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We consider the problem of the order parameter of simple metallic glasses. On the basis of the 
con.espondence between the geometric approach and general elasticity theory, we show 
that the structure of a metallic glass can be characterized by a set of tensor fields describing a 
medium with continuously distributed linear defects (disclinations). Phase transitions are 
characterized by a change in the structure of the disclination density tensor aij that either preserve 
the overall structure of the deformation tensor e i j  or alter it. O 1995 American Institute of 
Physics. 

One characteristic feature of the structure of simple me- 
tallic glasses is the icosahedral ordering of nearest 
neighbors.' The incompatibility of the local icosahedral sym- 
metry and global Euclidean geometry is compensated by a 
gauge field whose sources can be identified with disclina- 
tions. In contemporary theories of disclinations 
result from a transition from a three-dimensional sphere s3 ,  
where ideal icosahedral packing is possible for a radius 
R== 1 . 6 ~  (a is the radius of the.rigid spheres forming the 
local icosahedral ordering)? to a Euclidean space. However, 
these disclinations were not treated as disclinations in gen- 
eral elasticity theory, notwithstanding the fact that the imbed- 
ding of s3 in R~ must be accompanied by cuts in the me- 
dium, a shift of the borders of the cuts, and addition or 
removal of matter, i.e., by processes that create Somilian 
dislocations (special cases are the usual edge and screw dis- 
locations and disclinations). 

In the present paper, we treat a metallic glass as a con- 
tinuum with continuously distributed linear topological de- 
fects. We then assume that the ideal, i.e., defect-free un- 
stressed, state of the medium is realized in a physically 
unobservable non-Euclidean space (specifically in s3). In the 
linear theory, this assumption also removes the well-known 
divergence of the energy density of an isolated disclination. 
In the general elasticity theory, such a medium is described 
by a set of tensor f ie~ds.~ These fields admit a description in 
geometric terms, defining the so-called "internal" geometry.6 
We ascertain the overall correspondence of this description 
based on the following considerations. The correspondence 
of the procedure for measuring distances yields a relation- 
ship between the metric tensor g i j  and the deformation tensor 

eij 

where cikl is the completely antisymmetric pseudotensor and 
~ ~ 2 3 ~  1. Similar considerations relate the Einstein tensor Ri j  
to the disclination density tensor a i j ,  

R . . = - a . .  
11 11 ' 

Here 

R . . = ' & .  &.  R 
r j  4 jmn rkl mnkl 9 (4) 

and the curvature tensor Rmnkl is defined in the standard way 

R . .  = 2 ( d . r .  - g  r .  r .  ) .. rjkl r jkl mn rln jkm [ r j ]  9 (5)  

with d i=d ldx i .  The coordinates xi are considered to be the 
coordinates of a point in a local orthonormalized basis in the 
original (Eulerian) reference system (see below). 

In the most general form, the connection takes the form 

r . .  r jk  = g .  rjk + t i j k ,  

where 

t i j k =  r [ i j ] k f  r [ k i ] j - r [ j k l i  . 
Equations (1) and ( 2 )  enable us to express rijk in terms of 
the fields e i j  and a i j .  In the general theory of defects, the 
tensor aij can be expressed both as a curl and as the so- 
called curvature-torsion tensor K~~ (Ref. 5), 

which can be expressed in terms of the connection: 

~ . . = l - & .  r j  2 jk l  r .  r k l ?  ri[jk]=EnjkKin. (8) 

We show that the correspondences introduced in this way 
yield the correct basic field equations for e i j  , a i j ,  a i j ,  and 
K~~ . From Eqs. ( 2 )  and (8), we have 

(Y. - - E .  8 e . + K . . - S . . K  
r j -  rkl k l j  j i  r j  kk. 

Here 4 j  is the Kronecker symbol. The procedure for con- From this relation we immediately obtain the continuity 

structing a Burgers contour around a dislocation is analogous equation for the dislocations: 

to the emergence of geometric meaning in the Cartan torsion dl (Y~k+~l ,qk8i )P4=0.  (10) 
tensor Ti jk=21'I i j lk  where t ' i jk=g, lkr:!j  is the aftine connec- 

The continuity equation for the disclinations follows at once 
tion, and lndices in square (round) brackets mean that one 
must take the antisymmetric (symmetric) part. We can thus from Eq. (7): 

relate the torsion to the dislocation density tensor, d i a i j = O .  (1 1) 

The symmetric part of Eq. (5) yields, in the linear field ap- 
I ' l i i l k =  - f C : ~ ~ , , L Y , , ~ ,  I - F .  1 k 1  I' k l i  7 ( 2 )  proximation, 
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where Ink(eij)=e jtlldmd,rekl= vij= qi defines the in- 
compatibility tensor well known in elasticity theory. The an- 
tisymmetric part of Eq. ( 9 ,  on the other hand, again yields 
Eq. (10). 

Equations (9)-(12) are the same as those obtained in the 
general elasticity theory. Therefore, Eqs. (1)-(3), (7), and (8) 
describe, in geometrical language, dislocations as defects 
that do not contribute to the Frank vector Ri , and disclina- 
tions as defects that do not give a constant contribution to the 
Burgers vector B : 

Here, the integration in the first integrals is over a closed 
contour, and that in the second integrals over the surface that 
caps that contour. 

The ground state of the glass should be obtainable by 
minimizing the free energy, expressed as a function of the 
fields eij , aij , a i j ,  and K ~ ~ ,  taking (7) and (9) into account. 
The construction of the total free energy is a separate prob- 
lem not considered in the present paper. The ground state can 
be obtained from the following geometric considerations. We 
assume that the ground state is realized in a space that is 
tangent at some point in the space of the ideal state. The 
internal geometry of the ground state then yields the corre- 
spondence between distance differentials in the ground state 
(metric gij) and the ideal state (metric gjj)), as well as the 
relationship between the local bases (connections rijk) of the 
tangent spaces constructed at different points of the ideal 
state space. Starting with this correspondence, it is reason- 
able to assume that the ground state of a glass is realized 
when the characteristics of the internal geometry are the 
same as those of the ideal state geometry in the local ortho- 
normal Eulerian coordinate system constructed at the chosen 
point (chosen for the construction of the tangent space of the 
observed state) of the ideal state space. To realize the latter in 
s3, we have in the first approximation to the deviation from 
Euclidean behavior, which corresponds to the linear approxi- 
mation in the fields and 1x1 <R,  

Since the connection 17fiil=0 in s3, and hence there are no 
dislocations in the ground state of the glass (aii=O), we ob- 
tain 

which, if we note that in a medium with icosahedral short- 
range order, the modulus of the Frank vector of a single 
disclination w=2d5,  yields an estimate of the mean distance 
between clisclinations: 

where d is the mean interatomic distance. Hence, it follows 
that the disclinations are the basic structural elements of the 
glass, and the disclination density tensor can be considered 
to be a "microscopic" parameter, i.e., can be determined in 
an elementary cell. We note also that condition (15) makes 
the energy of elastic deformations of the glass, which is pro- 
portional to the square of the elastic deformation tensor 
u .  11 .= (gij-gjj))/2, equal to zero, as required for the ground 
state, and the realization of the ideal state in s3 solves the 
problem of the elastic energy of a disclination. 

A metallic glass can thus be described by the deforma- 
tion tensor eij , which is inhomogeneous on scales --R, and 
which determines the isotropic incompatibility tensor 77 i j  

and, accordingly, the isotropic disclination density tensor 
aij. The existence of linear defects in the ground state makes 
it impossible to establish a relationship between the global 
Cartesian system of coordinates of the final observed state 
(Lagrangian system) and the local coordinate system of the 
initial state (local Eulerian system), so that a description of 
the glass structure in the Lagrangian system is only possible 
in the language of tensor fields. The existence of linear de- 
fects is manifested at the local atomic level. In particular, the 
existence of disclinations shows up in the deviation of the 
coordination number Z from Z= 12. Frank and Kasper have 
shown7 that in media with icosahedral short-range order, 
only coordination numbers Z= 12, 14, 15, and 16 are pos- 
sible. 

The isotropic nature of the tensor aij shows that a me- 
tallic glass can be characterized by a disordered grid of dis- 
clinations subject to the one requirement that the Frank vec- 
tor be conserved at points where the disclination lines 
intersect. Hence, it is clear that formally, transitions are pos- 
sible to states in which disclination lines are ordered in some 
way or other. If the disclinations form a structure with trans- 
lational symmetry, one obtains the well known Frank- 
Kasper When dodecahedra1 ordering (with domi- 
nant coordination numbers Z =  12 and 16) of the disclinations 
is energetically favorable, one obtains a typical quasicrystal 
structure. Such transitions are characterized by nonvanishing 
components of the tensor Oij = 6ij-(1/3)Tr(6ij) Sij , with the 
general structure of the eij  tensor being retained. The glass- 
liquid transition should be characterized by a change in the 
structure of the eij tensor. 

The author thanks V. A. Borodin for many fruitful dis- 
cussions. 
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