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A new nonlocal path integral Monte Carlo algorithm for a CuO, plane is proposed. The 
technique is based on breaking the CuO, plane into five-site Cu04 celh and converges rapidly. It 
can be used in studies of the semiconducting state symmetry. Pairwise correlation functions 
are calculated by incorporating additional time sfices into the Monte Carlo scheme. To the best of 
our knowledge, characteristics of a Cu-0 two-dimensional cluster with the number of 
atoms N,=768 ( 1 6 ~  16 CuO, cells) have been calculated for the first time. It was found that in 
given ranges of Emery's Namiltonian parameters (Ud= 6t ,  e= 1 -3 t, U p  = V = O ) ,  
temperature ( T s  0.125t), and carrier concentration (0.7 S x S  1.5) a) no off-diagonal long-range 
order, corresponding to the superconducting state, was detected in any coupling channel in 
the thermodynamic limit, and b) there is a tendency to divergence in both s* and dx2-,2 channels 
as the temperature decreases, but a more detailed analysis indicates that antiferromagnetic 
ordering is the main contributor to this effect. The typical correlation length equals three lattice 
constants and is close to the typical antiferromagnetic length. O 1995 American Institute 
of Physics. 

I. INTRODUCTION 

Recently the discussion of the high-T, superconductivity 
mechanism has been concentrated on the symmetry of the 
order parameter (i.e., the symmetry of the wave function of 
the superconducting state).'.' 

A solution of this problem might yield additional infor- 
mation about the nature of the electron-electron interaction 
and formation of Cooper pairs, and the number of plausible 
theoretical models would be reduced 

The symmetry of the superconducting state cannot be 
unambiguously derived from available experimental data. In 
particular, measurements of gap anisotropy in Josephson 
functions and SQUIDS,~-" data on nuclear magnetic 
resonance,I2 Raman scattering,13 and scanning tunneling 
microscopy'4 favor dxz-,z symmetry, whereas other experi- 
mental results such as measurements of angle-dependent 
photoemission'' and Josephson weak coupling'6) indicate 
that the symmetry is s-type. 

Note that in most experiments6-I4 strong anisotropy of 
the order parameter was detected, but nodes of the order 
parameter as a function of the wave vector direction do not 
prove that its symmetry is d-type because the order param- 
eter can also be zero when s-coupling is strongly anisotropic 
( s*) .~ ,~  In order to detect d-symmetry, one should measure 
the phase of the order parameter.2 In this connection, mea- 
surements of NMR," tunneling spectroscopy~ and tempera- 
ture dependence of the magnetic field penetration depth17 
may contain more information. 

Nonetheless, experimental data can be often interpreted 
in terms of both s*-wave coupling and a combination of s*- 
and d,z-,z-wave 

The small coherence length, weak isotopic effect, and 
other anomalous properties of high-T. superconductors have 
stimulated investigations of plausible nonphonon mecha- 

nisms of superconductivity. In this regard, the most faithful 
HTS models are the ~ u b b a r d ' ~  and ~ m e r ~ "  models. How- 
ever, analytic calculations using these models are fraught 
with considerable d i f f i c ~ l t ~ . ~ ' . ~ ~  

In this situation numerical methods are of great impor- 
tance. They include exact diagonalization23~24 and Monte 
~ a r l o ~ ' - ' ~  simulations, in which system parameters can be 
calculated without simplifying the model Hamiltonian, pre- 
scribing in advance the shape of the ground state wave func- 
tion, or using rough approximations. 

Exact diagonalization has been applied to Cu-0 clusters 
described by the Emery model to calculate the binding en- 
ergy of doping carriers and their correlation  function^'^-^' at 
T=O. It is found that carriers tend to pair up over a wide 
range of model parameters. As for pairwise symmetry, the 
calculation of pairwise correlations in a Cu40, cluster by the 
exact diagonalization method within the Emery model for s-, 
s*- and dxz-,2-wave pairing36 indicate that s*-symmetry 
predominates. In the t - J model, the diagonalization method 
indicates that d-symmetry prevails.37 

But the basic limitation of this method, namely the 
smallness of the analyzed system, makes it impossible to 
conclude unambiguously whether any one of the coupling 
modes can produce a superconducting state because, in order 
to settle the matter, one must ensure that pairwise correla- 
tions in the momentum space diverge in the thermodynamic 
limit. 

Therefore quantum Monte Carlo t e ~ h n i ~ u e s , 2 ~ ~ ~ ~  which 
can be used to calculate thermodynamic averages of large 
clusters ( N u =  100-200), must be employed in calculating 
system parameters versus cluster dimensions. These tech- 
niques, however, are flawed because they are not applicable 
at low temperatures (T-100 K) owing to large statistical 
errors. Nonetheless, by using data obtained at temperatures 
at which the Monte Car10 is appropriate, there is some hope 
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of obtaining information about pairwise correlations and sus- 
ceptibilities at lower temperatures, because strong correlation 
effects responsible for the superconducting phase transition 
can be detected through fluctuations at a temperature higher 
than that of the phase tran~ition.,~ 

Now let us briefly review the investigations of the cou- 
pling symmetry using Monte Carlo techniques. 

In the single-band, two-dimensional Hubbard model, a 
divergence was detected for the s - c ~ u ~ l i n ~ ~ ~  at any filling of 
the electron band. On the other hand, no s-coupling was 
found in the case of repulsion in the two-dimensional Hub- 
bard model39 since the correlation functions did not diverge 
in the limit N,--+m. A similar result was obtained by Scalettar 
et In the Emery model, the scaling analysis of pairwise 
correlations revealed a lack of off-diagonal long-range order 
in the s-channel in the thermodynamic limit.n 

In addition, many other papers about the Monte Carlo 
techniques have been p~blished.41-46 Unfortunately, they do 
not systematically analyze size effects on pairwise correla- 
tions and susceptibilities, but their dependence on the tem- 
perature, carrier concentration, and model parameters have 
been investigated. The results obtained for the single-band, 
two-dimensional Hubbard model with repulsive 
interaction?' for the t-J model,17 and for the Emery 

indicate the possibility of s*- and d,2-yz-wave 
superconductivity. 

Therefore, a comprehensive study of the effects of size 
on pairwise correlations is necessary to settle the question of 
s*- and d-symmetry in the thermodynamic limit for the Em- 
ery model. We note however, that the maximum size of a 
cluster in the Cu02 plane analyzed using the Monte Carlo 
simulation is 8 x 8  CuO, cells (Na=192), and scaling data 
presented by Frick et ~ 1 . ~ ~  are based on an analysis of only 
two clusters, consisting of 4 x 4  and 8 x 8  cells. Most of the 
data on coupling symmetry were derived from an analysis of 
4 x 4  and 6 x 6  clusters (Na=48 and 108, respectively).42 The 
real correlation lengths are comparable to the linear size of 
these clusters.26 

Unfortunately, the convergence time of well-known de- 
terministic and variational Monte Carlo algorithms is propor- 
tional to N:, so the use of these algorithms is limited to 
clusters with Nu>200 atoms. 

Elesin and ~ a s h u r n i k o v ~ ~  proposed a new path-integral 
Monte Carlo algorithm for CuO, clusters with considerably 
faster convergence (the convergence time is proportional to 
N,), which is, to the best of our knowledge, the first path- 
integral technique for two-dimensional fermion systems. It 
was used to calculate energy parameters of Cu-0 clusters 
with Nu= 12,24, 30, ... 108 atoms, and to obtain the energies, 
occupation numbers, and other parameters as functions of the 
cluster size.26 But given well-known limitations of path- 
integral Monte Carlo algorithms, such as the inability to cal- 
culate thermodynamic averages of operators that do not con- 
serve the number of particles in a CuO, unit cell, this 
technique cannot be used to investigate pairwise correlation 
functions, which are highly nonlocal parameters. In addition, 
the configurations studied in Ref. 26 are anisotropic, which 
does not matter in calculations of local characteristics, but 
precludes the analysis of symmetry properties. 

This paper proposes a new quantum path-integral Monte 
Carlo algorithm in which the plane is divided not into three- 
aton1 Cu02 cells,26 but into more symmetrical tive-atom 
CuO, cells. In addition, temporal cross sections cutting ferm- 
ion paths in configuration space are introduced to investigate 
nclnlocal pairwise correlations, and all information is taken 
from these cross sections. As a result, the CPU time increases 
somewhat, but it is still proportional to Nu.  

The technique has been used to calculate pairwise corre- 
lations due to s-, s*, and d,z_,2-wave coupling for a set of 
two-dimensional clusters with Na=48, 108, 192, 300, 432, 
588, and 768 atoms, the largest cluster studied (16X I6 CuO, 
cells) being four times the largest system investigated by 
existing Monte Carlo techniques. Given this set of clusters, 
the plausibility of various superconductive coupling modes 
has been properly analyzed, and it has turned out that in the 
temperature range studied (T- 0.1 t, where t -  1 eV) pairwise 
correlations tend to a constant as Na-+m, rather than diverg- 
ing, i.e., the lack of superconducting correlations in the ther- 
modynamic limit is evident. 

Nonetheless, the matter is not settled yet because at 
lower temperatures the amplitudes of pairwise correlations 
are larger (as follows from our calculations), ferromagnetic 
ordering occurs, and the behavior of correlations at a tem- 
perature close to that of the phase transition is hard to pre- 
dict. 

2. EMERY MODEL AND PAIRWISE CORRELATION 
FUNCTIONS 

Consider the two-dimensional, multiband Emery model 
for a Cu02 which takes into account the hybridiza- 
tion of copper dx2-,2 and oxygen px- ,py- orbitals, the mis- 
match between atomic levels at copper and oxygen lattice 
sites, and Coulomb interaction at copper and oxygen sites 
and between them. 

In the hole representation, the Emery Hamiltonian is 

where d; and P&J are hole creation operators in dr2-y2 and 
p ,  ,py states, respectively; i denotes copper sites; k denotes 
oxygen sites; nia= dLJdin, nk,=Pk:rPko ; t is the copper-to- 
oxygen hopping matrix element; E is the hole energy differ- 
ence between oxygen and copper sites; U,, , U , ) ,  and V are 
the energies of Coulomb repulsion between holes at copper 
and oxygen sites, and between holes at different sites. The 
dielectric (undoped) state corresponds to half-filled copper 
sites (the number of holes, (N), is equal to the number of 
copper sites, N,,). A higher (lower) number of holes corre- 
sponds to the hole (electron) doping of the Cu02 plane in a 
high-T, superconductor. 

The relative concentration of carriers (per one Cu02 el- 
ementary cell), x =  (N)I(N, , ) ,  is optimal in terms of T ,  over 
the following ranges: in p-type HTS x=  l .  I -  1 . 2 5 , ' ~ ~ ~  in 
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n-doped HTS x=0.83-0.88.l." ln this paper we limit our 
investigation of symmetry properties of pairwise correlation 
functions to these ranges. 

Let us define pairwise correlations as functions of the 
di~tance:"".~ 

where 

The sum in Eq. (2) is performed over all elementary 
cells of the CuO, plane. This means that the operators c:, 
act at equivalent sites, i.e., either at copper atoms with the 
coordinate Rcu or at oxygen sites with coordinates 
Rcu+(a12)i, Rc,+(a/2)j, where a is the lattice constant. In 
accordance with nuclear magnetic resonance (NMR) data>8 
we select copper atoms as equivalent sites because the pair 
wave function at these sites has a smaller amplitude than at 
oxygen sites (nonetheless, Dopf et selected C: at 

+ r=RCu,  and C,+v,I at r+v=Rc,+(a/2)i or 
r+ v=Rcu+(a12)j in their study of coupling within a CuO, 
cell, i.e., so-called Zhang-Rice singlets49). Another reason 
for studying pairwise correlations in this copper sublattice is 
that the data on carrier attraction in small Cu-0  cluster^,^-^^ 
demonstrated the importance of antiferromagnetic fluctua- 
tions at copper atoms in coupling of holes. Other theoretical 
approaches (such as the spin bag model, t -  J model, etc., see 
Ref. 1 and references therein) are largely equivalent to accu- 
rately taking into account antiferromagnetism of copper at- 
oms and effectively including the oxygen subsystem through 
conversion of the Emery model to the simple two- 
dimensional Hubbard model with respect to the parameters 
I/& and t l  U p .  

The function g,(v) depends on the coupling mode. At 
a=s we have ~ , ( V ) = S ~ , ~ .  At a=s* we have g,(v)= 1 for 
v= ?ai, -+aj and g,(v)=O for other values of v. When a 
= dl-zPy2 we have g,(v)= 1 at v= +ai, g,(v)= - 1 at v= +aj,  
and g,(v)=O for other values of v. The Fourier component 

must diverge in the thermodynamic limit at k=(0,0) if there 
is off-diagonal long-range order.42 Hence the function P,(r) 
must drop more and more slowly with distance r as Nu in- 
creases and tend to a constant, which would indicate long- 
range order. 

It is convenient to introduce the following 

where 

ancl G,(I,Ir) = (c,,,,c:,,,). Equation (5) is derived from Eq. 
(2) after deconiposition according to Wick's theorem without 
taking into account anomalous averages (c;c[) and 
(CIC, ) .  In the thermodynamic limit, the right-hand side in 
Eq. (6) tends to a constant determined by the correlation 
length, therefore, in the analysis of off-diagonal long-range 
order at N u 4 m ,  its contribution can be neglected. Note, 
however, that in a finite cluster this is an essential parameter, 
so in a proper analysis it is usually subtracted from the right- 
hand side of Eq. (2).39 

The criterion for pairwise correlations due to a-wave - 
coupling in a finite cluster is then as follows:39 if P, > P a ,  
pairwise correlations are generated by a-wave coupling, oth- 
erwise there are no pairwise correlations. 

We stress that in a calculation with a fixed number of 
particles and spin component S ,  , only anomalous averages 
like those in Eq. (5) are retained in the painvise correlation 
functioning of Eq. (2), hence antiferromagnetic correlations 
like (c,c[) and ( C  c;)  have no effect In standard Monte 
Carlo algorithms'-4' their contribution is always included 
because a large canonical ensemble is involved. 

We select for our numerical calculation only clusters 
with the symmetry of the CuO, plane, and from all possible 
clusters26 with square symmetry we select only the ones 
whose basis vectors are parallel to those of the infinite plane. 
An additional selection criterion is that the number of copper 
sites must be even (so that the spin component S ,  is zero in 
the undoped state). As a result, we have a set of seven clus- 
ters: 4 x 4  Cu02  cells (Nu=48), 6X6(108), 8X8(192), 10 
X 10(300), 12X 12(432), 14X 14(588), and 16X 16(768), 
which allows us to investigate pairwise correlations as func- 
tions of the cluster dimension, Nu .  The cluster with Nu= 12 
( 2 x 2  CuO, cells) has been already investigated by the exact 
diagonalization method.36 Furthermore, its symmetry is 
higher than that of the infinite plane, and it is not included in 
our set because of its small size. 

Let us estimate the typical cluster size sufficient to ap- 
proach the thermodynamic limit using the data on the corre- 
lation length. Experimental data and numerical c a l c ~ l a t i o n s ~ ~  
yield a correlation length, 5, of about 3-4 lattice constants. 
We can introduce a maximum inequivalent length, L,, , 
equal to L12 for a square cluster with a linear dimension L 
and periodic boundary conditions. It is reasonable to estimate 
the thermodynamic limit based on cluster size when L,,z>(. 
Thus the critical clusters in our set are those with No= 108 
and Nu= 192, i.e., the largest clusters previously analyzed 
using the Monte Carlo method.27s42 

In our subsequent analysis we calculate pairwise corre- 
lations for this set of clusters at various filling factors, select- 
ing the total spin projection S,=O in order to minimize the 
energy and to compensate for finite-size effects. 

3. NONLOCAL PATH-INTEGRAL MONTE CARL0 TECHNIQUE 
FOR CuO, PLANE 

a) Decomposition of the spacetime grid 

The Hamiltonian is divided into two parts including 
bonds of different types2" 
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FIG. 1. (a) Decomposition of the CuO, plane into two types of bonds for the 
path-integral Monte Carlo simulation (bonds of type I are shown by solid 
l i e s ,  of type 2 by dashed lines). 0 denotes oxygen atoms, copper atoms. 
(b) Decomposition of  plane from Ref. 26. One can see that orthogonal 
directions in the first diagram are equivalent, and in the second diagram the 
directions A-C and B-D are not. 

In contrast to the scheme of Ref. 26, the lattice is parti- 
tioned as shown in Fig. l(a), i.e., the entire plane is divided 
into five-atom Cu04 cells. Figure I(b) shows the partition 
used in Ref. 26. One can see that the directions A-C and 
B-D are not equivalent because in the model of Ref. 26 
motion along the B-D axis between oxygen atoms is forbid- 
den. In the proposed scheme all hops are equivalent, because 
at finite temperature, diagonal 0-0 hops are possible,26 and 
in Fig. l(a) the diagonals are equivalent. 

Using the Trotter expansion5' and introducing a com- 
plete set of functions in each time s l i ~ e , 2 ~ ~ ~ ~  we present the 
partition function in the form of a discrete functional inte- 
gral: 

where Ar=PIL. 
Let us present Eq. (8) in a graphic form. Consider 2 L  

identical two-dimensional Cu-0 clusters with a number of 
atoms No above one another along the time axis (Fig. 2). The 
sum in Eq. (8) is taken over all possible closed noncrossing 
paths. Hops between paths are allowed only on cross-hatched 
vertical faces. Two filling factors, n and n l ,  equal either to 
1 or 0, correspond to each site, therefore the paths (world 
lines) for each spin projection are decoupled. 

Transitions between time slices are determined by matrix 
elements of the evolution operator 

The total number of states in a Cu04 cell is 1024, therefore 
each evolution operator in Eq. (9) is a 1024X 1024 array. The 
evolution operator is calculated numerically using Eq. (9) 
with the sum cut off when the required accuracy is achieved. 

In this connection, we note two features of this scheme: 
1) The probabilities of hops between trajectories on the 

0-0 diagonal, of a virtual 0-0 transition via a copper site, 
and of combined transitions C&C,  T ~ & ~ 2 L ,  

FIG. 2. Spacetime grid for the Monte Carlo 
simulation. Rrmion world lincs can only 
cross on cross-hatched faces. 
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c:, C,  t ~ z ,  C2 etc., are nonzero even to second order in AT. 
Therefore these motions of holes should be included in the 
Monte Carlo scheme. 

2) The signs of U,,,,, , matrix elements in the real Monte 
Carlo configuration must be known. Simple multiplication of 
the matrices in Eq. (9), expanded in the five-site cell basis, 
does not yield this information because the numbering of 
sites in an isolated cell is different from that in Cu04 cells in 
a studied cluster. The following procedure is used for this 
reason. 

First, the exp(-ArH) operator is calculated exactly, i.e., 
the sum on the right of Eq. (9) is obtained in analytic form. 
This problem is nontrivial: after enough multiplications, the 
number of irreducible summands in the Emery Hamiltonian 
for a five-atom Cu04 cell ordered with respect to the atom 
numbers within one cell like 

c ~ t c ~ l t c ~ ~ c i 2 ~ c ~ ~ c k 1 ~ c j : ~ c k 2 ~ c ~ l ~ 1 1 ~ ~ ~ 1 ~ ~ ~ l ~  9 

C ~ ~ C ~ , ~ C ~ ~ C I , ~ C ~ , ~ C ~ , ~ ,  etc. (here i , j ,k= 1-5, 
i l> i2>i3  ..., jl>j2>j3 ..., kl>k2>k3> ..., 11>12>13> ..., 
and all indices i,j,k are different) in Eq. (9) is up to its 
maximum of 63504. Nonetheless, this problem can be solved 
on a computer. Then we apply the resulting operator to the 
wave function to derive Un,+l and information on its sign. 

The subsequent procedure is similar to that used in Refs. 
25 and 26, namely interchanging configurations via the Me- 
tropolis algorithm5' and calculating the ratio of products of 
evolution matrix elements before and after the interchange. 

b) Thermodynamic averages of physical parameters, 
nonlocal effects 

Thermodynamic averages of operators that conserve the 
number of particles in a Cu04 cell are calculated similarly to 
familiar path-integral Monte Carlo algorithms,25326 so we 
shall not dwell on this matter. 

Pairwise correlation functions are nonlocal characteris- 
tics, since these operators break fermion world lines and 
change the number of particles in one cell. In this case, we 
introduce additional time cross sections between which tra- 
jectories may be broken.25 Then the thermodynamic average 
of such an operator takes the form: 

In calculations with Eq. (lo), the numerator and denomi- 
nator must be computed via independent Monte Carlo pro- 
cedures. We have integrated these procedures by adding new 
terms either to the numerator or denominator, depending on 
which of the matrix elements, (illQli;) or (il l i ;) ,  is non- 
zero. All useful information is removed from the ( i  1 i;) 
cross section, and as a result, the convergence rate is reduced 
by a factor of 2L, but the total CPU time is nonetheless 
linear with respect to the number of atoms, Nu,  in a cluster. 

In order to achieve the required accuracy, we perform 
about 10" Monte Carlo steps to thermalize the system and 

about lo4 steps to calculate averages. The statistical uncer- 
tainties are estimated using the proper procedure26 and are 
within several percent. 

The uncertainty of the statistical weight sign (minus-sign 
problem) does not significantly affect the convergence of this 
algorithm because it tends to a constant at TAO. 

The algorithm has been tested by calculating character- 
istics of a twelve-atom Cu40x cluster using exact 
diagonalization," and of other clusters using both determin- 
istic and variational Monte Carlo t e ~ h n i ~ u e s , 2 ~ . ~ ~  leading us 
to the following conclusions: 

1) For a p-doped Cu40, cluster ((N) =5) at Ud=6, - &= I, 
and T=0.125 we have Pd  - P,, = 0.02, Ps* - Ps* = 0.03, 
while - the exact diagonalization - technique at T=O yields36 
Pd  - Pd = 0.05, Ps* - Ps* = 0. I ,  i.e.,the temperature reduces 
pairwise correlations, as expected, by a factor of more than 
two, and the ratios of amplitudes in s* and d-modes are 
changed little. 

2) The results are identical, within the calculation uncer- 
tainty, to those of standard Monte Carlo algorithms27942 for 
clusters with Na=48,  108, and 192 after some modifications 
because pairwise correlations like (Af A) are often calculated 
instead of those in Eq. (2). 

4. PAIRWISE CORRELATION FUNCTIONS 

Pairwise correlations for Cu-0 clusters in the Emery 
model have been calculated at the following Hamiltonian 
parameters in Eq. (1): &=I-3, Ud=6, U,=V=O (in units 
of t). These values were selected because, first, they are typi- 
cal figures derived from experimental and, second, 
basic results concerning binding energy and pairwise corre- 
lations using the exact diagonalization method in the Cu408 
 luster?^-^^ and the symmetry of coupling in clusters with 
Na=48, 108, and 19242-45 using the Monte Carlo method 
were obtained in this range of parameters. 

Let us first consider the parameter P,=P,(k) at 
k=(O,O) as a function of the cluster size at a = s ,  s*, and 
d,2- 2. Figure 3 shows calculations of X ,  = versus 

for p-doped clusters with Nu=48,108, ... 768 at 
x = 1.125 and x = 1.25 by the path-integral Monte Carlo tech- 
nique. These data indicate that the parameter Pa  does not 
diverge with increasing N,, but on the contrary, tends to a 
constant for all coupling modes. This result is in agreement 
with data from Ref. 27 on s-wave coupling in clusters with 
N U S  192 and suggests a lack of off-diagonal long-range or- 
der in the thermodynamic limit, i.e., at finite temperature. 

This conclusion is supported by other calculations. Fig- 
ure 4 shows P,(r) versus the coordination sphere number in 
the copper sublattice. In fact, P,(r) drops to zero within two 
or three coordination spheres (approximately two lattice con- 
stants) for all cluster sizes considered in this paper, which is 
confirmed by a lack of long-range order effects. Similar be- 
havior of P a  was observed in the two-dimensional Hubbard 
modePx at a=s.  Note that a cluster with Nu=300 is suffi- 
cient to approximate the thermodynamic limit, as was sug- 
gested by the correlation length evaluation, so that param- 
eters of large clusters (N,=432,588, and 768) are essentially 
equal to within the numerical errors. 
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FIG. 3. Parameter ,y = 4- plotted against a for clusters with N,=48,108, ... 768 at doping levels x= 1.125 (+) and x= 1.25 (0). E= 1 ,  Ud=6: a) 
a=s; b) a=s* (in the case o f  CY = d x 2 ~ y 2  the results are essentially identical to those for a=s*). For Hamiltonian parameters e=3 and Ud=6 and a doping 
o f  x= 1.25 the results are essentially identical to those for the case e= 1, Ud=6, and x= 1.125 (+) for all coupling modes. 

Since the temperature in the model is high (relative to 
the critical temperature), the absence or presence of pairwise 
correlations at TAT ,  remains an open question. In order to 
elucidate the problem, it is useful to consider the temperature --  
dependence of Pa  - P, (Pa is subtracted in order to limit 
finite-size effects and antiferromagnetic ordering - effects for 
an actual cluster). Figure 5, in which P, - P ,  is plotted ver- 
sus temperature at N ,  =300 and x = 1.125, demonstrates that 
the correlations rise sharply as the temperature decreases. In 
order to find out whether there is a tendency toward off- - 
diagonal long-range order, the function Pa(r) - Pa(r) is 
plotted for different temperatures (Fig. 6). As the temperature 
decreases, the spatial distribution clearly displays antiferro- 

magnetic behavior while maintaining a constant correlation 
length. 

The rise in antiferromagnetic correlations in pairwise in- 
teractions is explicitly demonstrated by the temperature de- - 
pendence of Pa(k) - Pa(k) at k=(m,.rr) (Fig. 7), since at a 
momentum of (.rr,.rr) the antiferromagnetic contribution to 
the correlator (AA') is maximum. An appreciable increase in 
correlation (for the s*-coupling it increases by a factor of 
about five over the temperature range front T=0.25 to 
T=0.125) indicates that the main contributor to painvise cor- 
relation is antiferromagnetic ordering. Furthermore, it is in- 
teresting to note that a typical correlation scale length is 
about six coordination spheres (i.e., three lattice constants), 

FIG. 4. Correlation P,,(r) as a function o f  the coordination sphere number in the copper sublattice at a doping .r= 1.125 and cluster dimensions N,,=48 (+); 
108 (*); 192 (0); 300 (X) :  a) a=s;  b) a = d,2-,2 (at a=s* the spatial distribution also drops within two or three coordination spheres), e= 1, U,,=6. For 
clusters with N,,=432, 588, and 768 the distribution function coincides within the calculation uncertainty with the data for N,,=300. 
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FIG. 5.  Temperature dependence of Pa- P ,  at a doping level x= 1.125 for 
a cluster with N,=300 and s - ,  s*-, and ci.,zLyz-wave coupling, E =  1 ,  Ud=6. 

which coincides with the previous antiferromagnetic length 
c a l ~ u l a t i o n . ~ ~  The temperature in our calculations is close to 
that of the antiferromagnetic transition (T-  1000 K), so it is 
quite natural that fluctuations related to this transition are 
displayed by the curves. 

To conclude this section, note that calculations were car- 
ried out at carrier concentrations of 0.7sxS1.5 ,  i.e., they 
include both electron and hole doping. The results for 
n-doped states are essentially identical to those reported in 
the present section, i.e., no coupling mode leads to supercon- 
ductivity, since P a  tends to a constant as the cluster size 
increases, and the function P a ( r )  drops over a distance of - 
two to three lattice constants. The function P a  - P a  peaks at 
half-full copper sites (x= 1.0), and the range of positive val- 

FIG. 6. Spatial distribution of ~ , , ( r ) - ~ , , ( r )  at N,,=300 and a=s*, 
7'=0.125 (+), 0.25 (*). 0.5 (0). E= I ,  U,,=6. Antiferromagnetic ordering, 
which occurs as the temperature falls, decreases with a typical scale length 
of four to six coordination spheres. Thc results for a = d,z ,.z-coupling are 
qualitatively simil;il: 

FIG. 7. P,(k)- P,(k) at k=(m,.rr) versus temperature for a cluster with 
N,=300 for s-, s*- and d,2Lyz-coupling. s*-wave coupling is apparently 
most susceptible to antiferromagnetic interaction. 

ues corresponds to x=0.8- 1.0 for electron doping and to 
x = I .O- 1.5 for hole doping. Antiferromagnetic ordering is 
actually observed when the concentrations are about equal,' 
and antiferromagnetic effects should be strongest in the un- 
doped (x = 1 .O) state. 

5. CONCLUSIONS 

This paper proposes a new nonlocal two-dimensional 
path-integral quantum Monte Carlo technique based on a 
rapidly convergent decomposition of the CuO, plane into 
five-atom CuO, cells. Pairwise correlation functions are cal- 
culated by including in the Monte Carlo scheme additional 
time slices breaking fermion world lines. The first Monte 
Carlo simulation of a two-dimensional Cu-0 cluster with 
N,=768 atoms (16X 16 CuO, cells) is reported. 

The calculation of pairwise correlation functions due to 
s, s*, and dx2-,2 coupling modes leads to the following 
conclusions. 

In the range of Emery Hamiltonian parameters consid- 
ered (Ud=6t ,  E =  1-3t, Up= V=O),  temperature 
(T20.125t) ,  and carrier concentration ( 0 . 7 ~ ~ s  1.5) 

a) no off-diagonal long-range order is detected in the 
thermodynamic limit for all coupling modes; 

b) there is a tendency to divergence in the s" and 
d \ - 2 ~ ~ 2  modes with decreasing temperature, but the analysis 
indicates that the main contributor to this effect is antiferro- 
magnetic ordering. Furthermore, the typical scale length of 
the correlation function is close to the typical antiferromag- 
netic length calculated previously.26 

We stress that the possibility of superconducting cou- 
pling should be investigated by scaling system parameters at 
a temperature close to T,. . In principle, the superconducting 
state can be identified using other criteria not including the 
wave function symmetry. For example, Assaad et a/.54 derive 
the density of superconducting pairs from the ground state 
energy as a function of the phase a. In particular, they did 
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not detect the superconducting component in the Emery 
model even at a record low (for Monte Carlo simulations) 
temperature T =  111 6t. 
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the paper. 
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