonon interaction responsible for the thermal 
broadening of zero-phonon lines.20 We shall see below that 
stochastic theories of spectral diffusion take into account the 
interaction described by D . 

The operator M ,  which is off-diagonal with respect to 
electronic indices, describes the transmission of an excitation 
from an impurity center to a host molecule and back, which 
is accompanied by the creation and annihilation of a tun- 
nelon. This interaction was ignored by the stochastic theories 
of spectral diffusion. 

Since spectral diffusion is due to long-lived tunnelons, 
the tunnelon density matrix is nonequilibrium and, hence, it 
is time-dependent: 

where 

Here RJyl is the tunnelon lifetime. By defining a model of 
the tunnelon-phonon interaction, i.e., the operator HEl,  we 
can derive an expression for RJr . In this paper, we presume 
that Rj are unknown constants, and pj(0) and 
fi(T) = [exp(eilkZ)+ 11-I dete~mine the initial and final 
probabilities that there is a tunnelon in the sample. 

The shape of an optical absorption band is described by 
the formula 

where 

Here 

is the interaction operator between an impurity center and an 
incident light wave. Equations (8)-(10) are similar to those 
used in calculations of shapes of electron-phonon spectral 
bands. There are only two fundamental differences, namely, 
the Hamiltonians contain tunnelon operators, and the 
density operator j(t ,T) is time-dependent. 

3. DERIVATION OF STOCHASTIC THEORY FORMULAS 
USING THE DYNAMIC APPROACH 

The results of the stochastic theory can be derived from 
Eq. (9) if we assume that 

HE,= M=O. (1 1) 

In this approximation, the operators H g  and He commute and 
the expression on the right side of Eq. (9) can be easily 
calculated: 

We shall see below that basic results of the stochastic theory 
can be derived from Eq. (12). Note, however, that the model 
in which H ,,=O and pj(t,T) is time-dependent is not self- 
consistent since at HR1=O the constant Rj  also have to be 
zero and pj(t,T) will be constant with time. Since the basic 
equations of the stochastic theory can be derived from Eq. 
(12), this inconsistency is also present in the stochastic 
theory, but is more difficult to find. 

Let us introduce the distribution function 

where No is the total number of tunneling systems, and the 
partially reduced functions 

The shift Aj=A(roj) is a function of the vector roj connect- 
ing the impurity to the jth tunneling system. Since c j  and 
Rj  are independent of roj, the distributions No(A) and 
N(&,R) can be treated as statistically independent, i.e., 

Q(A,E,R)=No(A>N(E,R). (16) 

Using Eqs. (13) and (14) and assuming that Eq. (16) is valid, 
we can transform Eq. (12) to 

I(x,t,T)=exp[-iEox+ p(x,t,T)], (17) 

where 

p(x,t,T)= N(&,R)J(&,R,x)dRd&, I (18) 
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The total number N of lattice sites is larger than the number 
No of tunneling systems. Using the ratio NOIN, we can re- 
place the summation over the tunneling systems with a sum- 
mation over lattice sites and then with an integration over the 
coordinates. After that Eq. (19) is transformed to 

No 
J(&,R,x)= dV ln[l - p ( s , ~ ) ( l - e - i A ( r ) x ) ] ,  

(20) 

where V=NAV is the sample volume. 
Stochastic theories are usually based on the dipole- 

dipole interaction model, in which 

Substituting Eq. (21) to Eq. (20) and using a spherical coor- 
dinate system, we obtain 

where no= NoIV is the density of tunneling systems and 
( . . . ) denotes integration with respect to the angles 6 and 
$. It is proved in the Appendix that 

According to Eq. (21), the minimum radius r corresponds to 
the maximum shift A and vice versa. Therefore Eq. (22), 
with due account of Eq. (23), can be transformed to 

Here we have replaced and 0 by A ,, = p /  A V and 
Amin=Am,lN. It is obvious that A,, is the energy of the 
dipole-dipole interaction between an impurity and its nearest 
tunneling system. Presently we know nothing about its value, 
but it is quite plausible that it is larger than all R, i.e., 
A,,/R> 1. 

The logarithmic function is slower than the linear one, 
hence we may replace x in the argument of the logarithm 
with the constant y - ' ,  where y  is the FWHM of the zero- 
phonon line. The parameter a = ln(7r ylAminF) is about one 
order of magnitude larger than 7r. Substituting Eq. (24) into 
Eq. (18), we obtain 

where 

One can easily find that Eqs. (17) and (25) substituted into 
Eq. (8) lead to a Lorentzian line shape: 

Stochastic theories also predict this line shape. Unlike equa- 
tions of the stochastic t h e ~ r i e s , " ~ ' ~ , ' ~ - ~ ~  Eq. (26) is 
temperature-dependent. Well-known results of the stochastic 
theory can be derived for special cases from Eq. (26). 

If we assume like Klauder and ~nderson"  that p(O)=O, 
then at a small time t we have 

Substituting Eq. (29) into (26) and taking F= 1, we find the 
equation derived by Klauder and Anderson: 

The expression for the constant rn coincides with Eq. (1.13) 
in Ref. 15, but in our theory the constant rn is temperature- 
dependent. 

If all the dipoles are parallel to each other, then 
F = 1 - 3cos20, hence (F) = S= 0 and ( 1 ~ 1 )  = 1 6 ~ 1 3 ~ ' ~ .  Sub- 
stituting the latter formula into Eq. (26) for y ,  we obtain 

Here the function q ( t , T )  is multiplied by a factor which is 
identical to the expression for derived by Hu and 
~ a r t m a n n , ' ~  whereas the function 9 in Refs. 16 and 17 is 
different and constant with temperature, since it was calcu- 
lated by the random-jump method. 

Using the approximation of statistical independence ex- 
pressed by the equation 

and taking a step function for N2(&), which equals unity 
over the range of 0 to em, we obtain the following expres- 
sion for 9 at p(0) = 0: 

where f(x) = (ex+ 1 ) - '. The function 9 is linear with tern- 
perature if kT4cm,  . This temperature dependence was ac- 
tually observed in the millikelvin region.21 The time depen- 
dence of q is identical to that derived by Liltau et al.' 
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Thus we can see that under the condition H , , = 0  the 
dynamic theory including only the diagonal interaction eXP dx , t .T)=exp ix 0 - - xf  2 YOJ- - 1x1 
yields results identical to those of the stochastic theories of 

[ ( J )  ( 1 
spectral diffusion. XU [ I  -F,(l -exp(-i2flojx-2 yojlxl))]. 

J 
(34) 

4. HOMOGENEOUS SPECTRAL DIFFUSION 

If H E 1  # 0, the operators H g  and H e  do not commute and 
the calculation of the right-hand side in Eq. (9) becomes very 

By omitting the index j and taking into account that 
cumbersome. This calculation was performed by Zaitsev 
et al.,22,23 and technical details were given in those refer- F= 1 -A - iB and y= Rl2, we can transform Eqs. (41), (43), 

ences. We shall use the final formulas derived in Refs. 22 and (44) Ref. 22 

and 23 to develop the dynamic theory of spectral diffusion. 
One of those formulas is 

where f = [exp(~lkT)+ I]-', and E and E + A  are the tun- 
nelon energies when the impurity is in the ground and ex- 
cited states, respectively. Equations (34)-(37) may be used 
in a numerical calculation of the spectral line But 
these equations are too complicated and, at first view, it 
seems that they cannot compete with simpler formulas of the 
stochastic theory. Fortunately, Eqs. (34)-(37) may be con- 
siderably simplified and the formulas of the dynamic theory 
may be comparable in simplicity with those of the stochastic 
theory. 

Let us take account of the fact that 

and 5= 1 only in the specific case in which R = A and the 
temperature is infinite. In the most interesting case of low 
temperature the strong inequality c< I holds. Then expand- 
ing the right-hand sides of Eqs. (36) and (37) in powers of 
5 and retaining the lowest-order nonvanishing terms, we ob- 
tain 

where 

It follows from Eq. (40) that 6< A12 and T<R. Therefore 
we may substitute 

in Eq. (35) and easily find that 

Using Eq. (39) and the substitution (41) in the product on the 
right side of Eq. (34), we obtain 

Equation (43) can serve as the basic formula for the 
analysis of spectral diffusion. If we take into account not 
only equilibrium tunnelons, but also nonequilibrium ones, 
we can substitute the equilibrium tunnelon distribution func- 
tion f(T) in Eqs. (40) and (42) with the nonequilibrium func- 
tion p ( t , T )  described by Eq. (7), i.e., 

Equations(43)-(45) adequately describe spectral diffusion. 
Let us first consider the product over j in Eq. (43). It 

resembles the product in Eq. (12), which was used to derive 
formulas for the line width and shift identical to those of the 
stochastic theory. It is obvious that at Rj= 0 the two products 
are identical. But in real solids H E I  # 0, hence Rj $ 0, so the 
real situation is quite different. Most tunneling systems are 
far from an impurity, so their coupling constants A j  are 
small. But at Rj Z 0 the function Fj tends to zero at Aj-+0, 
and distant tunneling systems do not contribute to the prod- 
uct in Iiq. (43). Only tunnelons with Aj>Rj, i.e., those 
strongly interacting with the impurity, contribute to the prod- 
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uct. But such tunnelons must be close to the impurity, hence 
they are relatively scarce. If the number of tunneling systems 
is small, the transition from the product in Eq. (19) to the 
integral with respect to the coordinates in Eq. (20) is not 
justified. Hence all the formulas derived from Eq. (20) in 
Section 3 are not valid. This means that if we eliminate the 
inconsistency of the approximation described by Eq. ( l l ) ,  
which was discussed in Section 3, we conclude that the prod- 
uct over j in Eq. (43) does not contribute to spectral diffu- 
sion. 

Now let us discuss the exponential factor in Eq. (43). 
The stochastic theories do not contain such expressions. Af- 
ter substituting the functions Sj and Ti defined by Eq. (45), 
we obtain the following expressions for the spectral line- 
width and shift: 

Tunneling systems in close proximity to an impurity have the 
largest coupling constants Aj. Therefore only the coupling 
constants of the tumelons from the immediate neighborhood 
of the impurity satisfy the inequality 

where r, is the total electronic transition line width deter- 
mined by all broadening mechanisms. We shall calculate the 
contribution of these tumelons separately by dividing the 
sum over j into two parts: 

where n is most likely somewhat greater than unity, and 
No is approximately the total number of tunneling systems. 
By separating the sums in Eq. (46) according to Eq. (48), we 
obtain 

where SL, rL and Shorn, rhom are described by sums over 
1 and s = j- n , respectively. 

It is obvious that SL and rL describe the spectral line 
shift and width due to the tunneling systems from the nearest 
impurity environment. This environment is different around 
different impurities, hence the parameters SL and TL for dif- 
ferent impurities are also quite different. The distributions 
T(t,T) found in experiments with isolated terrylene mol- 
ecules in polyethylene24 are likely due to the inhomogeneity 
of rL . Long-lived tumelons with l/Rj-+O, whose coupling 
constants do not satisfy the condition (47), do not contribute 
to 6, and r L ,  so the number n in the sum of Eq. (48) 
includes only short-lived tunnelons, which satisfy the condi- 
tion (47). But the short-lived tunnelons have enough time to 
thermalize by the start of an optical experiment and their 
distribution function pi= f,(T). Therefore SL and TL are de- 
scribed by the following equations: 

These are the formulas which were previously studied in the 
dynamic theory of the thermal broadening and shift of spec- 
tral lines." 

In contrast to the expressions for SL and rL in Eq. (50), 
those for Shorn and rho, include sums over the enormous 
number No of tunneling systems in the sample. The param- 
eters Shorn and r h o m  are obviously independent of the imme- 
diate environment of the impurity center, i.e., they are equal 
for all impurity centers. Although the contribution of each 
tumelon to Shorn and rhom is vanishingly small, their total 
number is very large and their resulting contribution is quite 
sizable. Therefore Shorn and Thorn may be time-dependent. 

As in Eq. (12), integrals with respect to coordinates may 
be introduced into the expression for Shorn and r horn. Now 
the distribution function defined by Eq. (16) depends on the 
initial condition po= p(0): 

Using the same transformations as in the derivation of Eq. 
(18) from Eq. (12), we derive from Eq. (46) the following 
formulas: 

Taking the function A,=A(ro,) to be defined by Eq. (21), 
we obtain 

where angular brackets denote integration with respect to the 
angles. Here no=NoIV is the density of tunneling systems. 
Equations (54) and (55) are valid at R>Arnin F. We may 
replace R in the logarithm with the effective value Reff. 
Then a =ln(R effllArnin FI) is a constant less than 20. The 
dependence of the sums in Eqs. (54) and (55) on R is elimi- 
nated by the factors R2 and R in Eqs. (52) and (53). The 
R-dependence is not c'anceled if the dipole-tlipole interac- 
tion is replaced with an interaction of shorter range. 
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After substituting Eqs. (54) and (55) into (52) and (53), 
we obtain the following expressions for Shorn and rho,,,: 

where 

*D(~,T)= j d s  dRdpoN(e,R,pO)p(l - p). (57) 

Equations (56) and (57) derived at H,,, # 0 are similar to Eqs. 
(26) and (27), which were derived at Hml=O. The only dif- 
ference between them is in the shapes of the functions 9 and 
q D ,  which describe the time dependence of the line shift 
and width. Thus we have obtained the curious result that the 
only difference between the "inconsistent" dynamic theory 
of spectral diffusion, discussed in Section 3, whose results 
are close to those of the stochastic theories, and the self- 
consistent dynamic theory described in this section, is in the 
form of the functions 9 ( t , T )  and 'PD(t,T). 

5. TIME AND TEMPERATURE DEPENDENCES OF THE 
WIDTH AND SHIFT OF SPECTRAL LINES 

Let us consider the case when the physical parameters 
E ,  R, and po are statistically independent, i.e., 

N(~,R,P~)=N~(R)N~(&)N,(P~). (58) 

Assuming as in Section 3 that the distribution N2(&) is a step 
function, we find 

QD(~.T)= I d ~ ~ I ( ~ )  Ioem '((p( l -p)))* 
E m  

(59) 

where (( . . . )) denotes the averaging over the initial condi- 
tions, i.e., over the functions po. In the low-temperature 
limit, when kTI&,<< 1, we easily find that 

where 

A(t)=0.7[1 -2((po))e-R'](1 -ePR')-0.2(1 -ePR'),, 
(61) 

B(t) = ((po))e-"'- ((pi))e-2R'. (62) 

Substituting Eqs. (59) and (60) into Eq. (56), we obtain 

The shift and width of spectral lines are controlled by the 
same constants nopa(F)/3 and no ,ur ( l~1) /3  as in the sto- 
chastic theories. This is not surprising, since both theories 
take into account the dipole-dipole interaction of an impu- 
rity center with an enormous number of tunneling systems. 
The temperature dependence is linear as in the stochastic 
theory. 

Time, sec 

FIG. 1 .  High-energy shift of the pentacene line maximum3 (A=592.544 nm) 
and the calculation by (Eq. 66) (dashed line). 

The most intriguing feature of Eqs. (63) and (64) is the 
dependence on the initial distribution function po. If 
((po)) =((pi)) = 0, we find that B(t) = 0 and A (t) is an in- 
creasing function of time. But if these averages are nonzero, 
the function B ( t )  is also nonzero. In this case there should be 
a residual FWHM of an optical line larger than the inverse 
luminescence decay time T1. This residual homogeneous 
FWHM is due to the interaction with nonequilibrium tun- 
nelons, which act as defects in this case. 

Note that the effect of the initial condition on the spec- 
tral line width in polymers and glasses was essentially com- 
pletely ignored in previous theoretical studies. This is a new 
aspect of spectral diffusion problem revealed by the dynamic 
approach. Presently it is impossible to say which initial con- 
ditions prevail place in real solids with impurities. The situ- 
ation could be clarified by dedicated experiments if measure- 
ments are processed using the present dynamic theory. 

6. INHOMOGENEOUS SPECTRAL DIFFUSION 

The stochastic theories describe spectral diffusion in 
terms of jumps of the resonant frequency. Recently varia- 
tions in the resonant frequency with time were studied on the 
molecular leveL3 Three types of changes in the spectral line 
position of a pentacene molecule in paraterphenyl were ob- 
served: a) jumps of the X=592.404-nm line between two 
spectral positions; b) jumps of the X=592.582-nm line 
among many positions; c) a drift of the X = 529.544-nm line 
over 0.6 GHz in 1.6 h (Fig. I). We shall not discuss physical 
causes of jumps, but the reasons for the monotonic line drift. 

Until now we have ignored the off-diagonal interaction 
described by the operator M. Since the diagonal interaction 
D does not give an explanation why lines corresponding to 
some defects drift with time and lines of other defects do not, 
we shall take into account the off-diagonal interaction. Its 
effect on an optical line can be interpreted in terms of per- 
turbation theory with the small parameter 
M ~ ~ / I E ~ - E  . + E  Since Moj-10-100 cm-' and d-  I. 
EO- Ej- I0 cm ', this parameter is very small. 

The interaction M, which is nonresonant by its nature, 
does not directly affect the line width, and its contribution to 
the line shift in the lowest nonvanishing approximation is 
described by the fo~nlula 
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where p,(t,T) is defined by Eq. (7). 
This correction to the resonant frequency wo may be a 

very slow function of time, nonetheless, its amplitude may 
be several gigahertz. Let us estimate this addition. Since 
M ; ~  drops with the distance as r P 6 ,  only the tunneling sys- 
tems closest to the impurity make a sizable contribution to 
the frequency. Let us assume that 

The parameter M for the pentacene impurity in paraterphe- 
nyl is not known, so we use in our estimate the parameter 
M =  20 cm-' for the interaction between two neighboring 
molecules in a naphthalene crystaLZ5 Since the pentacene 
impurity in paraterphenyl has E- lo4 cm-', we have 
R -  1 GHz. The function R(t ,T) calculated by Eq. (66) for 
R - ' =  lo4 s, M ~ ~ ( T ) I E =  1.1 GHz, andp(O)=O is plotted in 
Fig. 1 as a dashed line. 

The drift of the line position may lead to a time- 
dependent broadening of lines of ensembles of impurity mol- 
ecules. Consider a quasi-homogeneous ensemble whose mol- 
ecules have the same resonant frequencies wo at t=O, but 
whose neighborhoods include different tunneling systems 
with p(0) ranging from 0 to 1. Therefore the lines of some 
impurities will drift to the low-energy side, and other lines 
will drift to the high-energy side. If the numbers of impuri- 
ties of both types are equal, the optical line of the molecular 
ensemble can be described by the following equation: 

where P ( R )  is the probability that there is an impurity cen- 
ter with the frequency shift R = M 2 / ~ ,  and y(T) is the 
FWHM of the optical line due to the diagonal quadratic 
electron-tunnelon and electron-phonon interactions. In Eq. 
(67) we can take p(t,T) = f(T)[l -exp(-Rt)] which leads to 
a blueshift at R>0. The redshift is also taken into account 
by virtue of the fact that p(-R)#O. Given that the broad- 
ened lines have Lorentzian shapes, we may assume that 

In fact, substituting Eq. (68) into (67) and integrating with 
respect to 0 ,  we obtain 

where the FWHM of the line in a quasi-homogeneous en- 
semble, 

is a function of both time and temperature. Obviously 
A w(0,T) = y(7') ant1 Aw(m, T) = T f (T) + y(T). The correc- 

tion to the homogeneous half-width, y(T), is due to spectral 
diffusion. Since this type of spectral diffusion only takes 
place in optical lines of molecular ensembles, it is natural to 
classify it with inhomogeneous effects. 

7. CONCLUSION 

Let us summarize the new results obtained using the 
dynamic approach to spectral diffusion. 

Both diagonal, D , and off-diagonal, M,  interactions can 
contribute to spectral diffusion. The stochastic theories take 
into account only the diagonal interaction. 

The dynamic theory which takes into account only the 
diagonal interaction D allows us to calculate using a com- 
mon approach both thermal and time-dependent spectral 
line-widths, and shifts. 

The diagonal interaction with tunnelons in the immedi- 
ate neighborhood generates the spectral line shift 6, and the 
FWHM r,, which are time-independent and different for 
different molecules. 

The diagonal interaction with the bulk of the tunneling 
systems yields additional contributions to the line shift and 
halfwidth, ahom and rho",, which are time- and temperature- 
dependent and equal for all molecules. 

The off-diagonal interaction M leads to a time- and 
temperature-dependent line shift R( t ,T)  controlled by the 
immediate neighborhood, which is therefore different for dif- 
ferent impurities. This shift may lead to a time-dependence 
of optical lines due to quasi-homogeneous ensembles of mol- 
ecules, i.e., inhomogeneous spectral diffusion. 

The problem of the initial distribution of nonequilibrium 
tunnelons arises in the dynamic theory. Different shapes of 
the initial distribution lead to different effects, such as a re- 
sidual linewidth larger than the reciprocal luminescence de- 
cay time. 

The author is grateful to the Russian Fund for Funda- 
mental Research (Grant 94-02-03334-a) and the International 
Science Foundation (Grant MIK300) for support of this 
work. 

APPENDIX 

By expanding the logarithm as a power series, the inte- 
gral in Eq. (22) can be expressed as 

Calculating X,, at n > 1, we find 

n-  1 
(n -  I ) !  

X ~ X ~ ( - ~ ~ A F X ) = ~ ~ J ~  ( - I ) ~ + '  
q=o (n -  1 -q)!q! 

This equation proves that only the first term in Eq. (Al) is 
nonzero, i.e., Eq. (23) is valid. 

440 JETP 82 (3) ,  March 1996 I. S. Osad'ko 440 



'w. Breinl, J. Friedrich, and D. Haarer, J. Chem. Phys. 81, 3915 (1984). 
'K. Littau, Y. S. Bai, and M. D. Fayer, J. Chem. Phys. 92, 4145 (1990). 
3 ~ .  P. Ambrose, Th. Basche, and W. E. Moemer, J. Chem. Phys. 95,7150 
(1991). 

4 ~ .  V. Gruzdev, E. G. Sil'kis, V. D. Titov, and Yu. G. Vainer, J. Opt. Soc. 
Am. B 9, 941 (1992). 

'H. C. Meijers and D. A. Wiersma, Phys. Rev. Lett. 68, 381 (1992); J. 
Chem. Phys. 101, 6927 (1994). 

6 ~ .  Tchenio, A. B. Myers, and W. E. Moemer, J. Luminescence 56, 1 
(1993). 

7 ~ .  0 .  Putikka and D. L. Huber, Phys. Rev. B 36, 3436 (1987). 
'Y. S. Bai and M. D. Fayer, Phys. Rev. B 39, 11066 (1989). 
9 ~ .  S. Osad'ko, in Persistent Spectral Hole-Burning: Science and Applica- 

tions. Technical Digest Ser. 16, 86 (1991). Monterey, California. 
"1. S. Osad'ko, Phys. Rep. 206, 45 (1991). 
"P. D. Reilly and J. L. Skinner, J. Chem. Phys. 101, 959, 965 (1994). 
1 2 ~ .  Suarez and R. Silbey, J. Phys. Chem. 94, 4145 (1994). 
"I. S. Osad'ko, JETP Lett. 61, 270 (1995). 
I4w. B. Mims, K. Nassau, and J. D. McGee, Phys. Rev. 123, 2059 (1961). 

1 5 ~ .  Klauder and P. W. Anderson, Phys. Rev. 125, 912 (1962). 
I6p. Hu and S. B. Hartmann, Phys. Rev. B 9, 1 (1974). 
"P. Hu and L. R. Walker, Phys. Rev. B 18, 1300 (1978). 
"1. S. Osad'ko, in Spectroscopy and Excitation Dynamics of Condensed 

Molecular Systems, V. Agranovich and R. Hochstrasser (eds), North Hol- 
land, Amsterdam (1983). 

I'D. A. Parshin, Fiz. Tverd. Tela 36, 1809 (1994). 
"1. S. Osad'ko, Adv. Polym. Sci. 114, 125 (1994). 
"K. P. Miiller and D. Haarer, Phys. Rev. Lett. 66, 2344 (1991). 
"D. I. Donskoi, N. N. Zaitsev, and I. S. Osad'ko, Chem. Phys. 176, 135 

(1993). 
2 3 ~ .  N. Zaitsev and I. S. Osad'ko, Zh. ~ k s ~ .  Teor. Fiz. 104, 4042 (1993). 
2 4 ~ .  Fleury, A. Zumbusch, M. Onit, R. Brown, and J. Bernard, J. Lumines- 

cence 56, 15 (1993). 
25 V. L. Broude, E. I. Rashba, and E. F. Sheka, Spectroscopy of Molecular 

Excitons [in Russian], Energoatomizdat, Moscow (1981), p. 38. 

Translation was provided by the Russian Editorial office. 

441 JETP 82 (3), March 1996 1. S. Osad'ko 441 


