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The problem of calculating the fluctuations in the particle number and anisotropy of the cosmic 
rays in the Galaxy in a model with randomly distributed sources is considered. It is 
shown that the distributions with respect to the particle number and the modulus of the flux are 
stable laws with exponents a=5/3 and a=5/4, respectively. The expression obtained for 
the anisotropy reproduces the available experimental data at energies E<10I6 eV if it is assumed 
that the energy dependence of the time of confinement of the particles in the Galaxy has an 
abrupt change of slope at E - 3  l0I5 eV. O 1995 American Institute of Physics. 

1. INTRODUCTION 

One of the central problems of the astrophysics of cos- 
mic rays is that of their origin. There are by now weighty 
arguments for assuming that cosmic rays with energy 
E< 1017 eV have a mainly galactic origin.' It is assumed that 
the most probable sources of cosmic rays that meet the en- 
ergy requirements are supernova explosions. 

To prove this and determine the spacetime distribution 
S(t,r) of the sources, it is necessary, strictly speaking, to 
solve an inverse problem-from the properties of the pri- 
mary cosmic rays observed on the Earth and other radio and 
gamma astronomical data to obtain information about the 
location of the sources and the duration of their active phase. 
However, information about the sources has been tradition- 
ally obtained by comparing the experimental data with the 
results of the solution of some direct problems obtained un- 
der different assumptions concerning S(t,r).' 

The dependence of the theoretical results on the distri- 
bution S(t,r) of the sources and the obvious impossibility of 
their complete determination, especially in the situation in 
which the observed cosmic rays have come from presently 
invisible ("dead") sources, lead to the problem of predicting 
the expected properties of the cosniic rays when information 
about the sources is not complete. In the calculations, one 
could, of course, use some particular source distribution, but 
the choice of one system of sources from the complete set of 
possible realizations cannot be sufficiently well grounded. As 
in Ref. 2, we see the way out of this difficulty in the intro- 
duction of a statistical ensemble of sources in which one 
considers the complete set of possible realizations of a sys- 
tem of sources with a probability defined on this set. In such 
a formulation of the problem, the experimental results are to 
be compared with the complete distribution of the theoretical 
results generated by the introduction of the ensemble of 
sources. This means that to predict the expected properties of 
the cosmic rays observed near the Earth and solve the prob- 
lem of the sources of the cosmic rays a statistical approach 
must be used. 

A statistical approach in the problem of estimating the 
properties of cosmic rays has been considered in several 
studies.'-6 The most detailed exposition of this approach is 
given in Ref. 6, which develops and generalizes previous 

investigations in this field. In Ref. 6, the statistical character- 
istics of the investigated quantities (the particle number den- 
sity, flux, etc.) are expressed in terms of a Green's function 
that describes the propagation of particles from a discrete 
monoenergetic galactic source, and a formal expression is 
given for the probability density of the particle density N of 
the primary cosmic rays at a given point of space. Analysis 
of the asymptotic behavior of the distribution at a high den- 
sity N established an appreciable asymmetry of the distribu- 
tion and divergence of the dispersion (variance). The diver- 
gence of the dispersion is discussed in Ref. 6, and it is noted 
that in the case of uniformly and randomly distributed dis- 
crete sources the dispersion cannot be a good measure of the 
possible fluctuations of the cosmic rays near the Earth. 

However, Lee did not solve the problem of estimating 
the fluctuations of the cosmic rays. In the estimates made in 
Ref. 6, and then in Ref. I, a cutoff parameter r0 was intro- 
duced to eliminate the divergence. This parameter has the 
meaning of a time and excludes from consideration very 
young and close sources. To obtain agreement with the ex- 
perimental data in the estimates of the fluctuations and of the 
anisotropy, it is necessary to choose different values of 70. 

In our view, the introduction of the cutoff parameter r0 is 
not physically justified. The reason for the divergence that 
arises is the special form of the distributions that are implic- 
itly used in the problem and for which there is no finite 
second moment. In the case of such distributions, the vari- 
ance is not a measure of the fluctuations, as is correctly noted 
in Ref. 6. To estimate the fluctuations, it is necessary to use a 
certain characteristic width of the distribution, and this re- 
quires knowledge of the distribution. 

The aim of this paper is to develop a method of calcu- 
lation of the distributions with respect to the particle number 
and the modulus of the flux and to estimate the fluctuations 
and anisotropy of the cosmic rays in a model with randomly 
distributed galactic sources. 

2. MOMENTS OF PARTICLE NUMBER AND FLUX MODULUS 
DISTRIBUTIONS 

Suppose cosmic rays are generated at random instants of 
time by point sources distributed randomly in the volume V ,  
of the Galaxy. We shall denote the finite region with volume 
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V ,  X T in the four-dimensional spacetime R% R by U. The 
source situated at point ri emits N i  particles at the time t i .  
For simplicity, we shall assume that all the sources have the 
same power, i.e., N i = N o .  It is convenient to describe the 
propagation of the particles in the interstellar medium by the 
Green's function G ( t , r ; t i  , r , ) ,  which gives the contribution to 
the particle number at the point of observation y = ( t , r )  from 
a particle generated in the source with coordinates x i = ( t i  , r i ) .  
The total concentration N R ( t , r )  of particles at the observation 
point produced by the radiation of all sources in the volume 
V ,  is given by 

We make the following assumptions concerning the sys- 
tem of sources. 

1) The system of sources is a Poisson ensemble: i.e., it 
possesses the following properties: 

a) the numbers of sources n ,  and n2 in the regions U ,  
and U 2 ,  respectively, are independent random variables; 

b) the probability P ( n =  k )  for any k>O depends on k 
and the volume u of the region U  but not on its shape; 

c) for small values of the volume u ,  

where q is a constant that gives the mean density of the 
sources in the region U .  

If these properties hold, the distribution of n satisfies 
Poisson's law with parameter A=qu: 

d) the distribution of the positions of the source in U  is 
uniform, i.e., the distribution density is *= l lu .  

2. For any region U  of finite volume, the number n of 
sources in U and their positions x , ,  x2  ,... are independent 
random variables. 

Traditionally, the fluctuations of the cosmic rays associ- 
ated with the random nature of the sources are calculated by 
means of the moments of the corresponding distributions. 

The mean particle concentration at the point ( t , r )  can be 
calculated in accordance with the expression 

where n is the mean number of sources in the Galaxy. 
In the case of a Poisson ensemble, the expression for the 

dispersion of the particle concentration at the point of obser- 
vation has the form 

In the case of diffuse motion, the particle flux is 

The mean flux and its dispersion are, respectively, 

We shall consider the propagation of the cosmic rays in 
the Galaxy in the framework of the diffusion approximation. 
We shall assume that there are no fluctuations during the 
passage of the particles from the source to the point of ob- 
servation. The concentration of the cosmic rays at a given 
point y will be a random variable due to the random nature 
of the sources. We write the equation that describes this pro- 
cess in the form1 

where the term l?N describes approximately the loss of par- 
ticles due to their escape from the Galaxy. 

The equation for the Green's function that corresponds 
to (6) has the form 

from which we readily obtain 

where 

(51, 
the 

Using the Green's function ( 7 )  and the expressions ( 2 ) -  
, we can find the fluctuations in the particle number and 
anisotropy of the cosmic rays. Since the mean number of 

sources in the Galaxy is n = q V R T ,  where q is the frequency 
of occurrence of a source in unit volume in unit time, in the 
limit V,+m, T 4 w  
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Because the integrals in (8) and (9) diverge, estimates are 
obtained by introducing a cutoff parameter T ~ ( I ' T ~ G  1); this is 
a time and excludes very young sources froni consideration. 
In this case, 

Then for the relative fluctuations of the concentration and of 
the anisotropy, we obtain 

We estimate the fluctuation of the particle number and 
the anisotropy for values of the parameters of the Galaxy 
typical of a model with a large halo (Ref. 1): q = 3 .  
~ m - ~ - s - ' ,  corresponding to the explosion of one supernova 
every 30 yr in the complete Galaxy, I'-'= lo8 yr, D=5.102* 
cm2.s-'. 

An estimate of r0 made under the assumption that almost 
the entire concentration of cosmic rays at the Earth is deter- 
mined by a single nearby source that exploded at the time 
t-r0 gives rO-lo4 yr. In this case, the fluctuations of the 
concentration are of order 1% and the anisotropy is 
Sj-O.l%, exceeding the required value by an order of 
magnitude.' To obtain an anisotropy +0.01% correspond- 
ing to the given values of r and D, it is necessary to set 
row 10' yr. 

We assume that the reason for the divergence that has 
arisen is the special form of the employed distributions, 
which do not have a finite second moment. In the case of 
such distributions, the dispersion is not a measure of the 
fluctuations. To estimate the fluctuations, it is necessary to 
use a certain characteristic width of the distribution, and this 
requires knowledge of the distribution. 

3. DISTRIBUTION WITH RESPECT TO THE PARTICLE 
NUMBER 

To find the distribution with respect to the particle num- 
ber, we calculate the characteristic function f R ( t )  of the ran- 
dom variable (1) on the basis of assumptions la) and lb) 
about the distribution of the sources. It can be seen froni the 
expression (I) that N R ( y )  is a sum of the random nuniber ri 
of identically distributed random variables N,= N ( y , x j )  that 
are independent of n and each other. If u,(t) is the charac- 
teristic function of each random variable N i ,  we can write 
the characteristic function f R ( t )  in the form 

where u R =  V R T .  The actual form of the particle number dis- 
tribution density is determined by the form of the Green's 
function. We calculate it for the case when the propagation of 
the cosmic rays is described by Eq. (6).  

We transform the expression in the exponential of the 
last equation: 

Then for the function In f , ( t )  we obtain 

Since the distribution in which we are interested has a finite 
mean value, this last expression can be written in the form 

or, going over to N =  N - ( N ) ,  

By the concentration of particles N(t,r) produced by the 
complete system of sources, we shall understand the limit 

lim N R  . To elucidate the conditions of existence of such 
VR ,T+m 

a limit, it is sufficient to consider the limiting value as 
VR+m,  T+m of the characteristic function of the quantity 
N R ( y ) .  It is shown in Ref. 7 that under the conditions that 
hold in our problem a limit distribution exists, by virtue of 
which (10) can be written in the form 

We note that this result is a special case of the result of the 
model of point influence sources proposed in Ref. 7. It is 
shown there that the integral (11) can be transformed to 

where v = { N ( x ) : x ~  I/}, and 

d x .  

An analytic calculation of the integral (12) can be made 
only for a definite form of the function N ( y , x )  (in the terms 
of Ref. 7, the function N  should be called the "influence 
function"). Our obtained expression 
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has a form that does not permit analytic calculation of (12). 
The expression (14) differs from the form required in Ref. 7 
by the factor exp(- l '(t - t')). If this factor is ignored, then 
the integral (13) takes the form of the integral of Ref. 8 and 
can be calculated analytically: 

where 

Hence 

and as a result we obtain for the characteristic function j(t) 

In accordance with Ref. 7, the obtained distribution be- 
longs to the class of stable laws with parameters 

The distribution of the original random variable N dif- 
fers from I? only by the value of the parameter y, which is a 
mathematical expectation and equal to ( N ) .  

The small extra con~plexity of the form of the function N 
associated with the presence of the factor exp[-I'(t- t ' )]  
deprives us of the possibility of finding the characteristic 
function of the distribution analytically. Therefore, to find the 
characteristic function, we have used the numerical method. 
After the exponent n of the stable law and the factor k have 
been found, the remaining parameters of the distribution can 
be calculated analytically. 

To test the program, we used the previously solved prob- 
lem of temperature bursts in a nuclear ~ e a c t o r . ~  As a result of 
the test, it was established that the parameter a can be cal- 
culated with an error less than 1%. 

The calculation for the function (14) showed that for the 
values of I' and D that we employed the value of the param- 
eter tu hardly differs from 513, while k=0.0147. 

4. DISTRIBUTION WITH RESPECT TO THE FLUX MODULUS 

One can similarly obtain an expression for the character- 
istic function of the distribution with respect to the modulus 
of the particle flux in the Galaxy. In accordance with (12), 
this characteristic function has the form 

where 

The form of this function is appreciably more compli- 
cated than the form (14), and the calculations needed to find 
the characteristic function cannot be done analytically even 
if the factor exp[-r(t - t ' )]  is ignored. By virtue of this, the 
parameter a was found numerically. According to the results 
of the calculations, the parameter a of the stable distribution 
for the flux modulus was taken equal to (1.25), since this 
number is the simple rational fraction 514. The choice of this 
number can also be justified by dimensional arguments. 

The remaining parameters of the stable law can be found 
analytically. The values that we obtained are 

5. FLUCTUATIONS OF THE PARTICLE NUMBER AND 
ANISOTROPY OF COSMIC RAYS IN THE GALAXY 

Figure I shows the densities of the distributions with 
respect to the particle number and the flux modulus for the 
values of the parameters of the stable laws given above and a 
special choice of N o  convenient for estimating the fluctua- 
tions of the particle number and the anisotropy. We obtained 
these distributions from standard stable distributions. Since 
for these distributions there are no second moments, to make 
the estimates we use a certain characteristic width of the 
distributions. For example, as such width we choose the in- 
terval of values that corresponds to the confidence level 
68%. 

The width of the distribution for the concentration will 
be 

A N K k  I / ~ q 3 1 5 ~ - 3 / 5 ~  
0 .  

and 

Defining the fluctuations of the concentration and the anisot- 
ropy as follows: 

we find 
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For example, for D =5. cm2.s-I, which corresponds 
to the range of energies 10~-10~O eV, rP1= lo8 yr, we obtain 
SN-I%, Sj-0.01%. These values agree well with the esti- 
mates of Refs. 1, 9, and 10. 

We note that our solution to the problem of the fluctua- 
tions of the particle number and the anisotropy of the cosmic 
rays, which belongs to the class of stable laws, confirms at 
the rigorous mathematical level the point of view expressed 
in Ref. 1 ,  namely, that the decisive causes of the fluctuations 
are the nearby sources. This follows from one of the proper- 
ties of the stable laws, in accordance with which the distri- 
bution of the investigated quantity in the case of a Poisson 
ensemble of sources is determined by the contribution of the 
sources in the immediate vicinity of the considered point 
(see, for example, Refs. 11- 13). 

We have solved the problem for monoenergetic sources. 
In view of the fact that the energy losses of the particles as 
they pass through the Galaxy are small for E <  loL7 eV, the 
particles do not go over from one energy interval to another, 
and the form of Eq. (6) will be the same for all energies. 
Therefore, we can go over from monoenergetic sources to 
sources with continuous spectrum and estimate the depen- 
dence of the anisotropy on the energy. For each energy in- 
terval, we shall obtain relations that are identical to (18) with 
corresponding values of D and I., i.e., the dependence of the 
anisotropy on the energy will have the form 

Similarly, the expression (17) can be rewritten in the 
form 

According to the currently available data, D x E B ,  
P-0.2-0.7 (Ref. 1) and R E Y ,  y-P (Refs. I and 14). For 
these values of p and y, the nature of the variation of the 
anisotropy with increasing E is determined by the value of I'. 
If it is assumed that y varies from -0.15 at E-101° eV to 
-0.54 at E- 10" eV, then our obtained expression (19) de- 
scribes the existing experimental data'.9x14 on the anisotropy 
(see Fig. 2). Figure 2 shows our estimates of the time of 
confinement of the cosmic rays in the Galaxy. The obtained 
energy dependence of this time makes it possible to explain 
the behavior of the cosmic ray spectrum. Indeed, because 

FIG. 1 .  a) Particle number distribution den- 
sity; b) flux nlodulus distribution density. 

(N)= q N o r -  ~ i j c c E - Y s o u ~ e E - ~ ( ~ ) = E - ~ s o ~ ~ ~ e - ~ ( ~ ) ,  

an abrupt change in the dependence of the time of confine- 
ment (i.e., of y) on the energy leads to a change in the ex- 
ponent of the cosmic rays (ysOu,,+ y). According to Refs. 1 
and 15, the exponent of the cosmic ray spectrum changes at 
E-3.10" eV from 1.7 to 2.1, in good agreement with the 
value we obtained for y .  

Thus, the abrupt change in the cosmic ray spectrum ob- 
served at E-3.10'' eV can be explained by the abrupt 
change in the dependence of the time of confinement of the 
particles in the Galaxy on the energy. The presence of the 
abrupt change in the time of confinement at E- 10" eV was 
also indicated by solution of a nonlinear kinetic equation for 
the propagation of cosmic rays.16 

6. CONCLUSIONS 

In this paper, we have considered the problem of calcu- 
lating the fluctuations and anisotropy of the cosmic rays in a 
model with randomly distributed sources. The calculations 
have shown the following. 

1. The distributions with respect to the particle number 
and the modulus of the flux are stable distributions with ex- 
ponents 513 and 514, respectively, and this confirms the view 

FIG. 2. Anisotropy and t in~c  of confinement o f  cosmic rays in the Galaxy; 
the points are experimental data on the anisotropy,'~"" and the solid con- 
tinuous lines are our estimates o f  the time o f  confinement o f  cosmic rays in 
the Galaxy. 
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that the nearby sources make the decisive contribution to the 
fluctuations of the particle number and to the anisotropy of 
the cosnlic rays. 

2. For the fluctuations of the particle number and the 
anisotropy in a model with large halo with parameters 
1'-'= lo8 yr, D = 5 .  lo2' cm2.sp', = 3 .  c ~ - ~ . s - ' ,  we 
have obtained as a result of our calculations the values 
SN-I % and Sj-0.01%, which do not contradict the esti- 
mates of Refs. I, 9, and 10. 

3. The relative fluctuations of the particle number and 
the anisotropy depend on the parameters of the problem as 
follows: S N N D - ~ ' ~ ~  and 8jaD'"I'. The obtained depen- 
dence of the anisotropy on the energy makes it possible to 
explain the experimental data under the condition that 
r ( E ) x E Y ,  where the exponent y changes from -0.15 to 
-0.54 in the considered range of energies. 

4. The abrupt change observed in the cosmic ray spec- 
trum at E-3.10" eV can be attributed to an abrupt change 
in the energy dependence of the time of confinement of par- 
ticles in the Galaxy. 
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