
A surface barrier for a vortex loop in type-ll superconductors 
A. V. Samokhvalov 

Institute of Microstructure Physics, Russian Acadenty of Sciences, 603600 Nizhnir Novgorod, Russia 
(Submitted 21 April 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 108, 1091- 1104 (September 1995) 

The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex 
loop near the flat surface of a type-I1 superconductor are calculated in the London 
approximation. The vortex line of such a vortex is a half-circumference of arbitrary radius. The 
interaction between the vortex half-ring and an external uniform magnetic field applied 
along the surface is studied and the value of the energy barrier that hinders vortex expansion into 
the superconductor is found. Also discussed are mechanisms by which expanding vortex 
loops near the surface of the type-I1 superconductor form an equilibrium vortex line with a shape 
determined by the distribution of the applied magnetic field. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

In the mixed state, magnetic flux penetrates a type-I1 
superconductor in the form of separate quanta of magnetic 
flux +o= &c/e or Abrikosov vortices, which in the equilib- 
rium state constitute a regular lattice.' The presence of such 
vortices in the interior of the superconductor and their inter- 
action with inhomogeneities and defects of the material (pin- 
ning) determine the magnetic properties of the 
superconducto? and the possibility of dissipation-free cur- 
rent flow.3 On the whole the equilibrium shape of an Abri- 
kosov vortex resembles the distribution of the lines of force 
of the external magnetic field. If the external magnetic field 
is uniform, an Abrikosov vortex with a straight vortex line 
parallel to the magnetic field correctly represents the distri- 
bution of the magnetic field. Penetration of such vortices into 
the superconductor is blocked by the Bean-Livingston en- 
ergy barrier, which exists near the surface and has a strong 
effect on the motion of the vortices in the direction perpen- 
dicular to the surface.475 As the external magnetic field H o  
gets stronger, the barrier lowers and finally disappears com- 
pletely in fields on the order of the thermodynamic critical 
field H e m .  If the external field H o  is lower than H e m ,  the 
vortices penetrate the superconductor because of fluctuations 
and a nucleation center in the form of a vortex loop appears 
near the ~urface .~  There exists a minimum critical size of the 
loop at which the vortex does not collapse at the surface but 
continues to expand into the bulk of the superconductor. 

In this paper we obtain solutions of the London equation 
that describe the behavior of Abrikosov vortices in the shape 
of a half-ring (a loop) near the flat surface of a type-I1 su- 
perconductor. In Sec. 2 we calculate the distribution of the 
magnetic field, the magnetic flux, and the free energy of an 
isolated Abrikosov vortex with a vortex line in the form of a 
half-ring of arbitrary radius. Section 3 studies the interaction 
of a vortex half-ring and an external uniform magnetic field 
and calculates the energy barrier that prevents the formation 
of a vortex expanding into the bulk of the superconductor. In 
Sec. 4 we discuss the mechanism of formation of the equi- 
librium shape of a vortex line, determined by the distribution 

of the external magnetic field Ho, from expanding vortex 
loops near the surface of a type-I1 superconductor. 

2. A VORTEX HALF-RING NEAR THE FLAT SURFACE OF A 
SUPERCONDUCTOR 

Let us assume that a superconductor with a magnetic- 
field penetration depth X and a coherence length 6 occupies 
the space z S 0  and that the superconductor surface S coin- 
cides with the (x,y) plane. Suppose that the vortex line 
forms a semicircle of arbitrary radius p, and lies in the (y ,z) 
plane parallel to the external magnetic field & (Fig. 1). Then 
in view of the continuity of magnetic flux the ends of the 
vortex must lie on the surface S (Ref. 6). In the London 
approximation, valid for superconductors with large 
Ginzburg-Landau parameters, K = XI ES 1,  the distribution 
of the magnetic field H in the superconductor (zS0)  is de- 
scribed by the London equation 

Here r, is the radius vector determining the position of the 
vortex line in the superconductor, and e, is the unit vector 
directed along the tangent to the vortex line. Outside the 
superconductor (z>0) the magnetic field H, satisfies the 
Maxwell equation 

curl H, = 0. (2) 

The boundary conditions at the surface S can be obtained 
from the condition that all components of the magnetic field 
are continuous at z = 0,  

We have used dimensionless variables everywhere, assuming 
that the magnetic flux is measured in units of the flux quan- 
tum Q o  and that all units of length are normalized to A.  In 
terms of these variables the unit of magnetic field H is 
Q o / h 2  and the current density j is measured in units of 
c * ~ / A ~ .  

~ e ' n o w  use the fact that Eq. ( I )  and the boundary con- 
ditions (3) are linear and write the solution for the field H in 
the superconductor in the form of a linear combination, 
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FIG. 1. An Abrikosov vortex in the form of a semicircle radius p, near the 
flat surface S of a type-I1 superconductor. The superconductor occupies the 
half-space z-ZO and is characterized by the depth A to which the magnetic 
field penetrates and the coherence length 5; the vortex line lies in the ( x , y )  
plane. 

The term H , = H , e ,  describes the distribution of the mag- 
netic field of a closed Abrikosov vortex with the vortex line 
in the form of a circle of radius p ,  and in cylindrical coor- 
dinates ( p  = JF2, p , x )  satisfies the following equation 

The solution of Eq. (5) that describes the structure of a tor- 
oidal Abrikosov vortex and is valid for a vortex of arbitrary 
radius p ,  was obtained in Refs. 7-9 via a Fourier-Bessel 
transformation. It can be written as 

(6) 

where I ,  ( z )  and K , ( z )  are modified Bessel functions. The 
term H,/ is the solution of the homogeneous London equation 

H,/+ curl curl Hd= 0 (7) 

with the boundary conditions (3) in the region z c 0 .  To solve 
Eq. (7) we write the projections H d = ( H 2 , H ; ) ; , H : )  in the 
form as two-dimensional Fourier integrals in the spatial har- 
monics: 

with a = x , y  , z .  The field H ,  generated by a vortex outside 
the superconductor ( z > 0 )  is a potential field, and the poten- 
tial U s  corresponding to this field, 

satisfies the Laplace equation 

We look for a solution of Eq. (10) in the form 

Substituting the Fourier expansions (8) and (11) into Eq. (7) 
and the boundary conditions (4), we arrive at a system of 
linear algebraic equations for the unknown coefficients C :  
and C s  . Solving it, we find (for q2+ u 2  # 0) that 

When q = u = 0 holds, all the coefficients C z  and C ,  in the 
expansions (8) and (11) are zero. Here the function 
S , ( q , u )  is determined by the spatial Fourier spectrum of the 
distribution of the magnetic field H, (Eq. (6)) in the z= 0  
plane: 

Substituting into the expansion (13) the distribution of the 
magnetic field H ,  given by (Eq .  (6), we can easily arrive at 
the following integral representation for the spectral function 
S , ( q , u ) :  
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the orientation of the intersecting plane 2 in relation to the 
superconductor's surface. Hence selecting y = O  as ); for 
simplicity, we get 

FIG. 2. The magnetic flux 0, in a toroidal Abrikosov vortex (curve 1)  and 
the magnetic flux QI- ( c u ~ e  2) as functions of the radius p, of the vortex 
line. The inset depicts the section plane 'C = 'C - + 'C + . 

The details of the numerical calculation of the spectral func- 
tion S , ( q , u )  are given in the Appendix. Employing the as- 
ymptotic behavior of the modified Bessel functions Zl ( z )  and 
K ( z )  with 2% 1, we can show that for large values of the 
spectral variable u the following approximate expression for 
S , ( q , u )  is valid: 

The above solutions completely determine the distribu- 
tion of the magnetic field in a vortex half-ring that is near the 
surface of a type-I1 superconductor. The field Hd describes 
the perturbation of the structure of the toroidal Abrikosov 
vortex (6) introduced by the surface S in the region where 
the vortex line is situated, Hd.H,<O. Thus, the effect of the 
superconducting surface is such that the magnetic field on 
the vortex axis diminishes. The characteristic scale of varia- 
tion of Hd along the z  axis is determined by the vortex radius 
p,  and the depth of penetration A by the magnetic field. 
Since the vortex line emerges from the superconductor's sur- 
face, a fringe field H,  appears outside the superconductor. 
This field resembles the magnetic field of a dipole and no- 
ticeably diminishes over distances of order p ,  from S. 

To calculate the magnitude of the magnetic flux (9 in the 
vortex half-ring, we select an intersecting plane that passes 
through the center of the vortex half-ring and the x  axis, as 
shown in the inset in Fig. 2. Since the magnetic field and the 
supercurrent in the vortex are localized near the vortex line 
and disappear at large distances from the line, the total mag- 
netic flux Qz through 2 is zero: 

where Qc_ - + are the magnetic fluxes through the correspond- 
ing half-planes 2% . Using Gauss's divergence theorem, one 
can easily establish that the fluxes are independent of 

The term <P, is the magnetic flux in an undistorted toroidal 
Abrikosov vortex and was calculated in Ref. 8, 

and the magnetic fluxes ad and (9, are completely deter- 
mined by the form of the spectral function S , ( q , u ) :  

The results of calculating (9, and a8- are illustrated by Fig. 
2. The magnetic flux Oz - in a vortex half-ring strongly de- 
pends on the radius p ,  of the vortex line and asymptotically 
approaches the flux quantum as p ,  becomes large. As Fig. 2 
shows, Q X -  differs noticeably from <P, in a toroidal Abriko- 
sov vortex. This means that the surface of the superconductor 
has a strong effect on the distribution of the magnetic field in 
the vortex half-ring, effectively lowering the magnetic field 
strength in the region with the vortex line.'' 

Let us calculate the free energy Go of a vortex half-ring 
near the surface of the superconductor as shown in Fig. 1. In 
the region occupied by the superconductor ( z S  0 )  the Lon- 
don equation (1) has the following expression for the free 
energy G -  corresponding to it:" 

1 
G -  =G l z = o d x  d y  [ H X  curl HIz 

The energy of the magnetic field H,  outside the supercon- 
ductor ( z  > 0) is defined in the ordinary manner: 

Substituting the above solutions describing the distribution 
of the magnetic field in a vortex half-ring near the flat sur- 
face of a superconductor into Eqs. (22) and (23), we see that 
the free energy of such a vortex, 

can be written in the form of the sum 

603 JETP 81 (3), September 1995 A. V. Samokhvalov 603 



FIG. 3. The free energy G ,  of one-half of a toroidal Abrikosov vortex 
(curve I) and the contribution G ,  of the superconductor's surface to the free 
energy of the vortex half-ring (curve 2) as functions of the radius p, of the 
vortex line ( K =  100). To preserve the scale, we have plotted the quantity 
100G, along the vertical axis. 

Here G ,  is the energy of one-half of a toroidal Abrikosov 
vortex determined by the magnetic field strength H, at the 
center of the vortex 

and the term G, takes into account the overall contribution of 
the surface and is expressed in terms of the spectral function 
S,(q,v) in the following manner: 

\L 11 

n(n.ul= cos cp cos(up, sin cp) 

q2+u2 

+ U J l f y Z + U 2  
sin sin(up, sincp) 1 

~ e x d - p ,  cos cp JlfyZ+U2 ). 
Figure 3 depicts G, and G, as functions of the radius p, of 
the vortex half-ring. Since we have GS4G, ,  the supercon- 
ductor surface has a negligible effect on the vortex free en- 
ergy Go,  and with good accuracy we can ignore the contri- 
bution of the surface, assuming that 

Thus, the free energy Go(p,) of an Abrikosov vortex shaped 
as a semicircle of radius p, near the flat surface of a type-11 
superconductor has increased only insignificantly in com- 
parison to the free energy G,(p,) of one-half of a toroidal 

604 JETP 81 (3), September 1995 

vortex. At the same time, the distribution of the magnetic 
field in the vortex half-ring differs considerably from that in 
a toroidal Abrikosov vortex of the same radius p, . The dif- 
ference are the greatest in a surface layer of thickness A. The 
effect of the surface is such that the magnetic field in the 
region of the kernel of the vortex half-ring proves to be 
weaker than in the toroidal vortex, and the magnetic flux in 
the half-ring, (Eq. (18)), is lower than the magnetic flux 
a, (Eq. (19)) even for vortices whose size is on the order of 
the depth of penetration by the magnetic field, A (pu> 1). 
Since the magnetic flux in the vortex half-ring closes through 
the space outside of the superconductor, forms a scattering 
field H, forms near the surface, and the field noticeably di- 
minishes over distances of the order of the vortex size. The 
energy of the field H, contributes considerably to the free 
energy of the vortex and compensates for the decreases in the 
London energy G- (Eq. (22)) caused by the distortions of 
the structure of the toroidal vortex introduced by the super- 
conductor surface. 

3. A VORTEX HALF-RING IN AN EXTERNAL FIELD 

As is well known," the behavior of a superconductor in 
an external magnetic field is determined by the Gibbs free 
energy 

If the external field Ho is parallel to the surface S, the dis- 
tribution of the magnetic field in the superconducting half- 
space ( zS0 ;  see Fig. 1) can be written as 

The term Hv satisfies Eq. (1) with the boundary conditions 
(3) and describes the distribution of the magnetic field of an 
Abrikosov vortex with an arbitrary vortex line in a zero ex- 
ternal field, and the term Hm = &ez describes the Meissner 
(vortex-free) distribution of the magnetic field near the sur- 
face of the superconductor. The free energy G is determined 
by Eqs. (22)-(24), in which we must take (30) for the mag- 
netic field H in the superconductor. Selecting the energy of 
the Meissner state as the reference point and allowing for the 
fact that the field Hm on the superconductor surface S coin- 
cides with the external magnetic field Ho,  we can write the 
Gibbs free energy (29) as follows: 

Here Go is the free energy of an Abrikosov vortex, in a zero 
external magnetic field, with a vortex line specified in space 
by an arbitrary curve 1, , and dl, = dl,e, is an arc element 
I, directed along the tangent to the vortex line. Using Eq. 
(31), we can now easily write the Gibbs free energy of an 
Abrikosov vortex shaped as a half-circumference of an arbi- 
trary radius p, : 
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FIG. 5. The height U of the surface banier (curve I) for the vortex half-ring 
FM;. 4. The Gibbs free energy F of a vortex half-ring near the flat surface of and the critical radius p, (curve 2) as functions of the external magnetic field 
a type-I1 superconductor as a function of the radius p, of the vortex line for sfrength Ho ( K =  100).  The region of the peak in the F vs p, dep~ndence is 
several values of the external magnetic field strength Ho ( K =  100). The depicted in the inset on a larger scale. The Gibbs free energy reaches its 

number at each curve stands for the value of Ho in units of the lower critical maximum U when the vortex radius is critical: F ( P c ) =  u at P,= P C .  

field H,, . 

Figure 4 depicts the Gibbs free energy F (Eq. ( 3 2 ) )  as a 
function of the vortex radius p, for several values of the 
strength Ho of the external magnetic field. The way in which 
F depends on p ,  is greatly influenced by the magnitude of 
Ho . Bearing in mind the condition (28)  and allowing for the 
fact that for a large vortex radius, p,+ 1, we have an ap- 
proximate expression for the vortex free energy: 

where H C 1  = (114.rr)ln K is the lower critical field in the Lon- 
don model, we arrive at the following asymptotic expression 
for the Gibbs free energy F ( p , )  when p,% 1 : 

We see that when Ho<H,*, = .rrHC1/2 holds, the Gibbs free 
energy is positive for all p, # 0 and that the lowest energy 
belongs to the Meissner state, which corresponds to vortex- 
free distributions of field and current in the superconductor. 
At Ho= H r ,  the energy of a state with a vortex in the form of 
a half-ring of a large radius ( p , +  1 ) is close to the energy of 
the Meissner state. Note that in this case an Abrikosov vortex 
proves to be asymptotically stable, since 

d F 
lim - =O. 

P"'" ~ P U  

In other words, for a vortex half-ring the field H:, has the 
same meaning as the field H C l  in the classical Bean- 

Livingston p r ~ b l e m : ~  H,*, is the lowest external field at 
which formation of a vortex half-ring in a type-I1 supercon- 
ductor is energetically justified. For Ho>H,*, the F vs p, 
curve has a peak at a certain p , = p , ,  whose position ( p , )  
and height ( U )  decrease as H o  grows (see the inset in Fig. 
5). Figure 5 depicts the height U of the potential barrier and 
the critical radius p, as functions of H o .  The potential bar- 
rier U becomes completely flat when p ,  is on the order of the 
coherence length 6. Using the approximate expression for 
the free energy G, of a vortex half-ring with a small vortex 
radius p,  (see Refs. 13 and 14), 

we find that the potential barrier U disappears, 

if the magnetic field H o  is of the order of the thermodynamic 
critical field in the superconductor, H,,= ~ 1 2 . r r f i .  Thus, for 
a vortex half-ring near a superconductor surface the barrier 
U disintegrates in approximately the same external fields as 
does the Bean-Livingston barrier for an Abrikosov vortex 
parallel to the ~u r f ace .~  Since at field strengths Ho>H,*, the 
Gibbs free energy decreases with increasing vortex radius for 
p,> p, , the vortex half-ring that forms monotonically 
spreads to the point where its interaction with neighboring 
vortices becomes important. 

4. DISCUSSION 

Above we derived solutions of the London equation that 
describe the structure of an Abrikosov vortex shaped like a 
semicircle of arbitrary radius near the surface of a type-I1 
superconductor and studied the interaction of such a vortex 
with an external magnetic field. The problem generalizes the 
well-known ideas about the Bean-Livingston barrier4 to the 
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case of Abrikosov vortices with a curved vortex line. Such 
vortex loops serve as an example of compact magnetic 
 structure^'^ in which the magnetic field and the supercurrent 
are localized in all three directions. In view of the continuity 
of magnetic flux, the ends of the vortex half-ring are at the 
surface of the superconductor, and a corresponding scattering 
field H, is generated outside the superconductor. A potential 
barrier hinders the vortex-loop formation near the supercon- 
ductor's surface. As the strength Ho of the extemal magnetic 
field grows, the barrier lowers. The barrier completely disap- 
pears in fields of the order of the thermodynamic critical 
field H, ,  , when generation of vortex loops with dimensions 
of the order of the coherence length 6 starts at the surface of 
the superconductor, without a threshold. The following 
Meissner current density corresponds to the magnetic field 
strength Ho = H  : 

1 
jm = 4?T curl H, , 

which close to the surface is comparable in magnitude to the 
unpairing current density j,= ~ 1 1 2 6  rr2 (see Ref. 11). 
Since on a scale of order the coherence length 6 the nonuni- 
formity of the Meissner current is unimportant, the condition 
j,- j, determines the threshold of thermodynamic stability 
of a homogeneous current state in superconductors6711 and 
agrees with the Landau criterion for roton excitation in a 
moving superfluid liquid.13,16 

At a nonzero temperature T and in fields Ho<HCm , the 
magnetic flux can penetrate the superconductor because of 
thermally activated generation, subsequent expansion, and 
coalescence of vortex half-rings. Such an activation mecha- 
nism for surmounting the surface barrier plays an important 
role at temperatures T close to the critical temperature T ,  
(see Ref. 17), especially for superconductors with strong 
thermal fluct~ations. '~~'~ 

Formation of an expanding vortex loop near the super- 
conductor surface in an external field is similar to the forma- 
tion of an expanding closed vortex ring in the presence of an 
external ~u r r en t . ' ~ "~  The increase in the energy of the super- 
conductor caused by formation of a vortex half-ring in the 
external magnetic field is related to the self-energy of an 
Abrikosov vortex: the larger the radius p ,  of the vortex line 
the greater the free energy G o  of such a vortex. A decrease in 
the Gibbs free energy is determined by the work A W ( p , )  
done by the source of the external field in the expansion of 
the vortex to the size p, (see Refs. 3 and I I ) :  

FIG. 6. Formation of an Abrikosov vortex 
with a vortex line having equilibrium shape 
near the flat surface of a type-11 supercon- 
ductor in a longitudinal magnetic field H, as 
a result of intersection of the expanding vor- 
tex half-rings. 

HOP,  
~ w ( ~ , ) =  % ( I  - cos q e x d - p ,  cosr j  . 1 

The work A W ( p , )  of the source is related to the displace- 
ment of the vortex line by the Lorentz force fL (see Ref. 19), 

from the Meissner current j ,  . Since this current is concen- 
trated primarily in a layer - h at the superconductor surface, 
the interaction of the external magnetic field with the vortex 
half-ring strongly depends on the vortex size p, . If p , 4  1 
holds and the vortex line is entirely in the surface layer, 
where the current j, may be assumed uniformly distributed, 
A W -  p% (Refs. 12- 14). For large vortex radii (p ,% 1 ), the 
main part of the vortex is in the region where the Meissner 
current is practically zero. The work AW in this case is de- 
termined by the displacement of the sections of the vortex 
line that are in direct contact with the surface, so that 
A  W - p ,  for p,% 1. 

The equilibrium shape of an Abrikosov vortex is deter- 
mined by the distribution of the extemal magnetic field and 
in the given case was found to be a straight vortex line par- 
allel to the surface. An Abrikosov vortex shaped as a half- 
circumference of radius p ,  constitutes the proper structure 
for a vortex nucleation center if p , 4  1 and the inhomogene- 
ities in the Meissner current density j ,  are not large on the 
scale of the vortex dimensions. In this case the Lorentz force 
fL given by Eq. (38) is the same for all sections of the vortex 
line, and the vortex half-ring expands isotropically, i.e., with- 
out change of shape. When the size of the vortex half-ring 
becomes comparable to the depth of penetration X by the 
magnetic field ( p u s  1 ), the Lorentz force fL for the sections 
of the vortex farther from the surface is found to be consid- 
erably weaker. This distorts the vortex shape so that the vor- 
tex loop finds itself stretched along the superconductor's sur- 
face, i.e., has a considerable section aligned with the external 
field. 

The model of an isolated vortex half-ring expanding into 
the superconductor is valid as long as the vortex is consid- 
erably smaller than the characteristic distance L between the 
vortices. If L - 2 p ,  holds, the interaction of neighboring vor- 
tices becomes important and has a strong effect on the pro- 
cess of expansion of the vortex loops. Further convergence 
of the sections of neighboring vortices with oppositely di- 
rected magnetic fluxes may lead to an intersection of vortex 
lines.3 Figure 6 depicts the sequence of formation of a 

606 JETP 81 (3). September 1995 A. V. Samokhvalov 606 



straight Abrikosov vortex parallel to the surface of the super- 
conductor as a result of intersection of vortex loops. Note 
that within this mechanism the surface barrier that hinders 
the formation of a straight Abrikosov vortex in fields 
Ho< Hem is determined by the potential barrier for a vortex 
half-ring, i.e., can be lower than the ordinary Bean- 
Livingston barrier.4 

5. CONCLUSION 

In this work we have calculated, in the London approxi- 
mation, the distribution of the magnetic field, the magnetic 
flux, and the energy of an Abrikosov vortex shaped as a 
3semicircle of arbitrary radius p, near the flat surface of a 
type-I1 superconductor in an external magnetic field Ho par- 
allel to the surface. Formation of such a vortex is hindered 
by a surface barrier similar to the Bean-Livingston barrier 
for an Abrikosov vortex with a straight vortex line.4 As the 
external magnetic field strength Ho grows, the potential bar- 
rier flattens out and disappears completely in fields of the 
order of the thermodynamic critical field Hem, when creation 
of vortex loops without a threshold with dimensions of the 
order of the coherence length 5 becomes possible. At tem- 
peratures T close to the critical temperature Tc and in fields 
Ho<HCm, the magnetic flux may penetrate the superconduc- 
tor as a result of thermally activated creation of vortex half- 
rings at the surface of the superconductor and their subse- 
quent merger. We have also discussed the mechanisms by 
which the equilibrium shape of an Abrikosov vortex forms 
via expansion and intersection of vortex loops. 

APPENDIX 

Let us express the spectral function S,(q,u) in terms of 
an auxiliary function wqu(z) satisfying the following inho- 
mogeneous differential equation with zero initial conditions: 

1 
w&- - wiu-(l +q2)wqu= -sin uz, 

Z 

wqu(0) = wi,(O) = 0. (Al) 

Writing the Green's function for Eq. (Al), we obtain the 
following particular solution: 

Using the tabulated value of the integral,20 

we arrive at the following relationship linking the spectral 
function S,(q,u) and the auxiliary function wq,,(z): 

Thus, to calculate the value of S,(q,u) for arbitrary q and u 
we can solve the differential equation (Al) on the interval 
z E [O,p,] and substitute the obtained value of wq,(p,) into 
Eq. (A2). This method of calculating the spectral function 
S,(q,u) is especially effective for large q and u (q, US 1 )  
by making it possible to employ the well-known methods of 
solving the Cauchy problem for differential equations instead 
of calculating improper integrals of rapidly oscillating func- 
tions. 
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