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A study is made of the critical behavior of the effective conductivity {a,) and effective resistivity 
{p,) averaged over the realizations in percolation systems in the fractal region for length 
scales L of the system less than the correlation length. The proposed model of the percolation 
structure is used to determine the dependences of {%) and {p,) on the size of the system, 
including the case of nonzero ratio of the phase conductivities. It is shown that for a nonzero ratio 
of the phase conductivities {a,) = a l ( r L  + 712 r l ~ ) ( ~ l a o ) - t l v +  ff2(rLW ~ / 2 r ~ ) ( L l a ~ ) ~ ~ ~ ,  
{ P e } = p l ( ~ L +  ~ / 2 ~ ~ ) ( ~ 1 a ~ ) ~ ~ ~ + ~ ~ ( r ~ - r / 2 ~ ~ ) ( ~ l a ~ ) - ~ ' ~ ,  where ~ ( p - p c ) I p c  is the proximity 
to the percolation threshold p,,  ai are the phase conductivities (a2/u14 I), and r L ~  L-'Iv. 
For a definite set of parameters, crossover of the quantities {a,) and {p2) can be observed, namely, 
interchange of the critical behaviors when L is changed. Scaling relations are proposed for 
the conductivity {a,) and resistivity {p,) averaged over the realizations. O 1996 American 
Institute of Physics. [S 1063-7761(96)02402-51 

I. INTRODUCTION with dimensions less than the correlation length. The model 
constructed here makes it possible to describe in a unified 

It is known' that near the percolation the manner the standard case of zero ratio of the phase conduc- 
effective conductivity of two-phase inhOmOge- tivities as well as the case of a nonzero ratio: %/al f 0. 
neous media exhibits critical behavior. Below the percolation Above and below the percolation threshold, the effective 
threshold, the effective conductivity diverges as a Power conductivity for a nonzero ratio of the phase conductivities 
as the percolation threshold p, is approached: has the form3 

where p is the concentration of the well-conducting phase 
with conductivity ( T I ,  a2 is the conductivity of the poorly 
conducting phase, and it is assumed that the resistivity of the 
well-conducting phase can be ignored (pl= lla,=O). Above 
the percolation threshold, the effective resistivity 
pek l/u,= a l ( p  -p,)-' diverges, and it is now assumed that 
a2=0. In the case of infinitely large inhomogeneity (a2=0 or 
pl=O), such behavior is valid only for a large system of 
length scale greater than the correlation length, which tends 
to infinity as the percolation threshold is approached. 

In the experimental study of percolation systems, the 
length of the sample in one or several directions may be less 
than the correlation length. Such a situation is possible, for 
example, in thick-film resistors, which are widely used in 
practice (see the bibliography of studies of the electrical con- 
ductivity of thick-film  resistor^.^) In this case, the behavior 
of a, and p, can be radically changed. In a system with 
lengths in all directions less than the correlation length, the 
power-law divergences associated with the change in the 
concentration disappear, but a power dependence on the size 
of the system, called finite scaling, appears. 

In this paper, we consider the behavior of the effective 
conductivity and effective resistivity in percolation systems 

where T= (p - p,)lp,, in which p, is the concentration of the 
well-conducting phase al(h =a2/a14 1), p=t  + q,  where t 
and q are the critical exponents of the conductivity, and A i  
and B, are constants of the order of unity. In the region of 
smearing A (the analog of the region of smearing of a 
second-order phase transition), the effective conductivity is 
practically independent of the concentration: 

this expression holding for I ~ s A ,  where ~ = h " ~ ;  Di are 
constants of order unity. The expressions (1) and (2) are 
valid for samples with L > 5, where 5=aO1j-" is the correla- 
tion length, v is its critical exponent, and a. is the minimum 
scale in the system-the bond length in the case of lattice 
models. For lengths L>5, self-averaging of the effective 
conductivity occurs-the fluctuations of a, can be ignored. 

For L less than or of the order of the correlation length, 
the fluctuations of the effective conductivity are appreciable, 
and, as a rule, one does not consider a, of the actual realiza- 
tion of the random structure, which is an ill-defined quantity, 
but its average {a,) over a large number of realizations. The 
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same can be said for the resistivity p,= Ila,; moreover, in 
the region L < t  (in what follows, we shall call this the fractal 
region) we have in general {a,}+ Il{p,}. The mean values 
{a,) and {p,} depend on L and for L greater than 6 go over 
into (1) and (2). 

In the limiting case h=O of strong inhomogeneity, 
a, = a, T '  above the percolation threshold, and there exists a 
device that makes it possible to obtain {u,) in the fractal 
region. For this, using the relationship between the correla- 
tion length 5 and the concentration T, ~ = a o l ~ - v ,  one substi- 
tutes in place of T in a, the quantity ~ = ( ~ l a ~ ) - l l ~ ,  from 
which4 

We note immediately that the analogous operation with 
p,= p ,  T-' cannot be done, since when p, is averaged real- 
izations occur without percolation paths and since for h=O 
and p > p ,  if follows that a2=0  and {p , )=~ .  The mean val- 
ues of p, below the percolation threshold are found similarly: 

{ ~ ~ } = p 2 ( ~ l a o ) ~ " ,  {ae}=w. (4) 

The relations (3) and (4) are called finite scaling, since in 
this case there is a linear dependence between In{a,) (or 
ln{pe}) and In L over lengths L <& 

and In{ue) and In{p,) do not depend on L at large lengths. 
Similar dependences hold for the quantities characterized by 
fractal dimension, for example, for the density of a fractal 
cluster (see, for example, Ref. 5). The use of (5) is a conve- 
nient computational device for determining the critical expo- 
nents r and q of the conductivity. One proceeds similarly in 
the numerical determination of the critical exponents of other 
physical quantities, for example, the relative spectral density 
of llf noise.6 

It will be shown that this simple device-the substitution 
r -+ (~ l a~ ) - "~ - i s  not satisfactory for all sets of values of h,  
T, and Lla,. We shall construct a model of a conducting 
percolation structure that makes it possible to determine the 
finite scaling of {a,} and {p,) for all parameter sets. 

2. MODEL OF CONDUCTING PERCOLATION STRUCTURE 
IN THE FRACTAL REGION 

Both above and below the percolation threshold, perco- 
lating and nonpercolating structures will both be encountered 
at scales LC5 (Fig. 1). It can be assumed that the former 
(region I in Fig. I) are above the percolation threshold and 
the latter (region I1 in Fig. 1) below. The distribution func- 
tion of the percolation threshold is determined in Ref. 7, 
where it is shown that to within the errors of the calculation 
this distribution is Gaussian. However, for simplicity we 
shall replace it by a uniform distribution function with spread 
2rL, where rL is the mean square fluctuation of the Gaussian 
function. As is shown in Refs. 7 and 1, to within an unim- 
portant factor, it can be represented in the form 

rL= (L/ao)-llv,  (6) 

FIG. 1 .  Schematic representation of a percolation system above the perco- 
lation threshold. The heavy lines represent the well-conducting phase. I- 
Single-vein macroscopic network (L , ,ET-~;  2-finite cluster; I is a region 
of length scale L above the percolation threshold and 11 is the same below 
the threshold. 

and rL is much greater than the shift of the maximum of the 
distribution function of the thresholds from the petcolation 
threshold of the "infinite" (L*t) system, so that this shift 
can be ignored. 

We now consider an ensemble of systems of scale L 
(L<O with given value of T. As can be seen from Fig. 2, 
some of these systems are above the percolation threshold 
and some below, i.e., for a random sample from the ensemble 
the system is above the percolation threshold (the hatched 
region in Fig. 2) with probability PL and below it with prob- 
ability 1 - P L  . Here 

FIG. 2. Distribution function F ( p , )  of percolation thresholds; p, is the 
percolation threshold of the system with L>(, T,,=(LI~,)-"". a) The 
dashed curve shows the Gaussian distribution, the solid line the homoge- 
neous approximation; b) a more convenient axis; the hatched region gives 
the probability that the system is above the percolation threshold; c) distri- 
bution of the probabilities of a system with L>( in the region of smearing; 
the hatched region gives the probability of encountering a bridge in the 
correlation volume-a structural element corresponding to percolation 
above the percolation threshold. 
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This ensemble of systems can be regarded as obtained from 
one large system by cutting out parts with scales L. 

A similar situation also occurs when the system is in the 
region of smearing for L>t .  Indeed, if for L > t  the system is 
in the region of smearing (Id<A), then with a corresponding 
probability we can find systems both with and without per- 
colating structures. Of course, hZO is assumed here, for 
otherwise t = m  holds and a region of smearing will not exist 
at all: A=O. 

To describe the kinetic properties of percolation systems 
in the region of smearing, a model that extends the hierar- 
chical weak-link model8 to this region was developed?.10 
Since this model will be applied to finite scaling, we briefly 
describe it. 

In the first approximation in h ,  the percolation medium 
in the region of smearing can be represented as a medium in 
which in different correlation volumes L~ (d is the number of 
dimensions) one can encounter, with different probabilities, 
both a structure associated with percolation above the perco- 
lation threshold-a bridge with resistance R ,-and 
below-an interlayer with resistance R2: 

where r ,=  l l (a ,a f2) ,  r2= 1/(a2af2) are the resistances of 
the well and poorly conducting bonds, and N, and N2 are the 
number of so-called single connected bonds (SCB) and 
single disconnected bonds (SDCB): 

In node-line-blob (NLB) models, the exponent a,= 1 (Refs. 
4 and 11-13); in accordance with Refs. 14 and 15, a 2 = l  
holds too. In models of weak-link type, 

Within the region of smearing 1 4 ~ 8 ,  the length of the bridge 
and the area of the interlayer are constant; they change only 
outside this region. The probability with which one encoun- 
ters the one or the other structure (bridge or interlayer; SCB 
or SDCB) is determined by the concentration-by the value 
of T (Fig. 2c); in addition, since we are considering the re- 
gion of smearing, -A<KA,  it is necessary in NI to set 
T=A, and in N2 to set T= -A. Both situations can be consid- 
ered together by introducing into the circuit of the percola- 
tion structure an additional resistance r, (Fig. 3), which with 
probability P A  takes the value r l  and with probability 1 -PA 
the value r2: 

For r,- r ,  (Fig. 3), the system takes the form of a bridge 
and an interlayer connected in parallel, for r, = r2 (r2 is, as it 
were, connected to the interlayer) the form of a bridge and 
interlayer connected in series. It is readily seen that such a 
scheme leads to the standard expression for the effective 
conductivity of two-phase systems in the region of smearing 
(2). If we ignore the small terms of the form D l  ~ h -  'Icp (2), 
then to good accuracy we can suppose that for r, = r , the 
resistance of the system is determined by the bridge, 
R , ,=R ,=r ,N , ,  and for r m = r 2  by the interlayer: R2, 

FIG. 3. Electrical circuit of the percolation structure in the region of smear- 
ing. 

=R2= r21N2. In the two extreme cases ?++A (here the 
resistance R, of the complete system must now be calculated 
with allowance for both R,  and R2) it is necessary to substi- 
tute in place of A in Nl and N2 the quantity T-the model 
goes over into the weak-link hierarchical model and gives 
the expressions (1) for a, outside the region of smearing. 

We now consider systems with L<c. In accordance with 
the above, the effective conductivities and resistivities are 
calculated using the circuit of Fig. 3, in which T, now plays 
the role of the region of smearing A. With probabilities P, 
and 1-P,, respectively, the resistances of the system are 
now 

where, as before, we have restricted ourselves to the accu- 
racy with which one can take into account in the first case 
only the bridge and in the second only the interlayer. 

From (12) and (7) one can obtain both {a,,} and {p,} over 
lengths L<& in the first case, it is necessary to calculate the 
mean conductance 

and in the second the mean resistance {R)={p,) 
jLd-2- -PLRl+( l  -PL)R2: 

where TL is defined in (6). We note immediately that the 
well-known expressions for the special case h =O follow 
from (13). For example, for T > 0 the case h =O means that 
a, is finite and a2=O; then from (1 3) 

and at the same time it must be borne in mind that O < K T L  
in {a,}; then {a,} for 7 0  and {a,} for T= T~ differ only by an 
unimportant factor 112. The situation is analogous for K O  
too: 
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FIG. 4. The space 117,-l/A. The first quadrant corresponds to ~ > 0 ,  the 
second to KO. The region between the continuous lines I and I1 corre- 
sponds to fractal behavior. The region below the dashed line is the region of 
smearing I .  

3. ANALYSIS OF THE RESULTS 

v VI 

To analyze the expressions obtained for { a , )  and {p,),  it 
is convenient to use 1 / ~ ~ - 1 / A  space (Fig. 4), since the vari- 
able 117, is directly proportional to the length scale of the 
system. It is necessary to exclude from consideration, first, 
the region directly next to the 117, axis, since in it the con- 
dition a2/a141 is not satisfied, and, second, the region sur- 
rounding the 11A axis, since L must be greater than the char- 
acteristic minimal scale a. of the system. The parameters of 
the regions I and I1 correspond to the fractal regime. At the 
boundaries between the regions I and 111 and I and IV, { a , )  
and {p,)  go over to the standard expressions a,= (spa &)"Q, 
p,= l / a , ;  on the boundary between I1 and V they go and 
over to a,= a ,  T ' and between I1 and VI to a,= a21  TI-^. 

Within the fractal region, { a , )  and {p,)  behave as fol- 
lows. In the region I near the l / A  axis, the region 11,, it 
follows from (13)  ( 1 / r L 4 1 / r )  that 

11, Ilu 1Iu - lIh I 
11 
I 

Fractal region 

and in region I, 

As L (or, what is the same thing, 117,) is increased, the 
expressions (16)  remain valid as the lines I/.r,=l/A--the 
regions Ib and I,-are approached; however, since l / ~ , = l A  
and, therefore, a l ( l / A ) ' - a 2 ( 1 / A ) Y ,  we now have 

We now consider the region I1 far from the region of 
smearing. Near the 1lA axis, where 1 / ~ ~ 4 1 / ~ ,  the same ex- 
pressions (16)  for { a , )  and {p,)  hold as in I,. For example, 
for {p,) the relation (16)  holds, since in this region 

However, with increasing l/rL the denominator on the left- 
hand side of this inequality tends to zero and, ultimately, it is 
replaced by the opposite inequality. Note that in the region of 
smearing such a situation is impossible. Thus, in IIb the 
mean value {p , )  has the form 

and, therefore, on the transition from 11, to IIb (the arrow in 
Fig. 4) crossover occurs-the critical behavior of {p,)  
changes: 

For { a , ) ,  crossover occurs on the transition from 11, to 11, : 

4. CONCLUSIONS 

Over scales L less than the correlation length, i.e., in the 
fractal region, the effective conductivity { a , )  and effective 
resistivity {p,)  averaged over the realizations depend on L as 
powers. However, in contrast to the usually considered case 
of infinitely great inhomogeneity h = a21al =0, crossover- 
change of the critical behavior4an occur when L is in- 
creased, and it is only then, with further increase of L to 5, 
that the system goes over into the homogeneous region, in 
which self-averaging of a,= l l p ,  and a,, p, occurs and 
there is no more dependence on the length scale of the sys- 
tem. It can be assumed that this crossover is described by the 
following scaling function, which is the same for { a , )  and 
{pel: 

where the scaling function f ( z )  has the asymptotic behaviors 
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