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It is shown that the spectrum of scalar photons emitted by an accelerated mirror in 1 + 1 
space-time is the same as the photon spectrum emitted by an electrical charge in the analogous 
motion in 3+ 1 space-time. There is a deeper functional identity between the tensor energy- 
momentum of the scalar field produced by the mirror and the force of the Abragam-Lorentz-Dirac 
radiation reaction in classical electrodynamics. The numerical values of the functionally 
identical physical variables differ by the quantum factor 4 ~ a ,  where a is the fine-structure 
constant. The negative energy-momentum fluxes discussed in the literature correspond to the 
change in the Schott term in the radiation reaction. They participate in the formation of 
emitted real particles, but are hard to observe because the uncertainty relation for the energy is 
not satisfied. The explanation for the constant energy flux with a thermal spectrum that 
proceeds from an exponentially moving mirror is that the exponentially increasing proper 
acceleration of the mirror exactly balances the radiation red shift, which is increasing in time. This 
does not hold for the mirror moving away with constant proper acceleration, for which an 
event horizon also exists, but for which the total emitted energy is finite. Thus, the presence of 
the horizon and the associated information loss about part of the system nevertheless does 
not lead to thermal emission. O 1995 American Institute of Physics. 

1. INTRODUCTION 

As is well known, the mechanism proposed by 
~ a w k i n ~ '  for the formation of particles by the gravitational 
field of a collapsing mass is analogous in many ways to the 
emission from an ideal mirror accelerated in vacuum.233 Even 
the simplest model-the evolution of a mastless scalar quan- 
tum field in planar 1 + 1 space-time due to the acceleration 
of a reflecting boundary-has the main features of Hawking 
radiation. This model is treated in the present work in order 
to exhibit the spectral lines of the emission from scalar pho- 
tons. It is found that not only the spectral lines, but also the 
spectra themselves, are functionally identical (when the ap- 
propriate covariant variables have been identified) with the 
spectra of photons emitted by an accelerated electric charge 
in ordinary 3+ 1 space-time. This assertion is proved in Sec. 
5 for an arbitrary mirror or charge world line (in the x, t 
plane). Furthermore, as shown in Sec. 6, the space-time dis- 
tribution of the energy-momentum for scalar and electro- 
magnetic fields in these two problems are identical. Only the 

given the (x, t) plane as functions of the characteristic vari- 
ables 

These solutions satisfy the zero boundary condition 
+(u,u) = O  on the mirror whose v and u coordinates, respec- 
tively, are described by the functions f(u) and g(v): 

It is evident that the functions f and g are inverses of one 
another. 

An arbitrary solution of the wave equation with zero 
boundary condition on the mirror can be expanded in either 
the in or out system. The Bogolyubov coefficients a and P  
appear when one of these systems is expanded with respect 
to the other: 

- 
scales of the corresponding quantities differ; their ratio is 
equal to 4rra, (where a is the fine-structure constant). In Sec. ~ O U ~ O =  L=' - ( ~ W I W ~ ~ I I W ) + P W I O $ ~ , I ) ~  E (5 )  
7 it is shown for the special but important case of quasihy- 
perbolic motion that the negative energy fluxes which exist dw 
where true radiation forms do not satisfy the uncertainty re- min ,! = lo T;; w-Puro4:ut A (6) 
lation for energy. This means that it is difficult to distinguish - 
effects associated with the field accompanying an accelerated d 
source in a region where true radiation develops. a,.,= i l  4; ,I ,dx, (7) 

In problems with moving mirrors two sets of solutions of - 
the wave equation are ordinarily used: rl 

(8) 

1 
cb,,, , # , 1 ( ~ ( 9 ~ ) =  - [ e - r c o ' u - c - i e ~ ' / ( r ~ ) l ,  ( 1 )  From the conditions of orthogonality and normalization for 

&7 these sets it follows that 
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" dm" * lo = ((~,~~~*ff<*~,(,,~ - p(*~f,p~"(*')  = 2rr6(o-  w'), 
2. INSTANTANEOUS CHANGE FROM A STATE OF REST TO 
UNIFORM MOTION WITH VELOCITY P 

In this case we have g(u) = u for u s 0  and g(u)=  ( I 
- ,811 + P )  for u>O. From (12) it follows that 

If the sets coincide, then we have pwrw =: 0, and a,,,,, 
= 2rrS(w1 - w). Consequently, if we write 

then Eq. (9) implies, in particular, the optical theorem 

- dw' 
x ( w ' ,  w)l21= K;;;; IA(w1,w)I2. 

In the last identity we have used the relation 
A ( W ~ , - W ) = A * ( - ~ ~ , ~ ) .  

The explicit form of the in- and out-sets enables us to 
write the Bogolyubov coefficients in terms of Fourier trans- 
forms: 

The spectrum dii, of the average number of scalar protons 
produced by a moving mirror is given by 

dw' dw 
dl,= j I~IP,~,I' a) 5. 

This physical meaning of dn, is a consequence of the 
second-quantization field 4,  in which the expansion coeffi- 
cients of the field in terms of plane waves with positive and 
negative frequencies have the meaning of operators for the 
absorption of particles and the creation of antiparticles. 

Note that if we replace the boundary condition $=O on 
the mirror with the condition that the derivative of the field 4 
normal to the mirror world line equals zero, 

then in the in- and out-solutions ( I )  and (2) the signs in front 
of the second terms, i.e., the waves leaving to the right, are 
changed. However, the Bogolyubov coefficients remain the 
same, so that the radiation spectrum is insens~tive to a similar 
alteration in the boundary condition on the mirror. 

We will now consicler the Bogolyubov coefficients and 
spectra for some special cases of the mirror motion. 

The singular 6+ functions are defined as in Ref. 4. 
The calculation of the dn, spectrum is conveniently per- 

formed by using for the 6, functions the so-called E repre- 
sentation: 

Then we obtain 

This expression, multiplied by e2, the square of the electrical 
charge in Heaviside units, is identical with the spectrum of 
the average number of photons emitted by an electric charge 
in similar motion (cf. Sec. 69 in Ref. 5). This similarity is no 
accident; it will be explained below. However, we can al- 
ready say that the power-law behavior m u - '  of the spectrum 
in the ultraviolet region is a consequence of the arbitrarily 
small portion of the trajectory with the velocity discontinuity, 
while that in the infrared region is due to the infinite portion 
with a nonzero velocity variation. 

Note that the amplitude 

A(w1 ,w)=2~w1[S+(w ' -8 ) -  6+(w1- w)] (19) 

in the positive range of frequencies w', w, determined by 
Eqs. (10) and (16), has a singularity. Hence the proof of the 
optical theorem encounters a problem associated with the 
integration of the square of a singular function. Thus, the 
usual rule for integrating the square of a 6 function, 

is actually carried out by using for the 6 function the K 
representation SK(x) =sin Kxlrrx, in the limit K 4 m .  In this 
case 6,(0)=Klrr appears on the right-hand side of (20). 
However, it is not obtained when we use the E representation 
~ , ( x ) = ~ l r r ( x ~ + & ~ ) ,  8 4 0 ,  in which after integration in- 
stead of 6,(O)= 1 1 7 ~ ~  we find half this quantity. consequently, 
we find -Re A(w,w) = 2 w I ~  when we use the E representa- 
&on (17) for the amplitude A in the left-hand side of optical 
theorem (1 1) and a quantity half as large on the right-hand 
side. The nonsingular contributions to the right-hand side 
corresponding to wl>O and wr<O do not depend on the rep- 
resentation; they are equal to 

ant1 cancel out. 

616 JETP 81 (4), October 1995 A. I. Nikishov and V. I. Ritus 616 



3. FINITE MOTION WITH TWO VELOCITY DISCONTINUITIES 

Now we consider a mirror which moves during a finite 
time interval O c t c  n-161, so that the variation of its u coor- 
dinate is given by g ( v )  = v  + a  sin R v ,  O s R v  s n-, while 
outside this interval it is at rest at the point x=O, i.e., 
g ( u ) = v  for u s 0  and v a n - l f i .  If [(t) is thex coordinate of 
the mirror as a function of time, then its velocity is 

Hence the initial and final velocities Po and PI of this mo- 
tion, 

have opposite signs, and their absolute values are different 
and are less than IPI<I. We will assume Q>O, so that the 
sign of /? is the same as that of the amplitude a. 

It is convenient to start by considering the amplitude 
A ( w f ,  - w ) ,  which can be expressed in terms of Anger func- 
tions J,(z)  and Weber functions Ev(z): 

(24) 

Here we have written v= (of +w)/S1 and z  = wa.  The expres- 
sion in square brackets can be written according to Refs. 6 
and 7 in the form 

where R and S are even and odd functions of z, which can be 
represented in the form of convergent series 

Similarly, for the amplitude A ( w f  , w )  we find 

(28) 
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where we have written z = w a  as before, but now 
v=(wf  -w)l61. Then the integrals on the right-hand side of 
( I  1 )  take the form 

where p=wlfi  and 

which is even in v  and z .  
As a result of this the optical theorem takes the form 

Q( v , z )  = 

-Re A(w,w)=2n-p(1 - J o ( z ) ) =  7 ~ p  d v Q ( v , z ) .  I," 
The expression for the nontrivial integral 

I - e - i ~ v  

J , ( z )  - iE,(z)  - i l rv  

does not appear available in the standard tables, and so we 
checked it by integrating with respect to v the first terms in 
the z  expansion of the integrand. 

The spectrum of the average number of emitted photons 
is given by Eq. (29) with the lower sign, 

2 

and depends on frequency through the two independent di- 
mensionless parameters z  = o a  and p= wlQ. Let us focus 
our attention on the fact that the spectrum does not depend 
on the sign of a, a change in which corresponds to time 
reversal t + - t and reflection x~ - x .  

At high frequencies where p-z* 1 holds we find 

The ellipsis stands for small terms - p - 2 - z - 2 .  Using (23) 
it is not hard to see that the expressions in curly brackets are 
equal to 

tanh- ' Po tanh- ' p ,  
- 1 + 

Po P I  - 1 ,  

that is, the high-frequency part of the spectrum consists of a 
sum of contributions from the two small portions of the tra- 
jectory in which the velocity changes instantaneously [com- 
pare the spectrum ( IX)] .  For low frequencies, when p-z4 I 
holds, we find 
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Here the ellipsis stands for terms -,u2, z 2 .  The infrared sin- 
gularity in the spectrum is gone, since the trajectory no 
longer has an arbitrarily large portion with a nonzero change 
in velocity. 

4. SEMIHYPERBOLIC TRAJECTORY WITH A DISCONTINUITY 
IN ACCELERATION 

We will call the mirror trajectory semihyperbolic if prior 
to the time r = 0  it is at rest at the point x = 0 ,  and then begins 
to move along the hyperbolic trajectory [ ( t )  = B  - d m .  
It is not difficult to show that the mirror velocity changes 
continuously, while the proper acceleration at t = 0  jumps 
from 0  to - B-  l <  0  and thereafter remains constant. In u,  v  
language such a trajectory can be written in the form 
g ( v ) = v  for v S O  and g ( v ) = B v l B - v  for O S v < B .  Then, 
using Eq. (12) with the upper limit replaced by B ,  we find 

where z=  wB and z' = w'B. The coefficient a , ~ ,  is obtained 
by replacing z  with - z  in the square brackets of (37). Inte- 
gration with respect to w' of the square of the absolute value 
of the amplitude P,t ,  leads to the following expression for 
the spectrum of the average number of emitted quanta: 

At low frequencies, when z-4 1 holds, we have 

that is, the spectrum has an infrared singularity enhanced by 
a logarithm. This is associated with the existence of an arbi- 
trarily large portion of the trajectory with a velocity which is 
not just finite but increasing. In the ultraviolet region, i.e., for 
z B  1, we have 

The more rapid decrease in the spectrum as a function of 
frequency then in Eqs. (18) and (34) (mw-7 is due to the 
discontinuity in acceleration rather than to the velocity. Since 
this trajectory has a horizon v  = B, the function g ( u )  is de- 
fined only in the interval - w< v  < B. Consequently, in cal- 
culating a,,,, , P:, ,  we have actually used for 4 o,l, , the 
solutions 

with a Heaviside @-function in the first term. Even though 
there are no waves in these solutions beyond the horizon 
moving to the left, they have the usual orthonormality prop- 

erties. However, the representation of the coefficient a,,,, in 
the form (1 0 )  leaves the amplitude A (w' , w )  singular at the 
point w l = w .  Hence verification of the optical theorem (1 1) 
requires some subtlety, but the proof of the more general 
relations (9) for the Bogolyubov coefficients in the form (12) 
with the upper limit B  encounters no difficulty if we use the 
following approach. In carrying out the integrals with respect 
to v  of functions containing exp[ - i w g ( v )  1 near the upper 
limit v = B  we must shift the integration contour into the 
complex v  plane so as to make -Re i w g ( u ) - +  - rn in the 
limit v  -.B. This condition produces uniform damping of the 
leftward-moving wave &,, on an arbitrarily small interval 
before the horizon. It corresponds to the usual rule for evalu- 
ating integrals with plane waves e-'"" in the limit v-.m. 

The introduction of damping on the arbitrarily small in- 
terval O <  B  - v  < 6-+0 before the horizon will lead to no 
misunderstanding if we recall the boundary conditions in the 
solution of the wave equation. As is well known, in order to 
obtain a unique solution of the wave equation in the (t, x) 
plane to the right of a timelike curve r it is necessary to 
specify the value of the function on this curve and of its 
derivative normal to the curve. Rather than specifying the 
derivative on r we can specify the values of the function on 
the characteristic U = U ;  intersecting I' in the distant past 
( u ,  + - w )  or on the characteristic v = u i  intersection r in 
the distant future ( 2 1 4  + a ) .  If in one of these two cases, 
e.g., in the past, the curve r and the characteristic v  = v i  do 
not intersect at any point because in the future the curve r 
has an asymptote (horizon) v  = B < v i ,  then the boundary 
values of the function on the curve r and the characteristic 

+ v  = uR do not suffice to uniquely determine the solution in 
the region between them. If is necessary to prescribe other 
values of the function, e.g., on a portion of the characteristic 
u= u z  as ul+rn, connecting the curves r and u  = v i  in the 
far future. Only after this can the same solution be obtained 
both from the boundary conditions on r and u  = u i  and the 
boundary conditions on r, u  = u l  and v = v:.  In other 
words, this solution for prescribed values on r connects its 
values in the past on u  = u,  with its values in the future on 
v = v i  and u = u z .  

Since the out system of functions (41) is not complete, 
the expansion with respect to it of an arbitrary solution 
4 ( u  , v )  - 4 ,  ( u )  + 4 2 ( v )  of the wave equation with zero 
boundary condition on the trajectory r with horizon v  = B  
has the following form: 

The coefficients a,,, P,  are defined by Eqs. (7) and (8) with 
the usual replacements ,, -. 4our ,, , and ,,-+$. They 
contain all the information about 4, ( u )  and about (b2(u) for 
v < B ,  ensuring that the boundary condition on 1' and on 

+ .  u = V R  IS satisfied. The auxiliary term is determined by the 
+ boundary condition on u= u ~  . 

Note that the in system of solutions ( I )  for a trajectory 
with a horizon in the future is con~plete. Hence its expansion 
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(6) in terms of the incomplete out system in accordance with 
Eq. (42) should be supplemented by the term 
( 1 / ~ ) e - i " ' v 8 ( v  - B). 

5. IDENTIFICATION OF THE EMISSION SPECTRA OF A 
SCALAR MIRROR IN 1+1 SPACE AND OF AN ELECTRIC 
CHARGE IN 3+1 SPACE 

As is well known, the spectral distribution of the average 
number of photons emitted by an electrical charge moving 
along the trajectory xa=xa(r)  is given by the expression 

where ja(k) is the Fourier component of the current density 
of the charge, k  and ko=lkl are the wave vector and fre- 
quency of the radiation, and r is the proper time. For a 
charge which, like the mirror, executes rectilinear motion 
along axis 1, it is convenient to choose the variable 
u = x - ( r )  in place of 7. Then the v coordinate of the charge, 
i.e., x + ( T ) ,  will be a function of u. As before, we denote it 
by f (u)=x+ (r)IT= As a result, the two nonzero compo- 
nents of the current density can be written in the form 

Here and in what follows we write k + = k o + k l ,  O S k + < a .  - 

It can be seen that the current satisfies the transversality con- 
dition kaja=O. Using this expression for the current we find 
directly that 

Here we have used the formula 

and have integrated with respect to the azimuthal angle cp, on 
which the spectrum does not depend. 

The spectrum diif differs from the spectrum 

of the radiation from the scalar mirror in 1 + 1 space-time 
only in the factor e2 ,  the square of the electrical charge in 
Heaviside units. Here the components (I / 2 ) k + ,  ( 1 / 2 ) k _  of 
the wave vector k ,  are identical with the frequencies w, w', 
respectively. 

This similarity is not an accident, since in 1 + 1 space the 
parameter w (w' )  is at the same time both the frequency and 
the wave number of the wave propagating in the positive 
(negative) x direction. In a Lorentz transformation with ve- 
locity V in the x direction the quantities o, w' are therefore 
transformed according to the same rules, 

as the components k+ , k -  and the characteristic coordinates 
v ,  u.  The tilde indicates quantities in the transformed coor- 
dinate system. After this remark it is easy to see that the 
spectra (45) and (47), like the volume element (46), are in- 
variant under this transformation. 

It is useful to introduce an expression for the spectrum of 
the average number of quanta emitted by a scalar mirror (the 
source of the scalar field) moving along the same trajectory 
x , ( T )  in 3+ 1 space. It differs from (43) in replacing the 
current density ja(k)  with the scalar charge density p(k): 

For rectilinear motion parallel to axis 1, we find in u,  v 
variables 

This expression differs from dnf in having the function a in the integrand rather than the factor dm. 
Thus, the spectra of scalar and electrical charges differ sig- 
nificantly. However, for a sufficiently smooth trajectory and 
large values of k ,  , when the integrals in (45) and (50) can 
be evaluated by the method of steepest descent, these spectra 
are the same. Specifically, in this case the saddle point u = uo 
satisfies the equation 

and lies in the complex u plane, since f  ' (u)>O holds on the 
real axis. In this range of k ,  the spectra therefore have the 
exponential asymptotic form 

This asymptotic behavior agrees with the theorem according 
to which the Fourier component of a smooth function in the 
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high-frequency region falls off faster than any power of the 
frequency.8 Compare Ref. 9 regarding the high-frequency as- 
ymptotic spectrum in electrodynamics. 

It is instructive to compare the spectra of (45) and (50) 
for charges executing exponential motion, 

1 1  
f(u)=--- e-"". 

K K  

In this case Eqs. (45) and (50) yield the Bose-Einstein and 
Fermi-Dirac distributions with respect to the component 
k+ : 

although the quanta of the two fields have integral spins 1 
and 0. It is clear that the form of the spectrum is determined 
not by the statistics of the quanta but by the trajectory of the 
source and its interaction with the radiation field. For k++ K 

the spectra become identical and are given by Eq. (52). 
Note that the parameter K determines the proper accel- 

eration of a charge at the turning point, 
ao=a(u  = 0) = - ~ 1 2 .  The spectra develop in a region of 
space-time near the turning point with dimensions of order 
K-'. If we transform to another Lorentz frame moving with 
velocity V in the x direction relative to the original one, the 
proper acceleration of the charge at the turning point of the 
new system will be i o = D - ' a o ,  i.e., the parameter x trans- 
forms like k+ [cf. Eq. (48)l. 

When electrical and scalar charges move along the hy- 
perbolic trajectory f ( u )  = ul(  1 + KU) the radiation spectra 
are described by the square of a modified Bessel function of 
the second kind: 

Their order is the same as the spin of the emitted quanta. The 
spectra are symmetric with respect to the interchange 
k+++k- because of the t-invariance of the motion. The 
proper acceleration of a charge is constant along the entire 
trajectory, a= - K, SO under a Lorentz transformation the pa- 
rameter K remains unchanged. For k +  k- + K~ spectra be- 
come identical, assuming the exponential fosm (52). 

The fact that the radiation spectra of an electrical charge 
in 3+ 1 space and a scalar mirror in 1 + 1 space are identical 
raises the question, for what mirror in 1 +1 space is the ra- 
diation spectra analogous to that of a scalar charge in 3+ 1 
space? Such a mirror cannot be a scalar mirror with the 
modified boundary condition (15), since the Bogolyubov co- 
efficients with such a modification remain unchanged. From 
Eq. (50) for d i r  it follows that in order to reproduce this 
spectrum in 1 + 1 space-time it is necessary that the Bogoly- 
ubov coefficients assume the form 

It is not difficult to show that these coefficients satisfy con- 
ditions (9) with the plus sign in front of the second terms on 
the left-hand side. This means that in 1 + 1 space-time we 
are dealing with a spinor mirror interacting with a spinor 
field3 

6. RELATION BETWEEN THE ENERGY-MOMENTUM 
TENSOR OF A SCALAR FIELD AND THE 
ABRAGAM-LORENTZ-DIRAC RADIATION REACTION 
FORCE 

The total energy of photons emitted by a scalar charge to 
infinity is obviously equal to 

d o d o '  
@= Iw(w-~a.t.~2 o o w. 
From the fact established in the previous section, that the 

spectra and the transformation properties of the quantities o ,  
w' are identical [cf. Eq. (48)], it follows that the classical 
electrodynamic quantity which is the same as @ is 

Here we have written G$= G;+G:, where G; and G: are 
the energy and the x component of the momentum of the 
radiation. 

On the other hand, the energy-momentum density of the 
scalar field produced by an accelerated scalar mirror is de- 
termined by the energy-momentum tensor. According to Ref. 
10 the only nonzero component T,,= T +  + in (u, v coordi- 
nates) is equal to 

where the prime denotes a derivative with respect to u .  We 
emphasize that the quantities (57) and (59) are quantum- 
mechanical; they are proportional to Planck's constant h. 
Note that the additional singular term in (59) has dropped out 
as a result of "renormalization." The energy-momentum ten- 
sor, which is the average value of the product of two field 
operators at the same point, is ill-defined. It becomes a com- 
pletely defined function of the coordinates of these points if 
they are separated by a timelike or spacelike interval. The 
singular term omitted from Eq. (59) appears when this func- 
tion is expanded in powers of the small proper distance 2c 
between the points, and in the limit E+O it behaves as c-' 
(Ref. 10). Its TE,+ component is equal to 

if the points are displaced in time or along the spatial axis. 
The next term in the expansion is -c, and is given in (59). It 
is just this which is the physically observable variable. Such 
a proceclure for eliminating the divergence can only be jus- 
tified if the above assertion agrees with reality. 

The integral 
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signifies the total energy of the field produced by an accel- 
erated mirror, and it has the same transformation properties 
as does %". 

In classical electrodynamics the rate of change of the 
4-momentum G, of an accelerated charge is equal to 

where g, is the 4-force of radiative reaction, u, is the 
4-velocity, and a, is the ,4-acceleration of the charge. The 
physical meaning of the t i o  terms in the radiative reaction 
force are the self-radiation term 

and the Schott curve 

was discussed by ~ i r ac , "  Thirring,12 ~oh r l i ch , ' ~  and 
~eite1boim.l~ The singular term equal to the space-time de- 
rivative of the 4-vector e2u,/8 n - ~  is usually called the Cou- 
lomb term. In fact, the 4vector e2ua/8n-E in the rest frame 
of the charge reduces to the energy of its Coulomb field 
beyond the radius E ,  and in a general system it is the energy 
and momentum of the field of a uniformly moving charge. In 
the Abragam-Lorentz-Dirac equation this term changes the 
inertial properties of the charge, causing its mass to be rede- 
fined (renormalized), mo+mo+ e2/8 n-E =m. This also 
raises the question of the imprecise nature of a charge with 
dimensions E greater than or equal to the classical radius 
ro= e2/4n-m. 

Moreover, for an accelerated charge the above covariant 
expression for the singular term, which does not depend on 
the motion of the charge in the past, occurs only for a par- 
ticular way of integrating the energy-momentum tensor of 
the field of the charge, assuming also that in the distant past 
the world line of the charge was straight.14 Consequently, the 
classical description of the effect of the proper field of the 
charge on its motion becomes internally inconsistent for very 
large proper accelerations, when the characteristic length 
c2/a over which the radiation is produced and on which the 
charge changes its energy by an amount -mc2 becomes 
comparable to the smallest classical dimension ro of the 
charge, i.e., a - 4n-ntc4/e2. 

Because of quantum effects, however, the classical 
theory ceases to be valid for relatively low accelerations of 
the charge, when the length c2/a becomes comparable to the 
Compton wavelength filnzc, i.e., for a - mc3/fi. The effec- 
tive dimensions of the charge in self-energy effects also turns 
out to be on the order of the Compton wavelength, E- filmc, 
which gives rise to a field part of the mass of order am,  
where a=e2/4n-fic is the fine-structure constant. We can 
therefore anticipate that when the charge has a sufficiently 
small proper acceleration a ~ m c ' l  h ,  the classical expression 
for the radiation reaction force will be valid. In this connec- 
tion we recall the cluantunl-mechanical calculation of self- 
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energy effects when an electron moves in a constant electric 
f ie~d, '" '~  which for small proper accelerations a ~ n r  cJlh 
predicts the classical shift 

in the electron mass and an average number of photons 

emitter per unit proper time, exactly agreeing with the clas- 
sical spectrum (54) and the classical radiation intensity de- 
termined by g:. 

We will be interested in the component G+  = G o + G , ,  
or more precisely 

It has the same Lorentz-covariant property as does K, and 
for an accelerated charge moving along the rectilinear trajec- 
tory of the mirror these quantities and their integrands are 
identical to within the factor e2=4n-a: 

In fact, if 5(t) is the x coordinate of the charge as a 
function of the time t and f(u) is its v coordinate as a func- 
tion of the u coordinate, then for the charge velocity 8, the 
u+ component of its 4-velocity, and its proper acceleration a 
we have the formulas 

Using them we find three equivalent expressions for the 
right-hand side of (68): 

confirming Eq. (68). The first, positive-definite, term in each 
of these expressions yields ( 112)~ :  when integrated with 
respect to the corresponding variable; this is the + compo- 
nent of the momentum of the radiation proceeding to infinity. 
For its spectral representation see Eq. (58). The second term 
in Eqs. (70)-(72) is the total differential of the quantity 

which can be termed the Schott energy-momentum or the 
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acceleration energy-momentum. Its changes constitute a re- 
versible form of emission and absorption of the field energy- 
momentum in the region in which the radiation is formed, 
irreversibly proceedig to infinity. As a result of these varia- 
tions the energy density in this region can be negative. How- 
ever, we will show that the amount of this energy is incon- 
sistent with the uncertainty principle. 

The Schott energy-momentum does not contribute to 
G+ if the charge acceleration vanishes at the ends of the 
trajectory or if the velocity and acceleration of the charge 
return to their original values. But if this does not happen, 
that the energy-momentum of the genuine emission cannot 
be distinguished from the energy-momentum accompanying 
the charge. 

We assume that the Schott term in the energy- 
momentum tensor of the scalar field bounding the moving 
mirror describes the reversible exchange of energy- 
momentum between the mirror and the field, just as in elec- 
trodynamics. For a mirror with acceleration that does not 
vanish asymptotically (i.e., for a trajectory with a horizon) 
the region in which genuine radiation forms is infinitely ex- 
tended and this emission cannot readily be distinguished 
from the reversible transmission of energy-momentum. As 
long as this is happening, the fields at two points separated 
by a spacelike interval (e-g., simultaneous) are causally re- 
lated, correlated on account of that portion of the mirror 
trajectory which is between the past light cones of these 
points. 

Now let us compare the singular terms in expressions 
(62) for d G , l d ~  and in the energy-momentum tensor of a 
scalar field [cf. Eq. (60)l. The former becomes physically 
meaningful in the proper frame of the charge, where it rep- 
resents the electromagnetic mass e2 /87 r~  of the charge. In 
the rest frame of the segment joining the separated points of 
the energy-momentum tensor, the second term represents 
the linear energy-momentum density on this interval. Since 
the proper length of the interval equals 28, the energy- 
momentum concentrated on it is equal to - 1/8m, where the 
minus sign means that this energy is associated with binding 
and attraction. The fluctuations of the scalar field energy af- 
ter time 2.5 have this value. 

Thus, the invariant quantities determined by the singular 
terms differ through the factor e2. The dimensionless quan- 
tum factor e2= 47ra is the natural scale through which 
quantum-mechanical quantities for a scalar field differ from 
the classical variables of electrodynamics. We remark further 
that just as quantum electrodynamics introduces a lower 
bound for the length E equal to the Compton wavelength 
hlmc, the quantum theory of a scalar mirror should give a 
lower bound to the analogous length parameter equal to 
some characteristic quantity e0.  It can be seen that E,  plays 
the role of the minimum dimensions of the mirror, which are 
unimportant as long as the proper acceleration of the mirror 
is not excessively large, namely, for C ~ / U B E ~ .  This restric- 
tion on the magnitude of the proper acceleration should be 
kept in mind, especially in treating exponential motion, when 
the proper acceleration 

increases from the characteristic value ~ / 2  to infinity in a 
finite proper time T = ~ K - I .  

7. ENERGY-MOMENTUM DISTRIBUTION FOR 
QUASIHYPERBOLIC MOTION OF THE SOURCE AND THE 
UNCERTAINTY RELATION FOR ENERGY 

Consider a mirror (or an electrical charge) moving along 
the trajectory 

where t u is the velocity of the mirror at t  + 7 and - K is 
its acceleration at the turning point at t=O. We will call this 
trajectory quasihyperbolic, since in the limit vo-+ 1 it ap- 
proaches hyperbolic on an increasing portion of space-time. 
We obtained the radiation spectrum dgk= mdnk and the total 
emitted energy 8 of the charge on this trajectory 
previously:17 

Since for arbitrary v - Z 1 the proper acceleration vanishes at 
infinity, the energy spectrum of the radiation has no infrared 
divergence and the total energy and effective emission time 
are finite. However, the spectrum of the average number of 
emitted quanta contains an infrared divergence due to the 
infinite part of the trajectory with a finite velocity variation. 

Here we will not concern ourselves with the question 
regarding which part of the quasihyperbolic mirror trajectory 
has T +  +<0 and what the effective size of this region is. 
Since for the quasihyperbolic trajectory we have 

we find using Eqs. (68) and (71) that 

It can be seen that T++>O holds for &=-0 and T +  + < O  
holds for &o, i.e., in the portions t<O and t>O, respec- 
tively. The function G ( z )  vanishes at the turning point z=0 
and at the ends z= 2 v o  of the physical range of velocities 
121 < v o ,  while at the points z ,  and z2 satisfying the equation 

and lying to the left and to the right of z=0 it attains a 
negative minimum and positive maximum, respectively. 

The minimum and maximum values of the function 
G ( z )  are equal, respectively, to 
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K2(1-V;) 2K2 - for I - I ,  (80)  
87r ' 277r 

G(z1,2)= 
for vo<. l .  (81)  

In order to find the effect of time over which in the region of 
formation the energy density acquires values on the order of 
those in Eqs. (80) and (81), we integrate (78) for t>O and 
t<O, respectively. Here it is convenient to use the relation 
(77) and to transform to velocity as the integration variable. 
Then we obtain 

It can readily be seen that the first and second terms on the 
right are the contributions from the components go and g ,  
which enter into the makeup of T + +  , as follows from Eq. 
(68). These components have positive and negative parity 
under time reversal and are related by 

The second term in (82) is therefore larger in absolute value 
than the first, since we have Z,<0 and 0< - 81:1<872. In par- 
ticular, in the ultrarelativistic and nonrelativistic limits we 
have 

The effective time intervals Atl and At, during which the 
energy density assumes negative and positive values on the 
order of the extremal values is naturally determined by 

Then for 1 - v i e  1 we have 

while for v o 4  1 we have 

It is noteworthy that even in the ultrarelativistic case the 
times At,,2 are comparable. Thus, for the magnitudes of the 
action on the intervals we find 

27 7r 
for I - u t < l ,  (91) 

%,At2= 
for vo<. 1. (92) 

Although in the ultrarelativistic case the effective time inter- 
val Atl can be very large, the energy i*;, accumulated over 
this interval is too small to be observable and does not con- 
tradict the uncertainty relation for energy [cf. Eqs. (87) and 
(89)l. But increasing the observation time At, by a consid- 
erable amount causes the total radiative energy &=Ti + g2 ,  
which is always positive, to fall into the extended interval. 
~ o r d , ' ~  who showed that the second law of thermodynamics 
was not violated, confirmed a similar assertion about the 
negative energy. 

If we leave only the radiative part in the energy- 
momentum tensor T +  + [which according to Eq. (68) is iden- 
tical with the first term of any of Eqs. (70)-(72) without the 
factor e2], then in place of (82) we find 

Here the first and second terms on the right are contributions 
from the components g! and gT, which enter into T $ + .  In 
contrast to go and g l  , they are related by 

the opposite of (83). Hence the second term in (93) is smaller 
in absolute value than the first, so that o<%<@ holds. We 
further note that the first terms in (82) and (93) are the same, 
since the contribution from gg vanishes because of the van- 
ishing of the Schott energy at both t=  0 and t =  t m. The 
second terms in (82) and (93) differ as a result of the contri- 
bution from the Schott component gf, which is independent 
of vo: 

Now we consider the radiation from a mirror on a semi- 
hyperbolic trajectory, for which prior to t =  -&,  &--to the 
mirror was at rest. Then it underwent an acceleration - K  

over a vanishingly small interval - < t<O; then it moved 
along the quasihyperbolic trajectory. In this case the result 
reduces to the upper form of Eq. (93): 

since the contributions from the Schott component g.:, 
which are equal to and %; on the segment O<t<cc  and 
-c<t<O, cancel out and the contribution from in the 
segment -&<t<O vanishes in the limit E-0. 
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A notable property of Eq. (96) is that in the limit uo+ I ,  
i.e., for a semihyperbolic trajectory, it approaches the finite 
value 

This means that the total radiated energy from a scalar mirror 
for semihyperbolic motion is finite and equal to 

whereas for hyperbolic motion it is infinite. The finiteness of 
the radiated energy essentially follows from the spectrum 
dn, of the average number of radiated quanta given in Eq. 
(38) and its behavior for small and large frequencies. How- 
ever, calculation of the total radiated energy by direct inte- 
gration of odn, with respect to frequency is difficult. 

Note that for the exponential and hyperbolic motions of 
the radiation source treated in Sec. 5 T + + 2 0  holds every- 
where. In the former case we have f'/2f1 =const, i.e., the 
Schott energy is constant and only the first (positive) term in 
the power of the real emission remains in Eq. (59). In the 
latter case the power of the real emission is exactly equal to 
the rate of change of the Schott energy, so that T++=O 
holds. 

8. CONCLUSION 

Thus, there is a close analogy between the radiation of 
scalar quanta from an accelerated mirror in 1 + 1 space and 
the radiation of photons by an accelerated electrical charge in 
3+ 1 space. As a result, the radiated spectra and the space- 
time distributions of the energy-momentum of the radiated 
field are the same. Since the electrodynamic processes have 
been studied quite thoroughly, this analogy should lead to a 
better understanding of processes induced in vacuum by an 
accelerated mirror, and also to an understanding of the dif- 
ference between them and Hawking radiation. In particular, 
it was found that for any prescribed motion of the mirror, 
where one can ignore recoil, the probability of emitting a 
certain number of quanta is distributed according to a geo- 
metrical progression, as in the production of electron pairs 
by a field.'9720 Furthermore, the field produced by a classical 
current is in a pure coherent state:' while the probability of 
radiating a certain number of photons is given by a Poisson 

distribution (cf. Sec. 9 in Ref. 12). Accordingly we feel that 
the Bose-Einstein and Fermi-Dirac spectra in Eqs. (53) 
with a "temperature" proportional to the acceleration at the 
turning point are not related to the statistics of the emitted 
quanta, but are determined by the exponential shape of the 
source trajectory and the spin of the field. 

The referee has drawn our attention to Refs. 22 and 23, 
in which the effects of null oscillations of the electromag- 
netic field are considered. The relation between these effects 
and the production of particles by an accelerated mirror, 
treated in Refs. 1-3, 10, and 18 and the present work has not 
been established. 

We express our gratitude to the Soros Fund and the Rus- 
sian Fund for Fundamental Research for financial support. 

IS. W. Hawking, Commun. Math. Phys. 43, 199 (1975). 
'N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, 
Cambridge Univ. Press, Cambridge (1982). 

3 ~ .  S. DeWitt, Physics Reports 19C, 295 (1975). 
4 ~ .  I. Akhiezer and V. B. Berestetskii, Quantum Electrodynanzics, Wiley, 
New York (1965). 

5L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Perga- 
mon, Oxford (1975). 

6 ~ .  Jahnke, F. Emde, and F. Liisch, Tables of Higher Functions, McGraw- 
Hill, New York (1960). 

'A. ErdCly (ed.), Higher Transcendental Functions, McGraw-Hill, New 
York (1953). 

'E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Claren- 
don Press, Oxford (1937). 

'1. I. Abbasov, B. M. Bolotovskii, and V. A. Davydov, Usp. Fiz. Nauk 149, 
709 (1986) [Sov. Phys. Usp. 29, 788 (1986)l. 

'OS. A. Fulling and P. C. W. Davies, Proc. R. Soc. Lond. A348,393 (1976). 
"P. A. M. Dirac, Proc. R. Soc. Lond. A167, 148 (1938). 
" W. E. Thirring, Principles of Quantum Electrodynamics, Academic, New 

York (1958). 
1 3 ~ .  Rohrlich, in The Physicist's Conception of Nature, J. Mehra (ed.), Re- 

idel PC, Dordrecht (1973). 
I4c. Teitelboim, Phys. Rev. Dl, 1572 (1970). 
I5v. I. Ritus, Zh. Eksp. Teor. Fiz. 75, 1560 (1978) [Sov. Phys. JETP 48,783 

(1978)l. 
I6v. I. Ritus, Trudy FIAN 168, 52 (1986). 
1 7 ~ .  I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz. 56, 2035 (1969) [Sov. 

Phys. JETP 29, 1093 (1964)l. 
"L. H. Ford, Proc. R. Soc. Lond. A364227 (1978). 
"A. I. Nikishov, Nucl. Phys. B21, 346 (1970). 
'OR. M. Wald, Commun. Math. Phys. 45, 9 (1975). 
"A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Inter- 

science, New York (1965). 
"G. Barton, J. Phys. A 24,991 (1991). 
2 3 ~ .  B. Braginsky and F. Ya. Khalili, Phys. Lett. A 161, 197 (1991). 

Translated by David L. Book 

624 JETP 81 (4), October 1995 A. I. Nikishov and V. I .  Ritus 624 


