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The issues of reversibility and molecular chaos in a rarefied gas are discussed under conditions 
for which the behavior of the quantum atoms or molecules of the gas is nearly classical. 
Following the philosophy of the "correspondence principle," it is initially conjectured that the 
process of collapse of wave functions corresponds to exponentially diverging trajectories 
of classical particles. There then follows an investigation of a self-consistent picture in which 
binary collisions lead not only to Maxwellization of the distribution function but also to 
a mechanism that maintains definite geometrical sizes of wave packets. 63 1995 American Institute 
of Physics. 

1. INTRODUCTION 

It is well known that Boltzmann derived a kinetic equa- 
tion from the hypothesis of molecular chaos, i.e., from the 
assumption that there are no correlations in the motion of 
particles before they collide. It was this hypothesis that ulti- 
mately led to the famous H theorem, i.e., to the essential 
irreversibility of gas kinetics. The question of how it was 
possible to obtain irreversibility on the basis of the reversible 
equations of dynamics remained somewhat obscure for a 
long time. It has now become generally accepted that irre- 
versibility comes about through the exponential divergence 
of trajectories in phase space. Let us explain what is going 
on here. 

Let X= l lnu  be the mean free path and n the density of 
the gas molecules, and a be the scattering cross section. As 
diameter of an atom, we take a = 6. It is easy to see that a 
small perturbation 6u of a gas molecule leads over a path 
-A to a change in the impact parameter of the scattering of 
the scale h(Sv/v), where u is the velocity of the molecule. 
Accordingly, after scattering, the direction of the velocity 
will be perturbed by an amount of order (Ala)(Svlv). Each 
subsequent scattering multiplies the perturbation by the fac- 
tor Xla, so that on the average the perturbation increases with 
time as exp(A tlr), where A = Xla, 7 = A  lvT, uT = 6 is 
the mean thermal velocity, T is the temperature (in energy 
units), and rn is the mass of the molecule. By virtue of the 
instability, initially close trajectories in the phase space of 
any molecule diverge in accordance with an exponential law. 
For A = X l a a  1, just a few collisions are sufficient to ensure 
that initially close trajectories finish up in widely separated 
(on intermolecular scales) regions of space. 

Now suppose that we have an ensemble of completely 
identically prepared isolated systems. By analogy with quan- 
tum theory, such an ensemble can be called pure. It is clear 
that all representatives of such an ensemble evolve in exactly 
the same manner and moreover are completely time-reversal 
invariant. A completely different picture arises when the sys- 
tems are not isolated from the external world. In the case of 
a gas, lack of isolation means simply the possibility of in- 
elastic collisions of the gas molecules with the walls. The 
inelastic collisions lead to forces of viscous friction of the 

gas on the walls. These forces give rise to an additional 
damping of sound waves, and in accordance with the 
fluctuation-dissipation theorem the surface layer of the gas 
must generate additional acoustic noise. Such noise makes 
essentially no contribution to the energy balance of the gas, 
but it leads to small relative displacements of the gas mol- 
ecules, i.e., to a kind of loss of phase coherence. The binary 
collisions rapidly increase, in accordance with the law 
exp(Atlr), the perturbations in time. As a result, the en- 
semble of systems becomes, as it were, "mixed:" its indi- 
vidual representatives evolve along different trajectories in 
phase space. Accordingly, such an ensemble can be described 
only statistically, and the time reversibility disappears com- 
pletely. 

We now attempt to describe such a gas from the point of 
view of quantum mechanics. In the case of a pure ensemble, 
the quantum description does not present fundamental 
difficulties-it is merely necessary to write down the Schro- 
dinger equation for the complete system and then attempt to 
solve it in one way or another. However, interaction of such 
a system with the environment must radically change the 
picture of the evolution. 

If we use the famous "correspondence principle," we 
must postulate that even weak incoherence must have a 
strong effect on the evolution of the system. For each indi- 
vidual molecule, this evolution takes the form of a succes- 
sion of scatterings. If the external influence on the scattered 
waves is to be sufficiently strong, it must be assumed that the 
phases of the individual scattered waves "lose coherence" 
and the particle enters only one of the scattered waves. Such 
a process is known as "collapse" of the wave function fi. In 
the different representatives of the statistical ensemble, the 
collapses are different, following the probability principle 
-[A2. It is through the collapses that the pure quantum en- 
semble is transformed into a mixed ensemble. A regular ap- 
proach to the description of such irreversible mixed en- 
sembles has yet to be sufficiently developed, and therefore 
we use here some approximate methods, relying to a large 
degree on qualitative considerations. Our main assumption is 
that each n~olecule or atom of the gas must be ascribed a 
wave function in the form of a certain compact wave packet. 
Our task is to describe the translational motion of such pack- 
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ets, their scattering off each other, and the maintaining of 
definite sizes and shapes of the wave packets. 

2. WAVE PACKETS 

It is natural to begin the description of the gas in terms 
of wave packets by considering an isolated packet. It is natu- 
ral to suppose that the size and shape of the wave packets 
must be determined by the natural processes of interaction 
between the molecules. However, it is convenient to begin 
with some preassigned canonical form of a wave packet, for 
which we take a function of the form 

@= exp{ikox -x2 /2A2} .  (1) 

For simplicity, we restrict ourselves here to the one- 
dimensional case. In Eq. ( I ) ,  A  characterizes the dimension 
of the wave packet along the x  axis, and ko is some averaged 
wave number. 

By a Fourier transformation with respect to x ,  it is easy 
to find the shape of the packet in the space of wave numbers: 

Gk=exp{- ( k -  k o ) 2 ~ 2 / 2 ) .  (2) 

Here v o =  hkolm characterizes the velocity of the wave 
packet. We assume that the velocity distribution of the wave 
packets is Maxwellian with temperature T, : 

where B is a normalization factor. 
If the square of the wave function (2) is multiplied by 

the distribution function (3) and the result is averaged over 
v , ,  we obtain an expression for the diagonal elements of the 
density matrix: 

where the temperature T  is determined by the relation 

The relation ( 5 )  can be interpreted as follows: T  is the 
true temperature of the free particle, T ,  is an auxiliary quan- 
tity corresponding to the temperature of the moving wave 
packets, and h2/2mh2 is, as it were, twice the "internal" 
energy of a wave packet. This energy is positive, so that the 
wave packet spontaneously decays with time, and there must 
be some external factor that maintains the equilibrium size of 
the packet. As we shall see, this is realized by successive 
collapses of wave functions. 

In the three-dimensional case, it is natural to assume that 
the wave function of a packet is equal to the product of 
functions of the form (1) along the directions x,y,z.  The 
corresponding wave packet will have a spherically symmet- 
ric envelope with a "filling" in the form of a plane wave 
with wave vector ko. 

3. COLLAPSES AND RANDOM WAVE FUNCTIONS 

We consider a rarefied gas under conditions for which 
the behavior of the molecules or atoms of the gas is nearly 
classical. More precisely, we assume that a 3 n = a l A ~  1, 

where a= & is the quantity that characterizes the molecular 
diameter. In addition, we shall assume 3 & ~ B ~  I ,  where 
k B = i i / m ~ T  is the de Broglie wavelength. 

We assume that in the initial state at t = O  the wave func- 
tions of the molecules take the form of wave packets of the 
type (3) but only in three dimensions. We choose some test 
particle and follow its evolution. We assume that the packet 
width A is not very small, namely, A2>AAB. In this case, the 
quantum-mechanical spreading of the wave packet during 
the mean free time T =A/vT is not greater than A. 

In time T, a packet with mean velocity v T  successively 
covers one region after another with a total volume of order 
A'A. In this volume, there are N = n h 2 A  particles. We shall 
assume that N S  I .  One can say that during the time T the 
wave packet we are considering undergoes N S  1 scatterings 
and that the scattered waves occupy a volume -A! During 
subsequent intervals of time of order -7, the waves are res- 
cattered, so that an extremely complicated picture of the 
wave field is created. If the system we consider is isolated, 
i.e., is not subject to any perturbations from outside, the cor- 
responding intricately organized wave function corresponds 
to a coherent state. Although this state is very unstable and 
delicate, it must be reversible in time: If the time is reversed 
at any instant t ,  the system must return to the initial state. 
This means that in the time-reversed system all the previ- 
ously outgoing scattered waves must be transformed into in- 
coming waves that, moreover, are so finely "tuned" that they 
can ultimately "coalesce" into the original wave packets at 
t = O .  Accordingly, it must be assumed that in any steady 
picture of a coherent state, at  ST, outgoing and incoming 
waves are equally present. 

We now suppose that the gas we are considering begins 
to interact with the environment through inelastic collisions 
of the gas molecules with the walls, which have the same 
temperature T  as the gas. As we know, the walls create ther- 
mal noise that propagates with the speed of sound into the 
interior. This noise will certainly lead to destruction of the 
delicate picture of the coherent state. Above all, the noise 
destroys the phase coherence of the previously incoming 
waves, so that only the scattered outgoing waves remain. 
This circumstance by itself leads to destruction of the revers- 
ibility. However, the disturbance of the environment is in fact 
considerably stronger, and this can be explained as follows. 

As we have established above, the initial wave packet 
creates N scattered waves over its mean free path. A weak 
external perturbation can slightly disturb the phase coherence 
between the waves, and the microscopic particle itself, being 
indivisible, can be present in only one of these waves. How- 
ever, the phases of individual sections of the selected scat- 
tered wave can also be put slightly out of phase, so that the 
particle can find itself in only one of the small sections of the 
scattered wave. There is a collapse of the wave function into 
a new wave packet. It is difficult to say at which precise 
instant the collapse occurs, but if one goes back into the past 
along the trajectory of a newly formed packet it will be pos- 
sible to find the small volume in which scattering occurred. 
Thus, from the point of view of the subsequent evolution of 
the wave packet this collapse can be nominally referred to 
the time of scattering. 
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Suppose that before the collapse the wave vector of the 
packet was k, , and after the collapse it is kf . One can say 
that a particle with velocity hk,lm has been scattered into the 
velocity direction fik,lnz. This process is purely random, so 
that a wave function in the form of a set of wave packets is 
also random. If the choice of the probabilities of formation of 
the packets follows a law --Id2, the statistical description of 
the processes of scattering and collapse automatically leads 
to a Boltzmann equation with transition probabilities calcu- 
lated in accordance with the rules of quantum theory. 

For us, great interest attaches to the dynamics of the 
wave packets. We consider the history of a wave packet of an 
arbitrarily chosen test particle. The trajectory of such a 
packet will have the form of a broken line consisting of 
straight sections with an average length A; the random de- 
flections are determined by the scattering probabilities. After 
each of the deflections, there is a collapse of the wave func- 
tion to a form close to (I). To obtain a qualitative picture, the 
process of the discrete collapses can be replaced by continu- 
ous collapse. In addition, it is convenient to make a restric- 
tion to the one-dimensional case and consider the collapses 
in a coordinate system moving together with the packet (in 
each of the segments of the trajectory, a new system of co- 
ordinates is needed). 

In this approximation, the collapse can be described by a 
factor of the type A(t)exp{-x2t/2b2r}, by which it is neces- 
sary to multiply the wave function of the particle. By b we 
have here denoted the width of the collapsing form factor. 
During the time t there are t / r  collapses with total form 
factor exd-x2t/2b2r}, and the factor A(t) takes into ac- 
count the normalization of the wave function. In the approxi- 
mation of continuous collapsing, the Schrodinger equation 
for the wave function of the test particle takes the form 

where .).=AIA. 
We seek a steady solution of this equation in the form 

$ = e ~ ~ { - i w t - x ~ / 2 ~ ~ ) ,  and we choose y in such a way that 
the frequency w is real. Substituting this expression for $ in 
Eq. (6), we obtain 

As yet we do not know the width b of the packet corre- 
sponding to the very beginning of the collapse. If we assume 
approximately b=AO, then we obtain 

In other words, the steady width of the packet is of the 
order of the geometric mean value of A and kg. 

As we see, in the model of continuous collapse, 
1 ~ 2 = e ~ p { - ~ 2 / ~ 2 }  keeps a constant shape, i.e., all molecules 
of the gas are ascribed packets of the same shape, and the 
entire difference between them resides in the different values 
of their velocities vo=hkolnz. If koA+l, the wave packet ( 1 )  
differs little from a plane wave. Accordingly, the probabili- 

ties of scattering due to binary interactions of the particles 
can be calculated in the plane-wave approximation. 

4. SUCCESSIVE COLLAPSE 

The model of continuous collapsing is too simplistic. It 
is therefore of interest to consider the more realistic case of 
successive collapses. However, here too it is sensible to 
make some simplifications. First of all, we represent the tra- 
jectory of a test particle in the form of a certain broken 
curve. It is convenient to rectify this line and lay it out along 
the x axis, ignoring certain tine details in the behavior of the 
wave packets near the points of scattering. Further, it can be 
assumed approximately that the successive scatterings do not 
occur in accordance with the law of chance but at points 
precisely separated by the distance A. Finally, we ignore the 
changes in the velocities of the particles on the transition 
from one segment of free motion to another, setting in (1) 
ko = nzv ,lh, where vT  = $%. In addition, we retain for the 
moment the width of the packet b in each of the collapses as 
a free parameter. 

Thus, we arrive at a problem of periodic collapse, so that 
it is sufficient to consider only one transition, when the wave 
function undergoes the collapse (1) with A=b and 
ko=nzvT/fi at t=O and arrives at the subsequent collapse at 
t=Alvo. 

It is readily verified that the Schrodinger equation for a 
free particle has a solution of the form 

where w=fi2ki/2rn, uo= h kolrn, and A2 is a linear function 
of the time: 

We have here chosen the initial value A = b  at t=O. It is this 
solution that describes the evolution of the wave function 
after the collapse at t=O. By means of (lo), it is easy to find 
the mean value ((x- ~ ~ t ) ~ ) ,  which we denote by A:: 

x:= b2+  h2t2/rn2b2. (11) 

Using this expression, we can obtain the mean value 
(A:) with respect to the time over the interval At=% 

(A:)= b 2 + f i 2 r  2/3rn2b2. (12) 

By means of the relation ( l l ) ,  we can represent the wave 
function (9) in the form 

where we have introduced the notation 

fit 
kA=ko+ - 

Z ~ Z ~ ~ A :  

As we see, the wave vector kA depends linearly on x' 
due to the dispersion of the de Broglie waves. 

We now consider the energy balance near the second 
collapse at t =  T. Before the collapse, the particle energy can 
be calculated by means of the wave functions (9) or (13). It 
is 
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Here the first term describes the kinetic energy of a packet 
moving with velocity uo=hkolnl, while the second corre- 
sponds to the "internal" energy of a packet at rest. We tind 
the energy immediately after the collapse. We assume that 
the collapse occurrecl near the point xo. It can be taken into 
account by an additional factor exp{-(x' - ~ ~ ) ~ / 2 b ~ }  of the 
wave function (13). We first tind the energy E(xo) of the 
collapsed state using the standard rules of qu'mtum mechan- 
ics: E(xo) = ($gH$o), where H is the Hamiltonian, and 
is given by the expression (13) with the additional factor 
expi-(x' - ~ ~ ) ~ / 2 b ~ } .  

To avoid complicating the calculations, it is convenient 
to consider the case b2<.A;, where A: is calculated in ac- 
cordance with (12) at t = ~ .  We then obtain 

Here the first two terms in the brackets correspond to the 
energy of the particle before the second collapse. 

If the collapse probabilities were distributed in accor- 
dance with the law Id2, i.e., as exp{-x2/A;}, then the energy 
(16) would be 

In other words, the second collapse would add an energy 
h2/4rnb2 equal to the "internal" energy before the collapse. 
However, such an increase in the energy cannot occur, since 
otherwise the collapses would monotonically increase the 
particle energy. In each elementary collision, the momentum 
is conserved simply by virtue of the matching of the phases 
of the colliding and scattered waves in the center-of-mass 
system of the particles. To conserve the energy on the aver- 
age, it must be assumed that the collapses deviate weakly 
from the law IrG(xo)12: The collapses must occur more fre- 
quently in the region xo=SO, i.e., in the part of the wave 
packet in which the local momentum is somewhat smaller. 

Suppose the mean value (x,) is nonzero and negative, 
while (xi) before the collapse is, as before, equal to Ai/2. We 
agree to call a= - (xo)/A, the asymmetry parameter, To en- 
sure that the energy conservation law is satisfied on the av- 
erage, a must be equal to 

In order of magnitude, a = \Ix, /h .  Just such an asym- 
metry of the collapse is necessary1 to explain the experi- 
ments of Sokolov et a1.2*3 

It must be emphasized once more that the collapses oc- 
cur through the disturbance of the intricately organized co- 
herent states. We have nominally said that the collapses oc- 

cur at times immediately after the scattering. However, in 
reality the scattering itself can be established only by con- 
tinuation into the past of the state that arose as a result of the 
collapse. There arises a kind of reverse correlation that need 
not end at the previous scattering and can extend over two or 
a few preceding scatterings. Thus, the collapses can be re- 
garded as processes that are extended in time and enhanced 
by the binary interactions of the particles. Therefore, the 
models of continuous and discrete collapsing are merely two 
limiting simplified approaches to the description of the real 
process. 

5. CONCLUSIONS 

In this paper, we have considered qualitatively the wave 
functions of atoms or molecules of a gas under conditions 
when their behavior does not differ strongly from classical 
behavior. By analogy with a classical gas, one may suppose 
that because of interaction of the gas with the walls, i.e., with 
the external environment, intricately organized coherent 
states cannot exist for long in it. The loss of coherence is 
similar to the collapse of wave functions during ordinary 
measurements in quantum systems. One can say that the bi- 
nary collisions of the molecules organize a constantly active 
mechanism of self-measurement. It appears that this process 
can be described rigorously but not easily. Therefore, we 
have used a qualitative approach based on a notion of the 
mechanism of collapse of wave functions under conditions 
when multiple scattering must create very intricately orga- 
nized coherent states. Such an approach shows that the wave 
functions of the molecules are transformed into wave packets 
whose size and shape are determined by the actual mecha- 
nism of the binary collisions. It appears that each wave 
packet is prevented from spreading by a mechanism of 
"squeezing" of the packet that takes place at the rate of the 
binary collisions. The collisions of such packets with one 
another can be described by standard quantum theory, and 
the resulting relaxation process is described by the Boltz- 
mann equation. Thus, with allowance for the collapsing of 
the wave functions the quantum description of gas kinetics 
does not differ that strongly from the classical description. 

The processes of irreversible evolution of complex quan- 
tum systems considered here are analogs of the classical cha- 
otic systems of Poincar6 discussed by Prigogine and 
~ e t r o v s k ~ ~ , ~  in the framework of a somewhat different math- 
ematical approach. 
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