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Using the time-dependent Anderson-Newns model, a study is made of charge exchange in 
connection with the scattering of an atomic particle from the surface of a solid in the limit of slow 
collisions. Asymptotically exact solutions of this problem are obtained for different models 
of the time dependence of the hybridization of the atomic and band states. It is shown that in the 
case of a real-finite energy band of electron surface states the charge state of the scattered 
atomic particle can be nonmonotonic as a function of its energy only if there is an interval on 
which the variation of the hybridization is adiabatically slow. The role of Coulomb 
correlations in the charge-exchange process is also discussed. O 1996 American Institute of 
Physics. [S 1063-776 1 (96)01702-81 

1. INTRODUCTION in the nondegenerate atomic state (a), respectively, R ( t )  is 

In recent years, much attention has been devoted to the 
theory of charge exchange in processes in which atomic par- 
ticles interact with a crystal To a large degree, the 
interest in this problem is due to the requirements of the 
investigations into the diagnostics of surfaces by ion beams 
and the ion stimulation of phase transitions on surfaces. This 
is a field that has recently been growing rapidly. The experi- 
mental study of these processes has revealed some general 
properties. First, it has been established that there is an inti- 
mate connection between the efficiency of ion bombardment 
and the details of the process of charge exchange between 
the bombarding ions and the ~urface.~ Second, it has been 
shown that the intensity of the charge exchange depends 
strongly on the energy of the incident ions; moreover, in a 
number of cases this dependence is nonmonotonic 
( o s ~ i l l a t o r ~ ) . ~ ~ ~  Precisely this last circumstance has been the 
subject of numerous recent theoretical discussions. 

The simplest model used to describe the probability of 
charge exchange of ions when they are scattered by the sur- 
face of a solid is the time-dependent Anderson-Newns 
models.6y7 In accordance with this model, the incident ion is 
modeled by a single-level system (the excited intra-atomic 
states are not taken into account) that interacts with Bloch 
states of the crystal. 

The Hamiltonian of the model (without allowance for 
the intraatomic Coulomb interaction between the valence 
electrons) has the form 

( 1 )  

where t i ,  ,;: (ik,, , i , )  are the creation (and annihilation) 
operators of electrons with spin u in the Bloch state Ik) and 

the distance between the atom and.the surface at the time t 
(the motion of the atom is assumed to be classical), e a ( R ( t ) )  
is the position of the atomic energy level at the time t, and 
A ( R  (t) ) VkI@ is the matrix element for the hybridization of 
the atomic state and a band state normalized by the volume V 
of the system. It is also assumed that R =  v,ltl, where v, is 
the component of the velocity perpendicular to the surface of 
the crystal. Then the charge state is determined by the mean 
number of electrons in the state ( a ) :  n ( t )  = ~ , ( i , f ( t ) i , ( t ) ) .  

Thus, the time-dependent Anderson-Newns model al- 
lowed the final occupancy n(+m) of the atomic state to be 
determined as a function of the component v, of the velocity 
normal to the surface, which occurs as a parameter in A(t) ,  
and as a functional of the initial occupancies n(--m) and 
nk(-m). Note that the time t occurs in the electron Hamil- 
tonian (1) only through the ion coordinate R ( t )  at the same 
time. This means that, essentially, we consider only "slow" 
collisions,8 i.e., collisions in which the characteristic ion ve- 
locities are much less than the characteristic electron veloci- 
ties. In practice, this reduces to the condition that, for ex- 
ample, the energy of ~ r +  ions in the beam must not exceed 
20 keV. 

Despite the relative simplicity of the Hamiltonian (I), a 
consistent calculation of the charge-exchange probability has 
hitherto been made only in two limiting cases, namely, under 
the assumptions that the states of the continuous spectrum 
form either an infinitesimally narrow or an infinitely wide 
energy band?*1° In the first case, the problem reduces to the 
investigation of charge exchange in a two-level system. The 
properties of this model have been studied in detail in the 
theory of atomic collisions.11912 It was shown that resonant 
charge exchange is indeed characterized by an oscillatory 
dependence of the charge-exchange probability on the veloc- 
ity of approach v. 

However, it should be noted that the region of applica- 
bility in which the band of the final particle can be replaced 
by an infinitesimally narrow band is very restricted. Indeed, 
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such an approximation is possible in the case of a large 
"resonance deficit": E2 - E ,  +leu -e(k)l, where E2 and E l  
are, respectively, the top and bottom of the band, and the 
inequality is satisfied for any k. As a rule, the following 
relation holds then in real systems in terms of our model: 

For the two-level model, this relation means the absence of 
quasiresonance and, as a consequence, an exponential law 
for the charge-exchange probability as a function of the ve- 
locity v.  Generally speaking, this is inconsistent with the 
existing experimental data. The experimentally obtained 0s- 
cillations indicate, rather, that the charge exchange has a 
"quasiresonant" nature, but in this case band-structure ef- 
fects are already important and the simple two-level model is 
invalid. 

The region of applicability of the other approximation, 
in accordance with which the states of the band spectrum 
form an infinitely broad band with energy-independent den- 
sity of states, is also very restricted. In particular, it does not 
describe the situation in which the atomic level is near the 
bottom or top of the valence band or anywhere in the band 
gap. 

Thus, great interest attaches to an investigation of the 
charge-exchange problem in the general case, i.e., without 
any restrictions on the form of the band spectrum and the 
position of the "atomic" energy E, . 

To understand the possible consequences of allowing for 
a finite band spectrum, it is helpful to go over in the Harnil- 
tonian (1) from the quasimomentum representation to the site 
representation (Wannier representation). Then the atomic 
state there corresponds to the site with n=O, which is 
coupled by means of the matrix element A(R)Voi to the ith 
site of the crystal lattice. In their turn, the lattice sites are 
coupled to each other by the hopping matrix element ti,, the 
form of which determines the structure of the electron spec- 
trum ~ ( k ) .  

In the Wamier representation, the approximation of an 
infinitely broad band corresponds to the limit ~ t ~ , ~ + ~ t m ,  
where z is the first coordination number of the crystal lattice, 
and is the matrix element of hops between nearest 
neighbors. Using this approximation, let us consider the de- 
cay of the atomic state la). Suppose that at the initial time 
the electron is localized in the atomic state. Because the tran- 
sition probability I v ~ ~ ( ~  is finite, the electron can "hop" to 
the ith lattice site. At subsequent times, there exist two pos- 
sibilities for the electron: either to return to the original 
atomic state or to go over to the nearest sites of the lattice. 
However, by virtue of the condition specified above, it is the 
second possibility that will be realized with overwhelming 
probability. The same thing will also happen at later times. In 
other words, in the approximation of an infinitely broad band 
the electron, having once gone over to a site state of the 
lattice, will never return to the original state. Essentially this 
means that the electron wave function is a centered, purely 
outgoing wave, in connection with which the situation be- 
comes analogous to the a decay of nuclei in the Gamow 

theory. Then the probability of finding the electron in the 
state la) will decrease exponentially with the time. 

If an electron that has gone over to a site state of the 
lattice has a finite band, there is a finite probability of return 
to the original atomic state. In wave-function language, this 
means that in addition to an outgoing wave there will also be 
a wave converging on the center (Bragg reflection). The in- 
terference of these waves at the atomic center can lead to 
nonexponential and even nonmonotonic dependence of the 
atomic state on the time. 

The effect of a finite band spectrum on the probability of 
ion charge exchange was investigated in detail in our paper 
Ref. (13) under the assumption that the hybridization matrix 
element switches on and off instantaneously. The results of 
this study confirmed that the decay of the atomic state is 
essentially nonexponential and made it possible to explain 
the oscillatory behavior of the charge-exchange probability 
as a function of the ion energy. However, it was not clear to 
what extent this model of the time dependence of the hybrid- 
ization could be applied to the case of "slow" scattering in 
which the atom-surface interaction is switched on and off 
smoothly through sections of exponential growth and decay 
of the hybridization. The aim of the present paper is to in- 
vestigate the effect of the exponential "tails" of the switch- 
ing on and off of the hybridization matrix element on the 
charge state of the ion. We begin by discussing an asymp- 
totically exact solution for the "exponential model" of inter- 
action. In Sec. 2, we consider a combined model of the time 
behavior of A(R), including allowance for exponential 
growth and decay and also a section on which the variation 
of the hybridization is relative smooth. In Sec. 3, we make a 
brief qualitative analysis of the results obtained in Sec. 2. In 
Sec. 4, we give some known experimental results and discuss 
them from the point of view of the model solutions obtained 
earlier. In Sec. 5, we discuss the role of Coulomb correla- 
tions in charge-exchange problems. 

2. ASYMPTOTICALLY EXACT SOLUTION FOR THE 
"EXPONENTIAL MODEL" OF INTERACTION 

In the case of an arbitrary law A(t), it is easy to express 
the charge state of the atomic particle in terms of the retarded 
form of the Green-Keldysh function. If at an initial time to 
such that A(to)=O the occupancy of the electron states of the 
solid was specified by the occupation numbers nk(to) and 
that of the electron states of the atomic center by the num- 
bers n,(to) , then for n(t) we obtain 

where Gri(t,to) satisfies the equation 
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where G:;(R)= lim G : ~ ( R , R ~ ) .  We shall seek G:: 
Ro+ -" 

( R , R o )  in the form 
FIG. 1 .  Modification of the contour of integration. 

G ; ; ( R , R ~ )  = exp [ - - : j R : q ( ~ 7 ~ o ) d ~ ] .  

We denote q ( R )  = lim q ( R , R o ) .  Then 
Ro+-" 

We consider the action of the operator on the right-hand side 
of ( 8 )  on G::(R): 

where 

Applying the operator to G::(R) in the form ( l o ) ,  we obtain 

Note that Eq. (3) can be rewritten in the form 

x [ exp ( :  - - E ( x - R l ) )  Further, we can assume that 

The requirement (13)  is actually equivalent to the semiclas- 
sical approximation. In this case, we can write 

Further, we shall assume that 

h(R)=exp(- YIRI). 

We consider the case R <O. Then the integration over R 
on the right-hand side of Eq. (6) can be performed. Repre- 
senting the Green's function on the right-hand side of ( 6 )  in 
the form of an expansion in a Fourier integral with respect to 
the first coordinate and assuming analyticity of A(&) in the 
lower half-plane of the complex plane of Z and boundedness 
at infinity, we can modify the contour of integration with 
respect to E ,  since the possible singularities cancel out (Fig. 
1). The interval [ E l  - im,E2-  im]  does not contribute to the 
integral. As a result, returning to the operator expression and 
going to the limit R o - + - m ,  we obtain instead of ( 6 )  

Alternatively, returning to Eq. ( 8 ) ,  we obtain 

q ( R )  - e a ( R )  = - h 2 ( R )  [ IE: - imde+  IE2  E~ - im  d e ]  
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In a number of studies (see, for example Ref. 14), a 
solution has been sought in a form analogous to (10). How- 
ever, because of an incorrect asymptotic expansion, this led 
to the r e ~ u l t ' ~ " ~  

Despite the apparent identity with (15), these equations are 
different. Even if in (15) we ignore the term - i v y  describ- 
ing nonadiabatic transitions in the denominator, the differ- 
ence between (15) and (16) will be significant. The differ- 
ence is that Eq. (16), in contrast to (15), cannot have 
solutions with nonzero imaginary part. This can be readily 
verified by direct substitution of cp(R) in the form fl(R)- 
iT(R), which gives 

It is readily seen that the only possible solution of (17) is 
T(R) =O. 

Thus, the incorrect asymptotic expansion in Refs. 14 and 
15 simply violated the theory of quasiresonance. 

It is now necessary for us to solve Eq. (6) in the region 
R>O. In this case, after similar manipulations, we obtain 

X [IE:-imd~+ JE2 E2- im  d e ]  

For the subsequent considerations, the following prop- 
erty of the Green's function is important: 

where 

is actually the S matrix. 
We denote 

Then, dividing the left- and right-hand sides of (18) by 
G:~(R), we obtain 

where 

+ s i m d E ]  ex.(- t RE) 

We consider the structure of this equation: E,(R) and 
J(p(R),R) are slowly varying functions compared with (11 
~ ( R , o ) )  f (cp(O),R), which contains rapidly oscillating fac- 
tors. In addition, ( ~ / ~ ( R , O ) ) ~ ( ~ ( O ) , R )  is small. It is then 
sensible to seek a solution of (21) in the form 

where 6 ,(R ,0) again owes its appearance to the slow term 
and G2(R,Cj) to the fast one. In addition, 
I e2(R ,o) I < I G (R ,o) I because f is small. Then 

As a result, we have 

Thus, we assume that the function i v ( l / G , ( ~ , ~ ) )  
(de1(R,0)ldR) is slow and that i v ( l l e , ( ~ , ~ ) ) ( d C ? ~ ( ~ , ~ )  
/dR) is a fast function. Assuming mutual cancellation of the 
fast and slow terms of Eq. (26), we obtain 
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We shall seek 6,  (R,O) in the form 

where C=constR. Then in place of (27) we can write to 
asymptotic accuracy 

FIG. 2. The dependence X(R). 

where B =constR . As a result, 

The constants C and B can be determined from the equation 
C+B = 1. The second equation for C and B is replaced by 
the condition IC , (R ,O) (~ I~ , (R ,O) I ,  which we used in the 
derivation of (30). 

As a result, we obtain for R>O, remembering that 
G:;(R) = G(R,o)G:;(o), 

X C exp - - d t q o ( t )  - 2 i u  yX(R) 1 ( I C ) 

where 

We see that the expression (31) contains a term describing 
the effect of the "Bragg-reflected wave" (the second term in 
the braces). 

To describe the effects due explicitly to the fact that the 
band is finite, we consider the case when the band is empty. 
In this case, 

In the limit R 4 + m ,  the second term in the braces in (31) 
vanishes: 

Thus, we will not observe any qualitative contributions to the 
final charge state from interference effects. This is due to the 
absence of an interval on which the system evolves adiabati- 
cally and, as a consequence, to instability of the phase rela- 
tionships. As a result, the picture of the formation of the final 
charge state will be the same as if the state decayed expo- 
nentially in all intervals. 

Thus, in the case X(R)=exp(-~RI) considered above 
we have not obtained the nonmonotonic (in the general case 
oscillatory) dependence of n(+m) on l/u characteristic of 
the experimental data. This failure can be attributed to the 
absence of intervals of adiabatic evolution for the system. It 
is therefore most probable that in practice a different case is 
realized, a model of which we consider in the following sec- 
tion. 

3. ASYMPTOTICALLY EXACT SOLUTION FOR THE CASE 
OF AN INTERACTION HAVING AN INTERVAL OF 
ADIABATIC EVOLUTION 

We shall be interested in the case in which X(R) has the 
following form (Fig. 2). In the general case, a dependence of 
this type can be expressed as follows: X(R) decreases expo- 
nentially from the points -L and L, while on the interval 
[ -  L,L] we have a function that varies slowly compared 
with the characteristic time of the problem. Thus, we wish to 
consider a problem that differs from the one considered in 
Ref. 13 through the presence of exponential decays in the 
switching on and off of the hybridization. In other words, we 
shall be interested in the consequences of taking into account 
exponential intervals in which the hybridization is switched 
on and off possessing a portion whose characteristic time of 
variation is much greater than the characteristic times of the 
system. To consider such a system, we adopt the following 
model dependence of the hybridization behavior, namely, 
that on the interval (-m, L) the exponential switching-on 
law is exp(y(R + L)), on the interval (L, +m) the switching- 
off law is exp(- y(R - L)), while on the section [-L, L] we 
have a certain Xo(R) that can be regarded as slow compared 
with the characteristic times of the problem, i.e., 
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where A E = E 2 - E ,  : 

In this case, the solution to the problem is similar in its 
general features to the one given in Sec. 1. As a result, we 
obtain for the function the expression 

1 

e - i v  y ) ( e - q o ( - L ) ) ( e - p o ( - L ) - i v  y) 

where 

K = { E - i 5 0 d e +  IE2 E ~ - i m  de] 

while cpO satisfies the equations 

The result (35) can be represented in the form 

The difference between (37) and (33) consists in the appear- 
ance of the two additional terms describing the contribution 
of the reflected wave. They owe their appearance to the pres- 
ence of the interval of length 2L on which the hybridization 
varies adiabatically. 

Thus, the final charge state in the case of interaction with 
the unfilled band of surface states (32) will be the result of 
the interference of two waves, one spreading out from the 
atomic center and the other converging on the center, corre- 
sponding to the different terms of the expression (37). 

4. QUALITATIVE ANALYSIS OF THE RESULTS 

We discuss the result (37). We shall continue to consider 
charge exchange for the case of an empty (or completely 
filled) band of electron surface states. We consider qualita- 
tively the two most instructive cases. 

The first case we consider arises when the atomic level is 
either originally opposite the band of forbidden surface states 
or, as a result of interaction, is expelled outside the band 
limits and becomes infinitesimally narrow (we assume, for 
simplicity, that there exists a unique solution po describing 
the state genetically related to E,). In this case, the first term 
in the expression (37) is large compared with the two other 
terms because it describes a stationary state. As a result, we 
obtain for n(+m) as a function of l /v  an expression that 
contains terms oscillating at all possible frequency combina- 
tions 2LE1, 2LE2, and 2Lpo(R E 2L); the terms containing 
2Lcpo(R E 2L) will, in accordance with what was said above, 
have the greatest amplitude. If qo(R E 2L) is near one of the 
band edges, for example, E , ( E ,  - qo(R E 2L)4E2- E l ) ,  
then we shall observe in the dependence of n(+w) on I/v 
the presence of components with two different frequen- 
cies: a low-frequency component 2L(E - qo(R E 2L)) 
with large amplitude and a high-frequency component 
2 L ( E 2 - p o ( R ~ 2 L ) )  with small amplitude (Fig. 3) [the 
term oscillating at the frequency 2L(E2-E,) is much 
smaller than the first two and differs little in frequency from 
the second]. 

The next characteristic case that we consider arises when 
the atomic level lies opposite the band of electron surface 
states. We shall assume that for all R it is very far from its 
edges. In this case, the amplitudes f l (v)  and f2(v) of the 
second and third terms in the expression (37) are extremely 
small, and so we can ignore in (37) all the terms except for 
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FIG. 3. 

the first. As a result we obtain a purely exponential depen- 
dence of n(+w)  on l l u  (Fig. 4), as indeed is typical for the 
case of a broad band. 

Note that, in the qualitative analysis of the result given 
above, we have for simplicity effectively ignored the depen- 
dence of the amplitudes of the terms that occur in the expres- 
sion (37) on v. We shall consider the exact results that follow 
from the expression (37) for a number of cases in the follow- 
ing section. 

5. ANALYSIS OF EXPERIMENTAL DATA 

Our results enable us to explain a broad range of experi- 
mental data. We consider the two most striking examples. 
The first is the experiment on the scattering of 4 ~ e +  ions by 
~ e . ' ~  In this case, we have interaction with a very narrow 
filled 3d band of Ge (33 eV from the vacuum level). The 
vacant 1 s level of ~ e +  is at a depth 24.5 eV. The dependence 
of the probability preserving of the charge state of the 4 ~ e +  
ions as a function of the energy of the projectile particles that 
follows from the asymptotically exact solution obtained in 
Sec. 2 is shown in Fig. 5. As follows from the results of the 
qualitative discussion in Sec. 3, in this case we observe 0s- 
cillations at frequencies proportional to the distance between 
the state into which the 1 s state of ~ e +  is transformed as a 

I10 

FIG. 4. 

FIG. 5. Theoretical energy dependence of the probability of preserving the 
4 ~ e *  charge state in the scattering of 4 ~ e +  ions by Ge. 

result of the interaction (with energy a-25 eV) and the 
edges El and E2 of the 3d band of Ge. However, these 
frequencies, proportional to I a- E I and 1 a- E,I, are very 
close to each other because of the narrowness of the 3d 
band, and they are indistinguishable in the experiment. The 
oscillations at the lower frequency, proportional to I E ,  - E21, 
have a very small amplitude and are therefore effectively 
unobservable. In the following figure, we give experimental 
data that, besides the charge-exchange probability, are pro- 
portional to the scattering cross section, which is the reason 
for the suppression at high energies (Fig. 6). 

The next example is associated with Ref. 5 ,  in which a 
study was made of the change in the charge state of N+ ions 
in the case of scattering from the surface of NaCl crystals. 
The vacant 2 p  level (14.7 eV) lies opposite the filled 3p 
surface band of C1 near its lower edge El (E - ~ , = l  eV). 
The band width is E l  - E2-7 eV. The theoretical calculation 
and the experimental results are shown in Fig. 7 .  In this case, 
we observe in the dependence of the yield of N+ ions oscil- 
lations that differ appreciably in both frequency and ampli- 
tude (the high-frequency oscillations have smaller ampli- 
tude). This picture can be explained as follows: The level a, 
which is genetically related to E,  is expelled as a result of the 
interaction outside the band (at the instant of saturation of 
the hybridization, by an amount of order 0.6 eV. As a result 
of this, we obtain low-frequency oscillations at the frequency 
la-~,I with large amplitude. The high-frequency contribu- 
tions at the frequencies proportional to la-E21 and I E ,  - E21 
are practically indistinguishable in their frequencies and have 
a small amplitude; however, in this case they have the same 
order of magnitude as the low-frequency contribution. It is 
just such a picture that we observe (Fig. 7). 

In a similar way we can explain different experimental 
data on charge exchange in the case of the scattering of 
atomic particles by surfaces. 

6. THE ROLE OF COULOMB CORRELATIONS IN THE 
CHARGE-EXCHANGE PROBLEM 

The analysis made above of the time dependence of the 
occupancy of the atomic state is based on the assumption of 
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FIG. 6. Experimental dependence of the relative yield of 4 ~ e +  ions on the 
energy of the initial beam.I6 

complete independence of the motion of electrons with dif- 
ferent spin projections. It would appear that allowance within 
the framework of the Anderson-Newns model for the intra- 
atomic Coulomb interaction between valence electrons must 
significantly change the entire picture of electron transitions 
between the atomic and band states. In fact, the strong Cou- 
lomb repulsion at the atomic center, which is manifested in 
practice as a significant deviation of the electron affinity en- 
ergy from the ionization energy of the atom, essentially im- 
plies that two electrons with opposite spin projections cannot 
be present simultaneously. Therefore, the motion of the elec- 
trons must be correlated in such a way that at each instant of 
time there is at the atomic center an electron either with spin 
up or spin down, or else there is no electron at all. 

The extent to which these correlations affect the dynam- 
ics of the atomic occupancy in the process of charge ex- 
change depends on several factors such as the relative posi- 
tion of the atomic level E, and the Fermi level of the band 
electrons, the characteristic time of the atom-surface inter- 
action, the surface temperature, etc. 

Thus, if the level E,  is higher in energy than E,,  then the 
role played by the Coulomb correlations is very weak. For in 
this case electron transitions from the band to the atomic 

level are relatively rare, and the appearance of two electrons 
at the center has a low probability even in the absence of 
interaction. 

In the opposite case, when E, lies below the Fermi level 
of the system, the influence of the Coulomb correlations is 
appreciable. In this case, the impossibility of double occupa- 
tion of the atomic center generates a strong rearrangement in 
the energy distribution of the band electrons, leading in the 
limit of a sufficiently long atom-surface interaction time to 
the formation of a narrow peak in the single-particle density 
of states at the energy corresponding to the Fermi energy of 
the system (Kondo resonance). As follows from the previous 
consideration, a narrow peak like this in the density of states 
could be an additional source of nonadiabaticity for charge 
exchange in the atomic-level-band system and, as a result of 
this, significantly change the nature of the time behavior of 
the atomic-state occupancy. Quantitative allowance for the 
effect of the Kondo resonance on the final occupancy of the 
scattered ion must be complicated and up to now has been 
done only by numerical methods for some limiting 
situations.I7 However, it should be noted that thermal fluc- 
tuations strongly disturb the correlated motion of the elec- 
trons, as a result of which the Kondo resonance disappears. 
Therefore, the effect of the Kondo resonance on the charge 
exchange is important only if the temperature of the target 
(in energy units) is less than the width of the Kondo peak; 
this is very difficult to achieve under the conditions of a real 
experiment. 

At the same time, the effect of the strong intra-atomic 
repulsion does not reduce solely to the Kondo effect. To 
justify this statement, we consider a situation in which 
Kondo resonance does not occur at all because the Fermi 
level lies in the forbidden band of the spectrum, i.e., we 
consider the case when the atomic level interacts with a com- 
pletely filled surface band. 

In the approximation of an infinite Coulomb interaction 
at the atomic center, the Anderson-Newns Hamiltonian has 
the form 

FIG. 7. Energy dependence of the relative yield of N+ ions in the case of 
scattering by the surface of an NaCl crystal (the dashed curve is the result of 
the calculation, and the solid curve the result of the experiment of Ref. 5). 

where H ( R ( ~ ) )  is the Hamiltonian of the noninteracting 
electrons ( I ) ,  and F=  1 -r i tr i l  is the projection operator 
onto the subspace of states with at most one electron per 
atom. 

Note that when all the surface band states are occupied 
and it is impossible for there to be two electrons at the 
atomic center charge, exchange is possible only when the 
initial atomic state is empty. Under this assumption, we shall 
now calculate the probability that the final atomic state will 
be the empty state (Po) or the single-electron state (P,). 

In our case, the wave function will have the simple form 

where 10) is the vacuum state of the atomic electrons, and 
lqb) is the Slater determinant corresponding to a completely 
filled band of surface electron states. 

Then the required probabilities are given by 
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subject to the conditions PO(-m)= 1, PI(-w:)=O. Substitu- 
tion of the wave function (39) in the Schrodinger equation 
leads to the following system of equations for the amplitudes 
bo and b,: 

Note that for our purposes there is no need to calculate 
all the amplitudes bk,,-it is sufficient to cakulate just the 
amplitude bo; then the probability P I  of single-electron oc- 
cupancy will be 1 -/bo)2. Expressing bk,u in terms of bo in 
the system (41), we obtain the equation 

Since at the moment we are not interested in the effects of 
the finiteness of the band spectrum, to solve Eq. (42) we can 
use the wide-band approximation. As a result, we obtain for 
the probabilities Po  and P I  

where I?( t) = T ~ N ~ v ~ x ~ ( ~ )  is the half-width of the resonance. 
The factor 4 in the argument of the exponential arises from 
the summation over the spins [the factor 2 in Eq. (42)] and 
the subsequent squaring of the amplitude. We now compare 
the expression (43) with the expression obtained in the case 
of noninteracting electrons. Using the same approximations, 
one can easily show that the probabilities Po and P I  will 
have the form 

It can be seen from this that the probability Po for the cases 
of infinitely strong interaction and the absence of interaction 
are the same, while the probabilities for P I  for these cases 
are very different. The reason for this difference is essentially 
that the possibility of pair occupation of the center means 

that the noninteracting electrons "live" in a larger Hilbert 
state space than the strongly interacting electrons. Therefore, 
the probability P I  is no longer equal to I -Po. 

To explain this circumstance, we return to the determi- 
nation of the probabilities in terms of the electron-number 
operators at the center: 

The impossibility of pair occupation of the center has the 
consequence that P2=0 holds at all times t. Therefore, the 
probabilities Po and P I  depend linearly on the atomic occu- 
pancies (hT) and (iil): 

In the case of noninteracting electrons, the probability of pair 
occupation is no longer equal to zero; moreover, by virtue of 
the independence of the motion of electrons with different 
spin projections we have P2 = (ii Lii t) = (A l)(%). Then for 
the probabilities Po  and P I  we have ( ( i t )  = (Gl) = (ii,)): 

Thus, Po+ P # 1 holds, although the sum of the probabilities 
over the complete set of states is, as before, equal to unity 
(P,+P,+P,= 1). 

It also follows from the expressions (43), (44), (46), and 
(47) that the time dependence of the occupancies (rig) in 
these two limiting cases is different: 

Therefore, the strong interaction leads to a change in the rate 
of exponential decay of the atomic state. 

In the case of a finite band spectrum, the effect of cor- 
relations on the behavior in time of the charge-exchange 
probability is not so obvious. In particular, one can no longer 
assert that the probability Po will have the same form for 
interacting and noninteracting electrons. Detailed under- 
standing of this question requires further investigations. 

7. CONCLUSIONS 

This paper contains asymptotically exact solutions to the 
problem of charge exchange between a local level corre- 
sponding to a projectile atom and a finite continuous spec- 
trum corresponding to a band of allowed crystal states. It is 
clear from our analysis that if oscillations are to appear in the 
energy distribution of the scattered atomic particles there 
must be an interval on which the hybridization of the local 
state and the band states varies adiabatically. In this case, 
during the interval on which the hybridization varies adiabti- 
cally stable phase relationships between the electron wave 
function at the atomic level and the Bragg-reflected wave 
arise, and this allows a stable interference picture to develop. 
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The subsequent nonadiabatic switching off of the hybridiza- 
tion leads to conservation of the interference contribution to 
the amplitude of the final electron state at the local atomic 
level. This is the reason for the nonmonotonicity of the en- 
ergy dependence of the charge-exchange probability of the 
scattered atomic particles. Moreover, one observes in the 
spectrum all possible combinations of the frequencies pro- 
portional to the difference of the energies of the band ener- 
gies and the energy of the quasistationary state in the section 
of adiabatic variation. The amplitudes of the corresponding 
oscillatory contributions are greater the higher the degree of 
nonadiabaticity of the switching-on and switching-off pro- 
cesses. The amplitudes of the oscillating contributions are 
also related to the form of the Van Hove singularities at the 
band edges and the distance from the quasistationary state to 
the band edges. 

Thus, only the model time dependence of the hybridiza- 
tion with an interval of adiabatic variation and nonadiabatic 
switching-on and switching-off tails makes it possible to de- 
scribe adequately the oscillatory energy spectrum of the scat- 
tered atomic particles. 

The investigation of the effect of the intraatomic Cou- 
lomb interaction of the electrons on the charge exchange 
showed that this interaction leads in general to a change in 
the rate of charge exchange. However, detailed understand- 
ing of the role of Coulomb correlations in charge-exchange 
processes requires further investigations. 
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