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The formation of the superconducting phase in layered superconductor-antiferromagnetic metal 
proximity-effect structures is investigated on the basis of a generalized system of Usadel 
equations for antiferromagnetic superconductors, in which electrons of the same type are carriers 
of the magnetic and superconducting properties of the system, and the dispersion law of the 
electrons and holes has the property of nesting. The dependence of the superconducting transition 
temperature and the longitudinal and transverse upper critical fields on the period of the 
structure and the state of the interface between the layers is analyzed. The conditions for the 
appearance of the superconducting phase in proximity-effect superlattices consisting of 
a superconductor with a ferromagnetic metal and with an antiferromagnetic metal are compared. 
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1. INTRODUCTION 

The technology of the layer-by-layer spray-deposition of 
superlattices has achieved impressive re~u1ts.l '~ Among the 
artificial ~u~ers t ructures ,~  the structures formed by alternat- 
ing layers of superconducting and magnetic metals are ideal 
objects for investigating the interaction of superconductivity 
and magnetism. Numerous experimental and theoretical 
studies devoted to the properties of superlattices consisting 
of layers of superconducting and ferromagnetic metals 
(SCIFM superlattices) have already been c o n d u ~ t e d . ~ - ' ~  
Some unusual properties, such as the coexistence of bulk 
superconductivity and ferromagnetic order in the normal lay- 
ers, a nonlinear dependence of the critical field on the tem- 
perature, oscillations of the superconducting transition tem- 
perature as a function of the thickness of the FM layer, states 
with a nontrivial phase difference between the layers, etc., 
have been predicted and, in some cases, established experi- 
mentally for these ~ ~ s t e m s . ~ - ~  

Alternated superconductor-antiferromagnetic metal (SC/ 
AF) structures have been investigated to a considerably 
smaller extent; Refs. 4, 11-13 apparently exhaust the list of 
publications on this subject. At the same time, for example, 
most high-T, superconducting materials are obtained by dop- 
ing layered antiferroamagnets, and the strong antiferromag- 
netic correlations of copper spins in CuO planes are their 
characteristic feature (see, for example, the recent reviews in 
Refs. 14 and 15). The question of how closely related are the 
magnetic and superconducting properties of high-T, super- 
conductors still remains open. It is also known (see, for ex- 
ample, Ref. 16) that antiferromagnetic order is more favor- 
able for the appearance of superconductivity than is 
antiferromagnetic order. It is therefore natural to expect that 
the superconducting phase of an SCIAF superlattice will 
have a larger region of existence on the H- T phase diagram 
than will that of an SCIFM structure. This difference is im- 
portant for practical applications of such objects. 

Bearing in mind high-T, superconducting materials, as 

well as the superconducting antiferromagnetic metals based 
on chr~miurn , '~ . '~  in Sec. 2 of this paper we give a generali- 
zation of the quasiclassical equations of 
s u p e r c o n d u ~ t i v i t ~ ' ~ ~ ~ ~  to the case of antiferromagnetic super- 
conductors, in which electrons of the same type are the car- 
riers of the magnetic and superconducting properties of the 
systems, and the dispersion law of the electrons and holes for 
a sufficiently large number of vectors lying near the Fermi 
surface has the property of nesting. We then use the gener- 
alization of the Usadel equations obtained for such systems 
to investigate the conditions for the formation of the super- 
conducting phase in proximity-effect SC/AF superlattices as 
a function of the parameters of the system. The basic equa- 
tions which describe the superconducting state in SC/AF su- 
perlattices are obtained in Sec. 3. Numerical calculations and 
a discussion of these equations are presented in Sec. 4. The 
conditions for the existence of proximity-induced supercon- 
ductivity in SC/AF and SC/FM superlattices are also com- 
pared in that section. It is also shown that although antifer- 
romagnetic order of the normal metal is more favorable for 
the appearance of the superconducting phase than is ferro- 
magnetic order, the state of the interlayer boundary and the 
characteristics of the materials comprising the layers can 
greatly offset these advantages. The final portion of Sec. 4 is 
devoted to a comparison of the results of the theory with 
available experimental data. Some possible generalizations 
of the model to more general physical systems are discussed 
in the Conclusions, where the main implications of this work 
are also given. 

2. QUASICLASSICAL EQUATIONS FOR THE 
SUPERCONDUCTIVITY OF A BAND ANTIFERROMAGNET 

Metals in which Cooper pairing and antiferromagnetism 
of collectivized electrons (or, in the general case, a spin- 
density wave) coexist at low temperatures have recently at- 
tracted heightened interest. Electrons of the same type are 
responsible for the magnetic and superconducting properties 
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of the systerrj in the chromium alloys Cr, _,Re,, Cr, -,Ru-, , 
etc.,l7.Ix in the compounds LaRh2Si2, YRh2Si2, e t ~ . , ~ '  and 
possibly in high-T,, superconducting systems with certain 
concentrations of the charge The superconduct- 
ing state usually forms on top of the already existing long- 
range magnetic order of the band electrons. We note that 
such systems differ significantly from the antiferromagnetic 
superconductors based on ternary rare-earth compounds (like 
SmRh4B4, NdRh4B4, etc.), where the ordering of the local 
magnetic moments of the rare-earth ions takes place in the 
superconducting state of the collectivized electrons. (A re- 
view of the theoretical and experimental work in this area 
can be found in Ref. 16). 

The magnetic properties of almost all known band anti- 
ferromagnets are closely related to the features of their band 
structure.2291x More specifically, the Fermi surface of such 
metals has the property of nesting, i.e., it consists of electron 
and hole parts which nearly coincide following translation by 
a certain wave vector Q. The transition to the magnetically 
ordered state is accompanied by the appearance of a spin- 
triplet dielectric gap on the Fermi surface, which influences 
not only the normal, but also the superconducting properties 
of the system. The theory of the thermodynamic and trans- 
port properties of systems which exhibit the coexistence of 
superconductivity and spin-density waves has been devel- 
oped intensively in recent years (see, for example, the mono- 
graph by Moskalenko, Kon, and ~ a l i s t r a n t ~ ~  and the reviews 
in Refs. 14 and 15). On the other hand, the generalization of 
the ~ i l enberge r '~  or usadelZo equations to such systems ap- 
parently has not yet been discussed in the literature. In this 
section, following the general scheme for devising the theory 
of dirty superconductors,24 we obtain semiclassical equations 
of the superconductivity of a band antiferromagnet based on 
consideration of the quasiclassical character of the motion of 
Cooper pairs. 

We use the "excitonic insulator" model proposed by 
Keldysh and ~ o ~ a e v ~ ~  to select the Hamiltonian of an anti- 
ferromagnetic superconductor. Interacting electrons and 
holes, whose dispersion law has the property of "nesting," 
are considered in this model. The theory of band antiferro- 
magnetism with a nesting Fermi surface was previously de- 
veloped to a high level and was presented in detail in the 
reviews in Refs. 22 and 18. Allowing the superconducting 
pairing of electrons, in the self-consistent field approxima- 
tion we have 

Here &(r), cG;,(r) and fp:(r), cp,(r) are the creation and an- 
nihilation operators of electrons and holes in the first and 
second bands, respectively, whose dispersion law satisfies 
the condition (for nesting) 

Here for the case of an antiferromagnetic (doubled) cell we 
take Q= +-K/2, where K is the vector of the reciprocal lattice 
of the crystal; the operator gp is understood to be $2m - E ,  
if there is no external magnetic field, and ( $ - e ~ ) ~ / 2 m  - E ,  
if there is such a field; A,(r) and A2(r) are the band super- 
conducting order parameters; the magnetic order parameter 
He,, (the Niel molecular field) can be assumed to be 

~ , = ~ ; / 2 r n  is the Fermi energy; p is the chemical 
potential; and in this section we set h= 1. For simplicity, the 
superconducting pairing of electrons from different energy 
bands is neglected. 

We introduce the Green's functions G I  ,( 1,2) 
=-(fTj$(1)$:(2)) and ~11(1~2)=(f,$i(1)$;(2))~ 
where T, is the r-ordering operator, and l= ( r , , r l ) ,  and 
2=(r2,r2). It is easy to see that the system of Gor'kov equa- 
tions for electrons in the first band is distinguished from the 
standard system (see, for example, Ref. 24) by the presence 
of the additional function G2]( 1,2) = - (f,cpl( 1 ) 4b;(2)), 
which describes the antiferromagnetic correlations of elec- 
trons from different bands. As usual, to expand in gradients 
of the order parameter, it is convenient to switch to a mixed 
representation by introducing the coordinates of the center of 
inertia of the pair R and the coordinates of the relative mo- 
tion r. After finding the Fourier transform with respect to r ,  
the expansion can be found for the Green's function near the 
Fermi surface by identifying the main terms and discarding 
the terms which are smaller than main terms by T,IEF.  The 
simplified equations for the first point of the Green's func- 
tions in the mixed representation then take the forms 

Here (=(p2 - p g ) / 2 m ~ ,  , po= mu, and us is the superfluid 
velocity of the condensate. 

Simpler expansions can be obtained for the Green's 
functions 

as well as for electrons in the second band. Now, however, 
that instead of (2), we obtain 
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We note that due to the antiferromagnetic type of interaction 
between the electrons in different bands, the Green's func- 
tions of the second band appear with a reversed sign for the 
spin, i.e., 

etc. 
As a result of these simple but somewhat lengthy calcu- 

lations, we obtain the complete system of 12 equations for 
the Green's functions of an antiferromagnetic superconduc- 
tor. It is convenient to write these equations in the form of a 
single matrix equation. We present it in the so-called "t 
representation"24 after taking the Fourier transforms with re- 
spect to the variable (. We have 

where the matrices are defined in the following manner: 

[To avoid misunderstandings we note the following. In the 
present approximation the Green's functions which describe 
interband superconducting convolutions and are located on 
the inverse diagonal in (5) were omitted (were set equal to 
zero). Therefore, when matrix equations like (4) are ex- 
panded, the relations corresponding to the elements along the 
inverse diagonal of the matrix equation should be omitted.] 

As usual, Green's functions that are integrated with re- 
spect to the energy, i.e., at a zero value of the argument t, 
appear in the expression for the order parameter. In this sense 
Eq. (4) contains excess information regarding the Green's 
functions at any value o f t .  It can be simplified, if along with 
(4) we consider another equation, which is obtained in the 
following manner.24 In writing the Gor'kov equations, we 
differentiate the original functions G I ( 1,2), F 1,2), 
G2,(1,2), etc. with respect to 72, rather than 7,.  Then, repeat- 
ing the same calculations as in the derivations of relations 
(2), (3), etc., we obtain a conjugate system of 12 equations 
for the same functions. Then, subtracting the paired equa- 
tions for the Green's functions, we can obtain a relation for 
b,(R,n,t=0), which is an analog of the Eilenberger 
equations.19 Introducing the function @,(R,n)=&,(R,n)hX, 
we have 

where ~ = ( i w - P o n ~ v , ) & x -  h(R)-H,,,?, and [a ,b]=ab 
- ba. 

The general properties of the Green's function @,(R,n) 
are a generalization of the properties following from Eq. (6). 
For example, ~r(.*~(R,n)) does not depend on the projection 
of R parallel to n, since 

It can be shown that G , , ( R , ~ ) = G , ~ ( R , ~ )  and 
Gz2(R,n)=~,,(R,n) and that the relation @;(R,n)= - 114 is 
valid. 

In the dirty limit ( l e t ,  where 1 is the electron mean free 
path and ( is the superconducting correlation length) 
*m(~,n)  can be rendered isotropic with respect to n. The 
derivation of the closed equation for the isotropic function 

is based on the general properties of Eq. (6) and the proper- 
ties of !F,(R,n) which follow from that equation. Formally 
repeating all the arguments from Ref. 24, we arrive at an 
equation, which generalizes the Usadel equation,20 of the 
form 

~DV~{!?,(R)(V~!?~~(R))}+[~,!~,(R)]=~, (7) 

where D = u01/3. The normalization :>:(R)= - 114 should be 
added here. As usual, when a magnetic field is present, the 
vector potential appears only in gradients belonging to F 
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functions. The explicit form of the system of independent 
Usadel equations for a dirty antiferromagnetic superconduc- 
tor is presented below in Sec. 3. 

The boundary condition for (7) matches the solutions to 
the expressions for the Green's function in the bulk of the 
superconductor: 

etc. The Usadel equations are usually supplemented by a 
formula for the order parameter and an expression for the 
current density. The self-consistent condition for the total 
(summed) order parameter of the system 
A(R)=A,(R)+A,(R) is 

The expression for the mean current in the general case has 
the form 

where N(0) is the density of states at the Fermi surface. A 
discussion of the current-voltage characteristics of supercon- 
ductors with spin-density waves on the basis of a micro- 
scopic treatment can be found in Refs. 26 and 28; the 
proximity-induced superconductivity of an SC/band antifer- 
romagnet bilayer was considered in Refs. 29 and 30. Here, 
however, we shall not deal with these questions. 

3. FORMATION OF THE SUPERCONDUCTING PHASE IN SCI 
AF SUPERLATTICES: BASIC EQUATIONS 

Let us utilize the formalism developed in the preceding 
section to investigate the conditions of the transition to the 
superconducting state in layered superconductor-normal 
band antiferromagnet structures. 

Let both metals, viz., the SC and the AF, be "dirty," let 
them satisfy the condition where Is(,,) is the 
mean free path and [S(AF) is the correlation length in the 
SC(AF) layer. As we k n o ~ , 2 ~ , ~ ~  it is convenient to use 
Green's functions that have been integrated with respect to 
the energy and averaged over the Fermi surface to describe 
the superconducting state of such metals. 

The SC layer. For the SC layer we have the usual system 
of Usadel equations for Gs(r,w) and ~ , ( r , w ) . ~ ~  Near the 
phase transition to the normal state Gs=l holds, and for the 
anomalous Green's function we have 

Here I l=V+i2 rrAlQ0 is the gradient-invariant momentun] 
operator, A is the vector potential, <Do is the flux quantum, 
D, is the diffusion coefficient, and hw= mT(2n + 1 ). The ' 
self-consistent equation for the order parameter As and Fs 
has the form 

where TCo is the temperature of the superconducting transi- 
tion of the bulk SC. 

The solution is found in the form 

~ ~ = A ~ ( h w + 2 ? r ~ , ~ ~ ( t ) ) - ' ,  

where t=TITCo. Equation (8) then assumes into the form3' 

Here the characteristic correlation length is 
[s=(jLDS/2?rT,0) ' I 2 =  25(0)/?r, where HO) is the correlation 
length in the Ginzburg-~andau theory. The parameter p( t )  
describes the depairing effects and determines the supercon- 
ducting transition temperature through the relation 

where T(x)  is the digamma function. 
The AF layer. The metallic contact with the supercon- 

ductor results in the appearance of proximity-induced super- 
conductivity in a thin layer of the normal metal. In accor- 
dance with the results of the preceding section, the induced 
superconducting state of the A F  metal is described by the 
following system of independent equations, which were ob- 
tained in accordance with (7) 

(13) 

We recall that D N  is the diffusion coefficient in the AF layer; 
A,, and A2,, are the band superconducting order parameters; 
Hex,  is the antiferromagnetic exchange energy; the anoma- 
lous Green's functions F,,(,,), as usual, describe the conden- 
sate of Cooper pairs, and G11(22) and G12(21) describe the 
normal excitations in the system. In accordance with the gen- 
erally accepted notation, in this section we switch to Green's 
functions which are distinguished from the functions in Sec. 

350 JETP 82 (2), February 1996 V. N. Krivoruchko 350 



2 by nornialization: G I  l p G l  '/2i, F ' + F  ,/2i, 
F,,--. - F2,/2i, etc., i.e., G;~+ F : ~ + G ~ ~ G , ~ =  I, where i Z  j 
= 1, 2 and there is no sumnlation over the repeated indices. 

The band antiferromagnets based on chromium have 
fairly high Niel temperatures: TN-200-300 K. (Extensive 
experimental data on the magnetic properties of Cr and its 
compounds have been assembled in the review in Ref. 18.) 
Taking this circumstance into account, we restrict ourselves 
to a treatment of the situation of greatest current interest, in 
which the magnetic ordering temperature TN significantly 
exceeds the superconducting transition temperature of the 
SC/AF superlattice T,S T,.. . This actually means that we 
shall neglect the temperature-induced changes in the mag- 
netic properties of the system when we investigate the con- 
ditions for the formation of the superconducting phase. In 
addition, it is assumed that the upper critical fields of the 
superconducting state of the SCIAF superlattice do not ex- 
ceed the fields for the transition of the AF layer from an 
antiferromagnetic phase to a spin-flop phase or a ferromag- 
netic phase. Then the gradients of the Green's functions G I , ,  
G,,, G and GZI can be neglected near the phase transition 
to the superconducting state. It can be shown that this ap- 
proximation corresponds to the neglect of terms of second 
order in the order parameter A(r). Equations (12), which 
describe antiferromagnetic correlations, are solved directly 
and give 

Next, it is convenient to pass from the band variables to the 
"total" variables FN(r,o)= -F l l ( r ,o )  + FZ2(r,w) and 
hN(r)=A (,](r) + A2,](r). In accordance with (1 l), the linear- 
ized equation for the anomalous Green's function FN takes 
on the form 

Equation (15) formally coincides with the equation for the 
anomalous Green's function of a nonmagnetic or a ferromag- 
netic metal. However, while the Green's function of the nor- 
mal excitations is a constant (GN=l) in the latter cases in the 
vicinity of the phase transition to the superconducting state, 
the function G N  for an AF metal (14) is strongly dependent 
on the frequency and the exchange field. 

Since the superconducting state in the AF layer appears 
only as a result of the proximity effect, we seek a solution in 
a form analogous to Fs , but with p( r )  = - 1 (Ref. 3 1): 

Then Eq. (15) is written in the standard form: 

Taking into account that the characteristic functions satisfy 
fiw-T,<TN, from (14) we have GN=fiuIHexc, and the ex- 
pression for k, ,  is 

Here we introduced the characteristic damping distance of 
the superconducting correlations in the AF layer tAF. We 
note that the destruction of Cooper pairs is considerably 
more efficient in the AF layer than in a normal nonmagnetic 
layer of the same thickness, i.e., tA, is much smaller than the 
corresponding damping distance SN=(hDN/2.rrT) 'I2 in a nor- 
mal metal with the same diffusion coefficient. In this respect 
the action of an antiferromagnetic exchange field coincides 
with that of a ferromagnetic exchange field. The difference 
lies in the fact that the equation like (16) for an FM layer 
contains a complex parameter, i.e., the characteristic wave 
vector for an FM metal 

(here Hex, is the ferromagnetic exchange field). This causes 
not only the oscillatory behavior of the damping of the wave 
function in an FM layer, but also the complex character of 
the depairing parameter p(r )  through the boundary condi- 
tions. Since the latter parameter determines the H -  T dia- 
gram of the superconducting state through Eq. (lo), in a final 
analysis it produces the difference between the properties of 
SC/FM and SC/AF superlattices. 

Equations (9) and (16) should be supplemented by 
boundary conditions on the interface between the layers. We 
use the  relation^^^'^^ 

The phenomenological parameter 7 depends on the character 
of the electron scattering on the boundary and the properties 
of the materials comprising the layers; its value is unknown 
in the general case. When there is mirror reflection on the 
boundary we have v'uN/cs, where uN(us) is the conduc- 
tivity of the AF(SC) layer in the normal state. As we know,33 
the relations (19) take into account the effect of one inter- 
face, i.e., it is assumed that the dimensions of the layer of the 
normal metal are greater than the corresponding correlation 
length. For superlattices of thin normal layers, such a single- 
mode approximation can lead to the loss of some details of 
the behavior of the system that are caused by the overlapping 
of the wave functions of the condensate from the next- 
nearest neighboring layers.34*8 At the same time, the condi- 
tion (19) is fuIly applicable to many superlattices of interest, 
including superlattices with normal layers based on high-T, 
superconducting materials. The latter are known to have an 
especially short coherence length even in the superconduct- 
ing state. 

The rest of the derivation of the expressions for the su- 
perconducting transition temperature T,, the upper critical 
field normal to the layers Hc.21 and the upper critical field 
parallel to the layers H,,II is similar to the procedure dis- 
cussed in detail during the treatment of SC/FM and SCIN 
latt,ces.s-8,3 13 Therefore, we present the final expressions at 

once, retaining the notations in Ref. 7 to be specific. Lattices 
with fairly thick AF layers, i.e., dAFz>tAF, are assumed be- 
low. 
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The superconducting transition temperature for H = 0  is 
defined as the highest value o f t  satisfying Eqs. (9), (lo), and 
(16) and the boundary conditions, which can be rewritten in 
the form 

where qo=ksds/2 and E = ( ~ ~ ( ~ ( ~ ) - ' .  It is convenient to rep- 
resent the expression for ks (9) as a relation defining the 
depairing parameter 

The magnetic field perpendicular to the layers penetrates 
the lattice in the form of Abrikosov vortices modulated along 
the field.3' Assuming that the condition @ d & F ~ ~ c 2 1  holds, 
for p(t) we obtain the expression 

where ~ , ~ , , = @ d 2 1 r t ~  is the upper critical field of a bulk 
superconductor in the Ginzburg-Landau theory, and p(tc) is 
defined by (20) and (21). The field Hc2, is found as the 
solution of Eq. (10) for a given t <  rc and p(t). We note that 
when ~AF<'( holds, the condition indicated above for the 
field strength is equivalent to the condition H C 2 , < H c 2 ~ ~ ,  
whose validity is confirmed by the results obtained. 

We find the parallel critical field of the superlattice by 
assuming that Abrikosov vortices do not form in the SC lay- 
ers, i.e., by assuming that the variation of the order param- 
eter along an SC layer is negligible in comparison with the 
magnitude of its variation in the transverse direction. Fulfill- 
ment of this condition should be expected for structures with 
thin SC layers that are actually isolated from one another. 
These questions were previously investigated by experimen- 
tal and theoretical means for SCIFM  lattice^.^'^'^^ It was es- 
tablished that due to suppression of the surface superconduc- 
tivity at the SCIFM boundary, the formation of vortices in 
SCIFM lattices begins at considerably greater thicknesses of 
the SC layers than in SCIN structures. There has been no 
corresponding analysis for SCIAF systems. Nevertheless, the 
experimental investigations of the proximity effect in layered 
contacts4212 showed that the superconducting order parameter 
is strongly reduced on the interface between a superconduct- 
ing film and a film of either a ferromagnetic or antiferromag- 
netic metal. Deutscher and de ~ e n n e s ~ ~  attribute this effect 
to the destruction of Cooper pairs on the magnetic defects of 
the interface, rather than the type of magnetic order in the 
bulk of the layer. Taking this circumstance into account, we 
assume that the conditions for the formation of Abrikosov 
vortices in SCIAF lattices are similar to the conditions for 
SCIFM systems. Then, following Ref. 7 (see also Ref. 3), 
when ~ , . ~ ~ ~ < @ ~ / 2 . r r d ~  holds, for p(t) we can obtain the ex- 
pression 

where p(rc) is specified by (20) and (21) and the explicit 
form of the numerical factor g(cp,) coincides with the expres- 
sion found in Ref. 7: 

FIG. 1 .  Dependence of the reduced superconducting transition temperature 
r,= T,IT,, on the reduced thickness of the SC layer Js/[s and the state of 
the interface, i.e., the value of E .  Here and in Figs. 2-5 the solid lines depict 
the results for SCIAF superlattices, and the dashed lines depict the analo- 
gous results for an SCIFM system calculated from the equations in Ref. 7. 

+di ( [S~) -2 ) - i .  

The value of Hc211 is found as the solution of Eq. (10) for a 
given t < t c  and p(t) given by (23). 

In the general case solutions can be found only numeri- 
cally. We now move on to a discussion of the results ob- 
tained and a comparison of those results with the existing 
experimental data, as well as the results for SCIFM and 
SCIN superlattices. 

4. NUMERICAL RESULTS AND DISCUSSION 

The solid lines in Fig. 1 show the dependence of the 
superconducting transition temperature of an SCIAF super- 
lattice on the thickness of the SC layer and 6. The dashed 
lines in this figure are plots of the analogous data for an 
SCIFM system, which we calculated using the equations in 
Ref. 7 and which reproduce the corresponding results in that 
paper (confirming, in particular, the correctness of our nu- 
merical methods). As usual, the superconducting state is re- 
alized, if the thickness of the SC layer is greater than a cer- 
tain critical value ds, Simple analytical expressions for 
dsc can be obtained only in a few limiting cases. For ex- 
ample, for the lattices which we considered with thick AF 
layers, i.e., dAF%tAF, and a relatively thin SC layer, i.e., 
77dS<tAF [two-dimensional (2D) superconductivity], a su- 
perconducting state exists if ds>dsc= 1 4.2487v(g/tAF. For 
superconductivity in a similar SCIFM lattice, the thickness of 
the SC layer must be 50% greater, since in this case6x7 
ds,=20.150511~~/~FM. If the SC layer is sufficiently thick, 
i.e., for vdS%tAp (3D superconductivity), we have 
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FIG. 2. Dependence of the upper critical field perpendicular to the layers of 
the lattice, h,,,=H,,,IH,,,,, on the reduced temperature r =TIT,, for 
various conditions for electron scattering on the interface between the lay- 
ers, i.e., values of 6, and a fixed thickness of the SC layer. 

dsc=5.9293&, as in the case of SCIFM i.e., the 
character of the magnetic order in the normal layer is of no 
consequence here. 

As for the dependence on E, the difference in the type of 
magnetic order in the normal layer is significant at moderate 
values of this parameter ( 1 ~ ~ < 1 0 ) .  In the limiting cases 
€41 and €91 lattices with AF and FM layers exhibit the 
same behavior. This is because the limit o>l [where 
p(tc)+O and g(cpo)+l (Ref. 7)] corresponds to the case of 
an isolated SC film in a vacuum. In the limit € 4 0 ,  we have 
Im (p(t))+O (Ref. 7), and the difference between SCIAF 
and SCIFM lattices once again vanishes. The physics of the 
phenomenon is that the Cooper pairs are destroyed on the 
interface so rapidly that the type of magnetic order in the 
normal metal is no longer of any consequence. 

All these laws for the superconducting transition tem- 
perature of SCIAF lattices are reproduced by the numerical 
analysis graphically depicted in Fig. 1. We note that Fig. 1 
also clearly displays a transition at € 4 0  (or tAF+O) to a 
proportional dependence of Tc0- T, on lldi, in accordance 
with the character of the suppression of the transition tem- 
perature for an isolated SC film coated by a layer of para- 
magnetic impurities.3 

The results of the numerical calculation of the upper 
critical fields for SCIAF structures are presented in Figs. 2-5 
(solid lines). These figures also present the analogous data 
for SCIFM superlattices (dashed lines), which were obtained 
from the equations in Ref. 7. Figures 2 and 4 show the de- 
pendence of the reduced critical fields hcZ1 =HcZ1/HczGL 
and hc2[, = H,21(IHc.2GL on the reduced temperature r = TI Tco 
for various conditions of electron scattering on the interface 
between the layers, i.e., various values of 6, and a fixed 
thickness of the SC layer. Figures 3 and 5 show the same 
dependence of the critical fields, but for different values of 
ds and a fixed value of E. 

When the magnetic field is oriented perpendicular to the 
layers, its critical value HcZ1 is observed to vary linearly 
with the temperature in a broad vicinity of T, , and saturation 

FIG. 3. Dependence of the upper critical field perpendicular to the layers of 
the lattice It,,, on the reduced temperature for various values of the thick- 
ness of the SC layer and fixed conditions for electron scattering on the 
interface between the layers, i.e., a fixed value of 6. 

is achieved at low temperatures (see Figs. 2 and 3). In this 
respect the behavior of H,,,(t) in SCIAF and SCIFM sys- 
tems is similar and corresponds to the three-dimensional 
character of the superconducting state of the lattices. We note 
that the value of HC2,(t=O) is significantly dependent on 
the thickness of the SC layer. Conversely, when the SC layer 
in superlattices consisting of a superconductor and a non- 
magnetic metal is not excessively thin, HcZl ( t )  tends to the 
same value of H,,, ( o ) . ~ ~ , ~ , ' ~  Depairing effects of a magnetic 
nature, rather than the state of the interface, are decisive for 
the value of H2,,(0). When the field is oriented parallel to 
the layers (Figs. 4 and 5), the plots of its critical values for 
sufficiently thick SC layers exhibit an h,211m llds depen- 
dence, and near t ,  they are characterized by an 
h,211m ( 1 - t)  ' I2  law. Such behavior of the parallel critical 
field corresponds to Tinkham's results39 for an isolated thin 
SC film, for which the Ginzburg-Landau theory gives 
H,211(T)~@olds~s(T),  and to the two-dimensional character 
of the superconducting state of the superlattices. 

FIG. 4. As in Fig. 2, but for a field oriented parallel to the layers, i.e., for 
h,,ll = " C , I I ~ , . , G L .  
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FIG. 5. As in Fig. 3, but for a field oriented parallel to the layers, i.e., for 
'12Cll. 

A comparison of the values of the critical fields for 
SCIAF and SCIFM lattices reveals the most significant dif- 
ference for structures with thin SC layers and 1 - 6 5 .  The 
results presented in Figs. 3-5 show that for very thin SC 
layers (ds<2.5ts) the superconducting state is strongly sup- 
pressed due to the proximity to the normal neighbors. For 
example, in the case of a contact with an FM layer, it is 
completely suppressed for ds=2&. As either ds or e in- 
creases, the values of the critical fields come closer together. 
Such behavior is easily understood, if it is taken into account 
that the limit ds+ 1 or 6 1  corresponds to the case of an 
isolated SC film in a vacuum. As we have already noted, if 
€--to, the regions for the existence of the superconducting 
phase in SCIAF and SCIFM lattices coincide. 

The few experimental investigations of SCIAF systems 
[PbICr (Ref. 4), Pb-BiICr (Ref. l l ) ,  VICr (Ref. 12), Nd/Cr 
(Ref. 13)] do not provide a complete picture of their proper- 
ties and permit only a qualitative comparison of theory and 
experiment. For example, the rapid decrease in the supercon- 
ducting transition temperature with increasing thickness of 
the AF layer when the SC layer is sufficiently thin and the 
saturation of T ,  at large values of ds were observed already 
in the first experiments performed to investigate the proxim- 
ity effect in SCIAF  contact^.^^'^ At the same time, while the 
square-root dependence of H,,II on T - T ,  has been firmly 
established for SCIFM ~ ~ s t e m s ~ ~ ~ - ' ~  this question has not 
yet been raised for SCIAF lattices. Measurements of the tem- 
perature dependence of the parallel critical field of NdICr 
lattices3' showed that 200-A ~ d 1 3 0 - A  Cr systems still have 
three-dimensional superconducting properties and that 55-A 
~d130-A Cr structures begin to display a tendency to two- 
dimensional superconductivity. The ambiguity in the inter- 
pretation of the results is due to the large size of the transi- 
tion layer between the SC and AF metals. Its thickness (-20 
A) is comparable with the thickness of the Cr layer. In fact, 
the objects investigated consisted of three alternating layers; 
this is also indicated by the two-step character of the transi- 
tion to the superconducting state of such lattices observed by 
Cheng and stearns.13 

The dependence of the upper critical fields of multilay- 

ered Pb-BiICr systems on the thickness of the SC layer at a 
fixed temperature was investigated in Ref. 1 1 .  We note that 
these systems more fully satisfy the requirements of the 
model, since Cr does not mix with Pb and Bi and the inter- 
face between the layers is apparently fairly sharp. Lattices 
with a thickness of the SC layer in the range 5tSSdsS20& 
(tS-200 A for a Pb-Bi alloy) display an increase in HC2,  
and a decrease in H,2111H,2, as d, increases. Such behavior 
of Hc21 and H,,lI as a function of the thickness of the SC 
layer is also characteristic of the results presented in Figs. 3 
and 5. The normal layers in the lattices in Ref. 11  were 
relatively thin: d,,=20 A and 75 A. Therefore, in the lower 
limit the interference effects from nonneighboring interfaces 
are significant for ds-5ts; for ds-20&, the behavior of 
H,,, and HCzI I  apparently depends on mechanisms within 
the interior of the SC layer." 

5. CONCLUSIONS 

As was shown in the present work, the general depen- 
dences of the superconducting transition temperature and the 
upper critical fields on the parameters of the system for 
SCIAF and SCIFM superlattices are qualitatively the same. 
In particular, T ,  decreases rapidly as the thickness of the 
normal layer increases when the SC layer is sufficiently thin, 
and it reaches saturation when the thickness of the SC layer 
is large. For structures with thin SC layers, the longitudinal 
critical field H,,II exhibits a nonlinear temperature depen- 
dence and a nonmonotonic dependence on the thickness of 
the SC layer, which are typical of two-dimensional supercon- 
ductivity. The behavior of the transverse critical field H,,, 
as a function of the temperature and the lattice period corre- 
sponds to the three-dimensional character of the supercon- 
ducting state of lattices with modulation of the Abrikosov 
vortices along the field. 

Nevertheless, the conditions for the existence of the su- 
perconducting state in SCIAF superlattices with thin (of the 
order of a few correlation lengths ts) SC layers can differ 
significantly from the conditions for SCIFM structures. For 
example, our numerical comparison showed (Figs. 2-5) that 
for ds<5Es and suitable conditions on the interface between 
the layers ( 1  -e< 10) the upper critical fields of SCIAF sys- 
tems can be several times greater than the corresponding 
fields for SCIFM lattices. However, the advantages of the 
antiferromagnetic interaction of the electrons in the forma- 
tion of Cooper pairs over the ferromagnetic interaction can 
be lost to a considerable degree due to destruction of the 
pairs on the interlayer boundary (i.e., due to an inappropriate 
choice of the materials of the adjacent layers and the state of 
their interface). Unfortunately, it is most difficult to derive a 
theoretical description specifically for the boundary effects at 
the present time. 

Let us mention briefly some possible generalizations of 
the theory and specific results. 

In the derivation of the basic equations we neglected the 
superconducting pairing of electrons from different energy 
bands. This enabled us to decrease the total number of inde- 
pendent Green's functions and to simplify the corresponding 
analytical expressions. The generalization of the results in 
this direction is fairly straightforward, and we assume that it 

354 JETP 82 (2), February 1996 V. N. Krivoruchko 354 



will be accon~plislied in the future. At the same time, except 
for some apparently fine details, there is no reason to expect 
that consideration of the interband Cooper pairing will fun- 
damentally alter the results. In fact, in a quasiclassical treat- 
ment of the superconducting state it is natural to describe it 
in terms of the total (summed) order parameter. The partial 
superconducting pairing parameters appear only in the inter- 
mediate equations. Therefore, it can be expected that al- 
though the approximation which we selected determines the 
form of the original microscopic equations, it is not signifi- 
cant for the final results. 

The second approximation used pertained to the mag- 
netic phase of the normal layer and the relation between the 
critical temperatures of the phase transitions. The relation 
between the characteristic energy parameters in an artificial 
superlattice can be arbitrary. For example, high-T, supercon- 
ducting materials have fairly high values for the upper criti- 
cal fields Hc2 .  Therefore, in lattices based on high-T, super- 
conductors there a transition of the normal layer from the AF 
phase is possible to a phase induced by an external field 
(there are several such phases for chromium alloys'8). A non- 
monotonic dependence of the upper critical fields of the su- 
perconducting state of the lattice on the temperature should 
be expected in the vicinity of the magnetic phase transitions. 
Similar features should be observed for systems with TN< T, 
when the normal layer goes over to a magnetically ordered 
state. These questions should also be examined further. 
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