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The process of surfatron acceleration of electrons trapped by a potential wave moving 
transversely to a uniform magnetic field is investigated. Two feasible versions of the problem are 
analyzed. In one an electron beam is injected in the direction of motion of the wave, and in 
the other the electrons are trapped in a longitudinal wave in a plasma during its creation. Solutions 
of the relativistic equations of motion of the particles are found analytically using a simple 
model of the spatial structure of the fields. The conditions for the trapping of electrons in the wave 
are determined. The influence of the intrinsic space charge and radiation of the electrons on 
their acceleration is considered, and the damping of the wave as a consequence of the energy it 
loses to accelerate the particles is evaluated. O 1995 American Institute of Physics. 

1. When particles are accelerated by powerful electro- 
magnetic waves, the presence of synchronism between the 
wave and the particles takes on great importance,' and one of 
the possibilities for sustaining such synchronism is based on 
preventing the particles from outrunning the wave by de- 
flecting them along the front using a constant magnetic field. 
A machine based on this concept is called a ~urfatron.~ 

Actually, the mechanism of particle acceleration operat- 
ing in a surfatron was first considered by sagdeev3 in con- 
nection with an analysis of the motion of ions in a magneto- 
sonic shock-wave front. The energy of the accelerated ions 
obtained for the parameters of the shock wave considered in 
Ref. 3 is limited, and this is attributed to the fact that the 
amplitude of the electric field Eo in the wave front is smaller 
than the amplitude of the magnetic field Bo.  If the condition 
Eo>Bo is satisfied in a potential wave moving transversely 
to a magnetic field, arbitrarily large energies can be obtained, 
in principle, as a consequence of the temporally unlimited 
("perpetual") acceleration of the particles in the wave. Just 
this occurs in a surfatron. 

It has been reported274 that a particle acquires energy 
during surfatron acceleration in an electric field, which is 
stronger, the greater is the amplitude of the electric field of 
the wave; therefore, there have been various practical pro- 
posals for realizing the idea of the surfatron acceleration of 
particles to high energies within a short time, generally by 
using powerful potential waves traveling transversely to a 
constant magnetic field. They are based on either a longitu- 
dinal plasma wave excited by a laser or an electron 
an isomagnetic discontinuity formed at high Mach numbers 
in a perpendicular magnetosonic shock wave: or accelera- 
tion of an electron beam in a vacuum by an electromagnetic 
wave (a TM mode).8 Although, as was noted in Ref. 8, the 
last case has some advantage over an ordinary linear accel- 
erator, it is impossible to obtain large fields, since the ampli- 
tude of the electric field in the wave, as in a linear accelera- 
tor, is restricted by breakdown on the waveguide walls 

electrons, viz., a wave in a plasma, in which the electric field 
can reach values of - 101° Vlm or more. 

2. Let us analyze the surfatron acceleration of electrons 
in detail using a simple model. A uniform magnetic field with 
a given magnitude Bo points in the negative z direction. We 
consider a one-dimensional wave traveling strictly trans- 
versely to the magnetic field in the negative x direction. All 
the characteristics of this wave depend on the position and 
the time in the expression kox- o f ,  where ko is the wave 
number, w is the frequency, and the electric field has a saw- 
tooth form (see Fig. 1). A saw-tooth electric field was chosen 
for two reasons. First, a field with a nearly saw-tooth pattern 
was obtained in the calculations in Refs. 5 and 6, and, sec- 
ond, as will be seen below, such a choice somewhat simpli- 
fies the problem, making it possible to obtain an analytical 
solution for the equations of motion of electrons trapped in 
the wave. In addition, the properties of a saw-tooth field are 
similar to those of a traditional sinusoidal field. 

For the steady-state wave under consideration, it is con- 
venient to analyze the motion of particles in the wave refer- 
ence frame. We assume that the velocity of the wave in the 
laboratory reference frame u = wlko does not exceed the ve- 
locity of light c ,  and we introduce the characteristic multi- 
plier for the transformation to the wave reference frame in 
the form yf  = 1/Jm, where p= ulc .  In the wave refer- 
ence frame the components of the electromagnetic fields do 
not depend on the time and take the forms 
B,= - yfBo= - B and E,= - yfpBo= - PB (the amplitude 
of the x component of the electric field does not vary, and the 
remaining components are equal to zero). The transformation 
formula for the wave vector is k= kol  y f .  Thus, according to 
our assumptions, in the wave reference frame the compo- 
nents of the fields E ,  and B ,  are spatially uniform, the x 
component of the electric field and the potential depend only 
on x ,  and in the range - d<x<d which interests us, these 
functions have the form (see Fig. 1) 

(E,,,,- 10' V/m). At the present time, there is apparently only 
one possibility for obtaining large fields for the purpose of 
practically realizing the idea of the surfatron acceleration of E(x)=EAxld,  cp(x)=cp,,( I - x 2 / r 1 2 ) ,  
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FIG. 1 .  Schematic drawing of the distribution of the fields in a wave. 

where d = .rr/2k, and EA and r p A  = EAd/2 are the amplitudes 
of the electric field and the potential, respectively. The trans- 
formation formulas yield 

EA'Eo, (P~=Yfrpo, 

where Eo and qo are the amplitudes of the electric field and 
the potential in the laboratory reference frame. 

Let a small group of electrons be injected initially at 
t=O at the bottom of the potential well of the wave, where 
x=O, E ( 0 )  = 0 ,  and ( ~ ( 0 )  = rpA. Such a formulation of the 
problem is justified for an electron beam injected with a ve- 
locity close to the wave velocity in the direction of its motion 
and at a definite phase (a case similar to that described in 
Ref. 8). We are interested only in the electrons whose motion 
is confined to the interval - d G x G d .  The justification for 
this restriction will be made clear below. We consider the 
behavior of electrons trapped in this manner in the wave 
reference frame, which will move in the xy plane in the 
prescribed electromagnetic fields under the assumptions 
adopted in accordance with the equations of motion 

where V ,  , P,= ym V ,  , V ,  , and P ,  = ym V ,  are, respec- 
tively, the x and y components of the velocity and the mo- 
mentum, e and m are the electron rest charge and mass, and 
y ( t )  = I /  J 1 -  v2 /c2  - v ; / c 2 .  With no loss of generality, we 
assume that V,= dz ld t  = 0 and P , =  0. We introduce the di- 
mensionless variables: 

where ws= eBlmc is the nonrelativistic cyclotron frequency. 
The equations of motion written in these variations have the 
form 

Here and below the following notation is used for the dimen- 
sionless parameters: 

The potential energy of an electron is assumed to equal zero 
when x=O: 

therefore, 

where xd= 2$hA / R =   RID^ (we recall that -xd s x s xd). 
Equation 2 can be integrated once to obtain 

Relation 3 takes into account the initial conditions adopted: 

from which it follows that we restrict ourselves to consider- 
ation of the behavior of electrons found initially at the bot- 
tom of the well. 

Using 3, we can write the y component of the dimen- 
sionless velocity and the total energy of an electron, respec- 
tively, as 

where ~ " ( 7 )  = 11 Jxf, and the conservation law of the 
total energy under the assigned initial conditions has the 
form 

where yo= lid-:. Since we assume that the en- 
semble of initially trapped electrons is nonrelativistic, we 
take yo= 1. The equations obtained above completely de- 
scribe the behavior of the trapped electrons at all times. 

The solution of the equations of motion will be sought 
separately in two limiting cases, i,bA4 1 and I,bAP 1. 

3. We first seek solutions for i,bA4 1. In this case, setting 
R 2 1 ,  we obtain a large value for D :  

D = R / & % I .  

The well is narrow here: 

In the nonrelativistic stage ( P r  G I, y 2 I ) the equations 
of motion have analytical solutions: 

Uo-Uilo w , ( l -  cos IR7) 
x(T)= 7 sin 127+ I R 2  + ui107, 
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-(vo-vl]O)(I - cos flr)/f12, 

where f l  = J-=D and u , ]~=  plf12. The energy conser- 
vation law has the form 

( D 2 ~ -  w ) ~ / ~ ~ ~ + ( u - v ~ ~ ) ~ =  w ~ I ~ ~ ~ + ( u ~ - u ~ ~ ) ~ .  (8) 

It follows from the solutions (7) that for D+ 1 an electron 
trapped in the well performs a large number of oscillations 
during a time T S 1, the amplitude of the oscillations remain- 
ing constant. The absolute value of the velocity component v 
does not vary, and the velocity component w increases as 
PT with time. The motion of the particles takes the form of 
drift along the x axis with a velocity vdo and continuous 
acceleration along the y axis, on which oscillations with a 
frequency f l  are superimposed. In particular, we note that 
the electrons having the velocity vo=vdo and wo=O at 
T=O and x = 0  subsequently move toward the wave (along 
the x axis) with a strictly constant velocity vdO, while all the 
other particles also move with the same velocity, but only on 
the average (the averaging is over the oscillation period). We 
also note that the value of the drift velocity vd0 can be ob- 
tained from Eq. (1) by setting the right-hand side equal to 
zero. 

As we shall show below, the conditions for prolonged 
retention of the particles initially trapped in the well are 
strongly dependent on the value of R: for R< 1 all the par- 
ticles leave the well after a certain time; for R 2 1  a very 
small part is retained; and for R S  l almost all the particles 
are retained. However, it is not convenient to choose an ex- 
cessively large value of R, since the accelerating field in the 
surfatron for an assigned value of Eo would then decrease. In 
fact, during surfatron acceleration, a particle acquires energy 
in the electric field E, = P yfBo= PE0 IR; therefore, when 
Eo is given, to obtain large values of E, the value of R must 
be close to unity, and the velocity of the wave must be close 
to the velocity of light. The condition P-t 1 is possible, if the 
particles are trapped in the wave during its creation, as, for 
example, in the case of excitation of a wave in a plasma by a 
laser or a However, if the particles are injected into 
the wave, as was done in Ref. 8, we must restrict ourselves to 
yf< 10 and P= 1 (these values correspond to an energy of 
the injected electrons S 10 MeV). 

Thus, we take R> I, at which a certain fraction of the 
particles is still retained in the region IXI<Xd, and, conse- 
quently, we shall not consider the large values of R needed to 
retain particles outside this region. The conditions for retain- 
ing a particle in the spatial region 1x1 <x,, can be determined 
from Eq. (8). An electron which performs more than one 
oscillation in the well drifts to the right (see Fig. l), and all 
the particles departing from this region detrap and move to- 
ward the wave. This means that all the electrons leaving the 
trap impart energy to the wave. The coordinates of the turn- 
ing points of an oscillating electron are denoted by 
x+(T) = * X ~ + ~ ( T ) ,  where p ( ~ )  is the clisplacement of the 
particle as a consequence of drift and x,, which is the am- 

plitude of the oscillations of the particle in the well in the 
absence of a magnetic field, is found from the relation 

Thus, xo= VOID. Substituting the coordinates of the turning 
points into (8) and setting X f ( ~ + ) = x d ,  P T + = ~ ,  and 
w o e  1, we obtain the condition for trapping electrons in the 
nonrelativistic state in the desired region: 

Similarly, it can be shown that the condition for trapping of 
particles in the well, i.e., in the range - 2d S x S 2d, has the 
form 

Hence it follows that particles initially trapped in the interval 
1x1 <xd will be retained in the well for R S  2 and that when 
the optimal values of R are slightly greater than unity and 
with initial velocity spread Avo- m, almost all the elec- 
trons initially trapped in the well will leave it. As the numeri- 
cal calculations show, for values of R very close to unity, 
only particles with initial velocity components wo=O and 
O <  vo< 2vd will remain in the group of "perpetually" accel- 
erated electrons. 

We move on to a search for solutions of Eqs. (1)-(2) in 
the relativistic stage (fir% 1). We first find the conditions for 
departure of the particles from the well. Using (6), we obtain 

where y' = Y(r?),  and 7' denotes the times when an elec- 
tron reaches the turning points with the coordinates x!. 
Now setting yZpy =pya+ Pr-x and w= 1, we obtain the 
trapping condition exactly in the form (9). Thus, the condi- 
tion for departure from the well remains unchanged; there- 
fore, out of the total group of particles leaving the well after 
an infinite time, the vast majority leave the well in the non- 
relativistic stage. 

Next, taking into account that the absolute values of the 
velocity component v do not vary in the nonrelativistic stage, 
i.e., remain the same as at the onset, assuming v 4  l when 
PT% 1 holds, and setting y,= I, from Eqs. (3)-(5) we obtain 
the following solutions: 

Assuming that the character of the solutions of Eqs. (1)- 
(2) remains unchanged in the relativistic stage, we seek the 
solution for the remaining unknown ~ ( 7 )  from Eq. (1) in the 
form of a sum of two terms: X ( T ) = X ~ ( T ) +  [(T), where 
xo is the coordinate of the point of equilibrium between the 
forces acting along the ,y axis, which moves with the drift 
velocity vll(r) = rlx,, l c l ~ ,  and [(T) is the oscillating part of 
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the solution. Equating the right-hand side of Eq. (1) to zero, 
we obtain an expression for the coordinate of the point of 
local equilibrium in the zeroth approximation in the form 
X ~ ( T )  = / ? T / I R ~  y ( ~ ) .  Therefore, the drift velocity is 
U J T )  = p l I R 2 g ( ~ ) .  Restricting ourselves to this approxima- 
tion, we obtain the solutions for x , (T)  and V , ~ ( T )  in the form 

The equation for the oscillating part 

has the solution ( ( 7 )  = J 0 ( 2 D m ) ,  where Jo is a zeroth- 
order Bessel function of the first kind. Thus, we obtain the 
general solutions for X ( T )  and U ( T )  in the form 

Here the expressions for X ( T )  and U ( T )  were written using 
the representation of a Bessel function at large values of the 
arguments. Thus, Eqs. (7)-(12) comprise a complete set of 
solutions describing the behavior of an electron in a surfatron 
when t,bAe 1. 

An analysis of the results obtained leads to a simple and 
very important conclusion: in all stages a particle which is 
being accelerated continuously along the y axis tends to 
move along the x axis in the vicinity of the point at which the 
sum of the x components of all the forces [i.e., the right-hand 
side of Eq. ( I ) ]  is equal to zero. Apparently, this conclusion 
is quite general for the surfatron mechanism of particle ac- 
celeration. As a consequence of this remarkable fact, a spe- 
cial regime for accelerating an electron in the equilibrium 
state from the very beginning was discovered in the numeri- 
cal calculations. If an electron has the initial velocity com- 
ponents vo=vdo  and wo=O, it moves with a strictly constant 
velocity vdo in the nonrelativistic stage. At a certain given 
value of R =  1 an electron having an initial velocity 
vo= udo is confined in the well longer than an electron hav- 
ing an initial velocity vo=O. Hence it can be concluded that 
it is better to inject particles with a velocity which is smaller 
than that of the wave by udo.  

These solutions imply that as r t m  the electron oscilla- 
tion period ( m  6) increases, and both the drift velocity 
(K T - ~ )  and the amplitude of the oscillations ( m  r -  ' I 4 )  de- 
crease, tending to zero. These factors provide a striking il- 
lustration of the phenomenon mentioned in Ref. 1 of phase 
focusing or phase stability when particles are accelerated in a 
surfatron. 

4. We move on to the case of the motion of an electron in 
the well in the limit t,bA+ 1. In this case the dimensionless 
parameters for the optimal values R 2  I have the values 
D 6  I, bZ= I, and v , ~ ~ = =  I, and the width of the well becomes 
very large, xII+ 1. This means that the second term on the 
right-hand side of Eq. ( I )  is negligibly sniall in the initial 

stage of motion. Physically, this means that the motion of an 
electron actually begins here in the constant uniform fields B 
and Ey=PB.  Setting /3= 1, DZX--0 ,  p.ro<' 1,  pya@ I, and 
yo= 1, we can write the solutions of Eqs. (1)-(2) as func- 
tions of the variable p , = p , ( ~ ) ,  which can be determined 
from the equation p,,+p;/6= T:  

In the nonrelativistic stage we have p y ( r ) =  T< 1, and these 
solutions have a simple form: 

In the relativistic stage we have p , = ( 6 ~ ) " ~ >  1 ,  and the so- 
lutions are 

It follows from these solutions that at the time r2:2, at which 
py= 4, the velocity component w reaches its maximum 
value w = I/&, and v = 112. Subsequently, v t  I, and w de- 
creases with time as w ~ T - " ~  law. The solutions (14) are 
valid for 1 4  T< r q ,  where T,  is the time determined from 
the condition w(T, )  = D 2 x ( r q ) :  ~ ~ m ~ - ~ ' ~ 9  1. At this time 
the particle reaches a distance X = ~ q = ~ - 3 " G X  4 = D - ~ ,  
and the condition of equilibrium between the forces acting 
along the x axis will be achieved for it. As we have already 
noted, the motion of the particle in x will subsequently fol- 
low the law of surfatron acceleration, so that the equilibrium 
condition would be maintained. Thus, at T > T ~ ,  solutions 
(10)-(12), which have a= 1 and P= 1, become possible, 
and, consequently, the velocity component u begins to de- 
crease, while w increases. At some instant, when the particle 
has the velocity components w = 1 and u G I, it reaches the 
point X ,  and begins to oscillate in the vicinity of that point. 
Therefore, the character of the motion along the x axis re- 
mains unchanged even for 1 : at first the particle moves 
toward the asymptotic equilibrium point x,= 1 1 0 ~  with the 
drift velocity (in the time interval 1 < T< T ,  the velocity is 
u d o = ~ 1 R 2 - -  I ) ,  and then it begins to oscillate about this 
point with a time-decaying amplitude. 

Let us attempt to find the conditions for particle trapping 
when t,bAS 1. In general, knowing practically everything 
about the character of the motion of the particles from the 
solutions obtained, we can find the condition for their reten- 
tion in the well in a rough approximation from the following 
qualitative arguments. As follows from the calculations, par- 
ticles leave the well in the initial stage of motion, during 
which the amplitude of their oscillations ,yo=uOID remains 
practically constant. In addition, the position about which the 
particles oscillate ( x = x D )  shifts with the drift velocity to 
the asymptotic equilibrium point (x-+ 1/D2).  Assuming that 
a trapped particle reaches the vicinity of the point 
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x(,= 1/D2 at some moment in time and oscillates about it 
with an amplitude xo= u o l D ,  we obtain the condition for its 
trapping in the range - X , ~ < X < X ~  in the form 

Hence we obtain an estimate of the value of R: 

which coincides with (9). Thus, Eq. (9) can be used for both 
i+bA4 1 and 1. 

We assume that the values of the initial velocity of a 
particle are bounded by the thermal velocity, which is much 
smaller than the velocity of light in all practical cases; there- 
fore, v o  /&< 1 holds for $A+ 1. According to (9), under 
these conditions practically all the initially trapped particles 
become part of the group of "perpetually" accelerated par- 
ticles when the value of R  is slightly greater than unity. This 
conclusion is confirmed by the numerical calculations. 

We note that in the limiting cases clr,4 1 and $AS- 1 
considered here the time dependence of all the parameters 
obtained numerically and analytically is in good agreement. 

5. We have considered the problem of the acceleration of 
electrons in a traveling wave after being injected in a special 
manner at the bottom of the potential well of the wave. Let 
us use the same formulation of the problem as above (see 
Fig. 1) to discuss the case of the surfatron acceleration of an 
electron by a longitudinal plasma wave traveling transversely 
to a constant uniform magnetic field, which is of interest 
from the standpoint of practical applications. 

We assume that a plasma wave with an oscillation fre- 
2 quency w2 = w i  + wBo , where w p  = J- is the elec- 

tronic plasma frequency and W ~ o = e B ~ / m c ,  is created by a 
laser or an electron beam in a uniform plasma with a density 
no and an electron temperature ~ , 4 m c ~ .  To eliminate the 
influence of the magnetic field on the dispersion properties of 
the plasma, the condition w ~ + o ~ o  must be satisfied; there- 
fore, we shall henceforth assume w = w p  and, consequently, 
that the phase velocity of the plasma wave is u = w ,  /ko  . The 
highest theoretically possible amplitude of the electric field 
of a plasma wave 

We pass to the wave reference frame, in which the 
plasma as a whole moves with a velocity u.  The amplitude 
of the potential in the plasma wave must be smaller than the 
kinetic energy of the particles moving with the velocity of 
the wave, since, otherwise, all the particles would be trapped 
by the wave and it would rapidly damp (Landau damping). 
This requirement places a definite restriction on the ampli- 
tude of the wave: c p A 6 ( y f -  l ) m c 2 / e .  On the other hand, 
this inequality can be regarded as a condition which relates 
the amplitutle of the potential and the velocity 01. the anipli- 
tude ancl the wave vector to one another. Next, since 
q,,-- EO y, l k o  , holds, we can write down a condition which 
restricts the arriplitutle of the electric field in the wave: 

Assuming that the amplitude of the electric field is equal to 
only a part E of the theoretically possible amplitude, i.e., 
Eo= E E , , , ~ ,  we obtain a bound on e: 

Thus, for a longitudinal wave in a plasma with an assigned 
density, the amplitude of the electric field depends on the 
velocity of the wave according to the relation 
Eo= emuo , l e  and is largest in the limit u 4 c  (in that case 
we have ~d 1 ). 

The limiting cases for a plasma wave with respect to 
$A take on definite meanings. For example, the condition 

< 1 can be written in the form $A < y f -  1 < 1, whence it 
follows that this case is characteristic of a nonrelativistic 
wave: p+ 1, y f 2  1, and e S 112. If $AS- 1 holds in the wave, 
the velocity of the wave can be close to the velocity of light; 
therefore we have j3== 1, yfS- 1, and E S 1. Since the field 
accelerating the particles in a surfatron is E,= PEoIR 
- / I 2  W ,  / R  , at an assigned value of no and R  S 2 the rate of 
acceleration of the particles is significantly higher in a rela- 
tivistic wave than in a nonrelativistic wave. Thus, the case 
p= 1 is most interesting for practical applications, and we 
shall therefore consider it in greater detail, assuming that 
*AS-  1. 

We assume that in the wave reference frame the mean 
value of the velocity component v  of the trapped particles at 
a point with potential cp=O is equal to zero, and that the 
velocity spread is Av - V T =  fi, where O= T ,  l m c 2 4  1. 
Thus, we assume that in a plasma wave each particle begins 
its motion at a point where the potential is equal to zero and 
the electric field strength peaks (the point x = d  in Fig. 1). 
Since we have R> 1, all the electrons with the initial velocity 
components I vol < uT< 1 and I wol < v T <  1 fall under the ac- 
tion of the peak force of the electric field into the well, in 
which the laws of motion of the particles are already known. 

Let us find the character of the motion of an electron in 
this case, setting vo<  1, w o 4  1 ,  and x ( 0 ) = x d .  For the lim- 
iting values 1 in the nonrelativistic stage, we substitute 
x ( r ) = x d -  [ ( T )  into (1)-(3) and set a= 1, X d = ~ / ~ 2 ,  and 
[ ( 0 ) = 0 .  This gives W ( T )  = r+ [ ( T )  and an equation for 
finding [ ( T ) :  

This equation is easily solved: 

[( T )  = R[ l - cos T ]  - T +  sin 7.  

Setting c - R T ' / ~  at r< I ,  we ultimately obtain solutions in 
the form 

from which it follows that after a time r< 1 the value of the 
velocity component rv for R >  I becomes close to unity, and 
the particle closely approaches the asymptotic ecluilibriuni 

740 JETP 81 (4), October 1995 G. N. Kichigin 740 



point X= 1 1 0 ~ .  Subsequently, its motion will be contined to 
the vicinity of this point in accordance with Eqs. (10)-(12). 

In the case of a plasma wave with an amplitude (//A+ I, a 
trapped electron falling into the well from the point x=d 
reaches the bottom of the well after a time T - - ( ~ - ' Q  1. 
Thereafter the problem of the motion of such an electron 
reduces to that considered above except that the initial value 
v o  of the velocity component at the bottom of the well is 
greater than &. As we know, under these conditions re- 
tention of an appreciable portion of the originally trapped 
electrons in the well requires R a 2 ,  and the motion of the 
particles will be described by Eqs. (7)-(12). 

6. Let us discuss some possible restrictions which pre- 
vent the theoretically unlimited increase in the energy of the 
trapped electrons. The principal and most widely known lim- 
iting factors are, first, the loss of energy in the form of ra- 
diation and, second, the finite dimensions of the -wave front 
in real situations. Since the case in which the energy of the 
particles is restricted by the finite value of the transverse 
dimension is simple and self-evident, we shall not dwell on it 
noting only the conclusion in Ref. 9 that the restriction on 
the transverse dimension can be relaxed to some extent when 
the front of the potential wave has some curvature. 

As for radiation, according to the analysis performed, in 
the case of a surfatron we are dealing with the radiation of an 
electron accelerated in a constant and uniform electric field 
E,. In fact, as follows from the solutions obtained in the 
wave reference frame, no other forces besides the force of 
the electric field E,  act on an electron in the relativistic and 
ultrarelativistic stages. Thus, in a surfatron the radiated 
power is constant: 

w,= const E;= const P ~ E ~ I R ~ .  

It is negligibly small compared with the rate of the buildup 
of energy by an electron [the ratio between these quantities is 
- E, l ( e l r i ) - - + ~ ,  where ro = e21mc2 is the classical radius of 
an electron. Since the radiated power is a relativistic invari- 
ant, this conclusion is quite general. We note in this context 
that the claims of several authors (see, for example, Ref. 2) 
regarding a strong dependence of the radiated power on the 
energy of a particle in a surfatron seem very doubtful. 

Let us consider in greater detail the restriction associated 
with the influence of the intrinsic space charge on the motion 
of particles trapped by a wave, which was not taken into 
account anywhere in the analysis of the surfatron accelera- 
tion of electrons. We shall attempt to evaluate this effect in 
the case of a uniform plasma wave. As follows from the 
numerical calculations performed, only a small portion n, 
(n, is the number of particles per unit volume) of the initial 
number of trapped particles remains at optimal values of R 
(R- I). As has already been noted above, the group of 
trapped electrons as a whole has a certain drift velocity 
u,~,, which signifies the presence of an uncompensated flux 
of particles along the x axis from the onset. (For example, in 
the case of a longitudinal wave in a plasma, the initially 
trapped ensemble of electrons, whose velocity distribution 
function in the wave reference frame has the forrn of a part 
of the exponentially decreasing tail of a Maxwell function, 

has a certain drift velocity toward the wave at the onset.) As 
a consequence of conservation of the flux 

during the acceleration process, in the final, relativistic stage, 
in which the drift velocity vll tends to zero, the density of the 
trapped electrons increases without bound. Obviously, when 
this density reaches a certain value, the space charge of the 
electrons begins to influence the macroscopic structure of the 
wave. 

The time dependence of the density of the trapped elec- 
trons can be evaluated using (12) and the flux conservation 
law in the one-dimensional problem under consideration, 
yielding 

At the time rL,  when this density becomes comparable to 
the plasma density no, the surfatron acceleration mechanism 
apparently breaks down. Therefore, with consideration of the 
effect of the space charge, the limiting energy is approxi- 
mately 

Let us compare the limitation due to the increase in the 
space charge with the limitation of the energy due to the 
damping of the wave as a consequence of the reciprocal in- 
fluence of the trapped particles on it. Damping of the wave 
begins to be manifested to a significant degree when the 
energy density of the group of electrons being accelerated 
becomes comparable to that in the wave: 

Setting Eo- u 6 for a longitudinal plasma wave, we ob- 
tain a rough estimate of the limiting energy: 

A comparison of (15) and (16) reveals that gLQ is always 
greater than gLD , i.e., the limitation of the energy due to the 
damping of the wave is stronger. 

From (15) and (16) we can evaluate the limiting energies 
of electrons accelerated in a longitudinal nonrelativistic 
(t,bA2. yf- 1 4 1 ) wave. The number of trapped electrons in a 
longitudinal plasma wave is nT noexp[-(yf- 1)/0], where 
we have, as a rule, 0+ 1 and yf- 1 B 0. As we see, for a 
given value of 6 the number of trapped electrons depends on 
the wave velocity and is infinitesimal for relativistic waves 
(n,= 0 when p= 1 ). Substituting the expression for n~ into 
(15) and (16), we obtain 

Thus, for a plasma wave the limiting energies (15) and (16) 
increase with wave velocity. We take the following values 
for the parameters of the wave in the plasma as an example: 
I /J , , -~, . -  I -p2/2-- IO-"LL= lo9 cm/s, qAz5 keV), 
0- 10-"~,,=5 eV). Then for the limiting energies we ob- 
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tain ELQ- l0*O eV and L,,- eV. Larger values of the 
limiting energy were actually obtained due to the extremely 
small number of trapped particles. 

7. In conclusion, we summarize the main results of the 
investigations performed and what we have learned. 

1. Solutions of the relativistic equations describing the 
surfatron acceleration of electrons in an electromagnetic 
wave have been obtained in the model adopted. 

2. The results obtained are applicable to two practical 
setups for realizing the surfatron acceleration mechanism: 
electrons injected into an electromagnetic wave in the form 
of an electron beam are accelerated; some of the electrons of 
a plasma trapped by a longitudinal plasma wave during its 
creation undergo acceleration. 

3. The conditions for the trapping of electrons in a wave 
have been found. These conditions are determined mainly by 
the ratio of the amplitude of the electric field of the wave to 
the amplitude of the magnetic field. 

4. It follows from the calculations that electrons which 
are trapped in a wave and accelerated continuously along the 
wave front oscillate about a certain coordinate and move 
(drift) in the direction opposite to the motion of the wave to 
a point where the amplitude of the electric field is compa- 
rable to the amplitude of the magnetic field (in the wave 
reference frame). Subsequently, during the surfatron accel- 
eration of electrons, the amplitude of their oscillations de- 
creases, and each particle being accelerated actually moves 
together with the wave. 

Thus, the phase stability or phase focusing associated 
with the surfatron acceleration of electrons follows explicitly 
from the solutions obtained. 

5. It has been shown in the case of the surfatron accel- 

eration of electrons by an electromagnetic wave traveling 
transversely to a constant uniform magnetic field that the 
energy lost in the form of radiation is negligibly small. 

6. Two possible mechanisms which can disrupt the "per- 
petual" acceleration of particles in a surfatron, viz., the pres- 
ence of the intrinsic space charge of the group of particles 
being accelerated and the loss of energy from the wave to 
accelerate the particles, have been considered. According to 
the evaluations, the latter restriction is stronger than the 
former. 
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