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The nonlinear dynamics of multiple-sublattice noncollinear antiferromagnets with modulated 
magnetic structures are studied using the effective Lagrangian method. An analysis is performed in 
the concrete example of a three-sublattice model of magnets of the CsCuC13 type, in which 
a helical structure exists along with the triangular ordering of the spins in the basal plane. One- and 
two-parameter solutions of the equations of motion, which describe different nonlinear 
excitations in the magnet, are found, and the fundamental influence of an external magnetic field 
on the character of the soliton solutions is demonstrated. O 1995 American Institute of 
Physics. 

I. INTRODUCTION 

Recently, there has been steady interest in theoretical and 
experimental investigations of noncollinear antiferromag- 
netic crystals, which include, in particular, many multiple- 
sublattice antiferromagnets, as well as numerous antiferro- 
magnets with an incommensurate magnetic structure in the 
ground state. The investigations of such magnets have been 
concerned mainly with describing their static properties, 
studying phase transitions of various kinds, analyzing the 
spectrum of linear excitations (spin waves), etc. 

Considerably less attention has been focused on the non- 
linear dynamics of magnets, whose description requires the 
use of models with three or more sublattices [in contrast to 
one-sublattice ferromagnets and two-sublattice antiferromag- 
nets, in which nonlinear excitations have been studied in 
great detail (see, for example, Refs. 1 and 2)]. Although 
some models of multiple-sublattice magnets make it possible 
to find very simple nonlinear solutions (for example, the do- 
main boundaries in a four-sublattice antiferromagnet of the 
La2Cu04 type,3) in the general case the integration of the 
equations of motion (the Landau-Lifshitz equations) for the 
magnetization vectors M, (n = 1,2, ... , N) in multiple- 
sublattice magnets runs into insurmountable mathematical 
difficulties, since it reduces (even taking into account the 
constancy of the magnitudes of the magnetization vectors) to 
a system of 2N differential equations in partial derivatives, 
which is fairly cumbersome and inconvenient for analysis. 

There is, however, an alternative and very productive 
approach to the study of the dynamic properties of magnets, 
viz., the effective Lagrangian method, which was developed 
in Refs. 4-6. According to this method, any magnetic struc- 
ture can be described in the exchange approximation by no 
more than three mutually perpendicular unit vectors l ,(r,t)  
(where a= 1 ,  2, 3), whose relative orientations remain un- 
changed in different excited states, i.e., which form a "rigid" 
reference frame. Any excited state assigned by the vectors 
I,,(r,t) can be obtained from the original uniform state 1:'' 

by rotation through the angle + ( r , t ) ,  which depends on the 
coordinates and the time: 

where D(+) is a three-dimensional orthogonal matrix. 
The dynamics of long-wavelength ("hydrodynamic") 

excitations, in which the characteristic scale of the spatial 
nonuniformity greatly exceeds the crystal-lattice constant 
and the frequencies are much smaller than the exchange fre- 
quencies, can be studied by the phenomenological Lagrang- 
ian method. Various relativistic interactions which fix the 
orientation of the magnetic vectors 1, relative to the crystal- 
lographic axes can also be taken into account within the ef- 
fective Lagrangian method: if these interactions are much 
weaker than the exchange interactions. 

The high degree of generality of effective Lagrangians 
permits their application to practically any multiple- 
sublattice magnet having either a uniform or an nonuniform 
ground state, including noncollinear antiferromagnets with 
triangular ordering of the spins, which have been studied 
intently (see, for example, the review in Ref. 7 and the lit- 
erature cited therein), as well as magnets having a ground 
state in which a modulated magnetic structure is realized. 
Nonlinear excitations in some multiple-sublattice magnets 
were previously studied in Refs. 8 and 9 using the effective 
Lagrangian method. In Refs. 10 and 11 this method was used 
to analyze the nonlinear dynamics of spin glasses. 

The present work is devoted to a theoretical analysis of 
the nonlinear dynamics in noncollinear antiferromagnets of 
the CsCuCI3 type. This class of magnets is extremely inter- 
esting, since they exhibit both triangular ordering of the 
spins and an incommensurate periodic structure of the 
"simple helix" or "ferromagnetic helix" type (the SH or FH 
type in the notation adopted in accordance with Ref. 12) and 
represent a fairly rare case of a modulated magnetic structure 
of relativistic and exchange origin, i.e., which results from 
the competition between the exchange interaction and the 
Dzyaloshinskii-Moriya interaction (in the overwhelming 

502 JETP 81 (3), September 1995 1063-7761 /95/090502-07$10.00 O 1995 American Institute of Physics 502 



majority of magnetically ordered crystals the modulated 
structures are associated with competition between exchange 
interactions). 

In addition, the quasi-one-dimensional nature of the non- 
linear waves in these magnets, i.e., the smallness of the ex- 
change parameters coupling the chains of spins compared 
with those within the chains, imparts special urgency to the 
analysis of these waves. In low-dimensional magnets, in par- 
ticular, nonlinear excitations play an important role in shap- 
ing the low-temperature thermodynamics, since, although the 
density of the nonlinear excitations at low temperatures is 
small compared with the density of the magnons, their con- 
tribution to certain thermodynamic parameters can dominate 
in some cases.I3.l4 

Although we shall consider the nonlinear dynamics of 
multiple-sublattice antiferromagnets in the specific example 
of the compound CsCuCI, below, the results obtained can be 
generalized to the case of other multiple-sublattice magnets 
with a similar magnetic symmetry, which can be described 
within the effective Lagrangian method. 

2. STRUCTURE AND THERMODYNAMIC POTENTIAL OF 
THE CSCUCI~ SYSTEM 

The experimental and theoretical investigation of the 
magnetic properties of compounds of the CsCuC13 type has 
been the subject of numerous studies (see Refs. 15-20), in 
which various details of the magnetic structure of these mag- 
nets were discovered and various models were proposed to 
describe them. In particular, it was found that in the para- 
magnetic state the compound CsCuC13 has P6,22 spatial 
symmetry at temperatures below T,=423 K and that six 
magnetically active cu2+ ions (s= 112, where s is the mag- 
nitude of the spin) are located in b positions, i.e., are dis- 
placed in the basal plane of the crystal relative to the hex- 
agonal 6 ,  axis by a small amount K-0.06. The cu2+ ions 
form helical chains oriented along the 6 ,  axis (the distance 
between neighboring ions in a chain is equal to - co/6 when 
the crystal-lattice parameters are co= 18.1777 A and 
ao=7.2157 A). The small value of K and the nature of the 
exchange, indirect exchange, and relativistic-exchange 
interactionslg (particularly, the weakness of the interchain in- 
teractions in comparison with the in-chain interactions) 
specify the nearly quasi-one-dimensional character of the 
magnetic behavior of the system under consideration. 

Experimental neutron-diffraction data indicate that a tri- 
angular antiferromagnetic structure occurs in the CsCuC13 
system in the basal plane of the crystal and that long-period 
modulation of this triangular structure occurs along the hex- 
agonal 6 ,  axis (henceforth the z Cartesian axis) in the mag- 
netically ordered state below TN= 10.7 K. The rotation angle 
between the magnetizations of chain cu2+ ions in neighbor- 
ing basal planes averaged over a structural period is approxi- 
mately equal to 5.1 ". Therefore, the modulation period 
amounts to about 12 lattice constants. 

The triangular antiferromagnetic structure in the basal 
plane requires tripling of the magnetic unit cell in compari- 
son with the crystal-chemical unit cell in that plane. There- 
fore, in the general case 18 magnetic sublattices are needed 
to describe i t  theoretically. However, on the basis of the re- 

sults in Ref. 20, the technique of extended translational sym- 
metry can be used to derive a model with three sublattices 
(so that each spin chain of CU*+ ions is described in the 
terms of a single magnetic sublattice), which makes it pos- 
sible to simplify the problem significantly. Such a model was 
used in Ref. 21 in a theoretical analysis of linear magnetic 
excitations, whose results agree fairly well with the experi- 
mental data in Ref. 22. 

Following Refs. 20 and 21, the thermodynamic potential 
of a system can be represented in the form 

Here m,= M, IMo; the M, are the magnetizations of the 
sublattices, where n= 1,2, 3; IM,I = M ~ =  const; a > O  is the 
nonuniform exchange coupling constant, which is deter- 
mined by the exchange integral within the chains J 
(a-JC:); cul is the in-chain nonuniform relativistic- 
exchange coupling ~onstant?~ whose sign is insignificant for 

a U 
the formation of a modulated structure, and a,- - - , 

co c 
where u is the Fermi velocity of the electrons and c is the 
velocity of light; S > 0 is the uniform intersublattice ex- 
change coupling constant, which is determined by the inter- 
chain exchange integral I (S-I); B>o is the crystallo- 
graphic magnetic anisotropy constant, and h= WMo,  where 
H is the external magnetic field (henceforth h= he,). The 
experimental values presented in Ref. 19 for J and I give the 
estimate IIJ- 0.1, which implies a definite similarity be- 
tween the magnetic CsCuC13 system and a quasi-one- 
dimensional system. We also note that S P B. 

The presence of relativistic-exchange terms which are 
linear with respect to the first spatial derivative in (2) leads to 
the formation of a long-period modulated magnetic structure, 
which creates periodic modulation of the simple harmonic 
triangular antiferromagnetic structure in the three-sublattice 
magnet with a strong antiferromagnetic exchange interaction 
between the sublattices under consideration. In other words, 
three FH structures similar to the ones first described in Ref. 
23, which are correlated in the triangular antiferromagnetic 
structure in the basal plane of the system, appear in the mag- 
net. 

The wave vector of an FH structure is q = - a ,  l a ,  and 
the angle ,y by which the magnetization vectors M,, of the 
sublattices depart from the basal plane is determined by the 
magnitude of the external magnetic field: sin,y=h/3S. In the 
absence of an external magnetic field, the harmonic FH 
structure transforms into a structure of the SH type (,y=O), 
and the sublattices form angles equal to 2 ~ 1 3  between one 
another. 
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3. EFFECTIVE LAGRANGIAN AND EQUATIONS OF MOTION 

In the absence of an external magnetic field h, the mag- 
netization vectors m, of the sublattices in the system lie in 
the basal (xy) plane and form a triangular antiferromagnetic 
structure. Therefore, the following vectors can be chosen as 
the mutually orthogonal unit vectors 1, : 

The orientations of 1i0) and IT) relative to the Cartesian x 
and y axes were not fixed; therefore, without any loss of 
generality, we can set liO)=ex and 1$')=ey, where ex and 
e,, are the corresponding unit vectors. Then 

The effective Lagrangian L which describes the noncollinear 
antiferromagnet under consideration has the form6 

Here mi(+,$) are differential Cartan forms, which are re- 
lated to the rotation matrix ~ ( 4 )  by the expression 

mi( 4, $1 = B ~ i k l ~ k ~ ~ l ~  ; (6) 

g is the gyromagnetic ratio; the dot signifies differentiation 
with respect to time; X, and are the transverse and longi- 
tudinal (with respect to the vector IT)= 1:') X I?)) suscepti- 
bilities of the antiferromagnet, and X, ,~11--6-~; eik1 is a 
totally antisymmetric third-rank tensor, and U is the "poten- 
tial" energy of the magnet, whose form can easily be ob- 
tained from the expression for the density of the thermody- 
namic potential (2) with consideration of the relations (3) 
and (4): 

where the prime denotes a derivative with respect to the co- 
ordinate z. 

The magnetization vector M in the system described by 
the effective Lagrangian (5) is specified by the relation6 

We note that the density of the "kinetic" part of the 
Lagrangian (5) is analogous to the kinetic energy of a sym- 

metric top and that the entire system under consideration can 
be interpreted as the continuum limit of a system of distrib- 
uted symmetric tops. 

If the external magnetic field is sufficiently weak in 
comparison with the field of the intersublattice exchange in- 
teraction ( h <  a), it can also be taken into account in the 
analysis of the dynamics of a magnet using an effective 
~ a ~ r a n ~ i a n . ~  The new effective Lagrangian can be obtained 
from (5) by the replacement mi-' wi+gHi. 

To study the dynamic properties of the model with a 
modulated ground state that we are considering, it is conve- 
nient to represent the rotation matrix D in the form of a 
product of two matrices: 

where DO(z) describes the rotation of the basal reference 
frame through the angle l o=qz  around the z axis, which 
corresponds to the ground state of the magnet (a helical 
structure with a wave vector q = - al / a ) ,  

cos lo -sin lo 
(9) 

0 

Substituting (8)-(9) into the expression (7) for the po- 
tential energy of the system, we can easily see that the latter 
is dependent only on the elements of the matrix &: 

where p= p+ a:/ (Y is the effective uniaxial anisotropy con- 
stant. 

In fact, the transition from D to 6 is a transition to a 
coordinate system which rotates in space and in which, un- 
like (7), the effective potential energy (10) does not contain 
terms that are linear with respect to the spatial derivatives. 
This situation greatly simplifies the analysis of the dynamics 
of the system. 

The rotation matrix &(@) can have different parametri- 
zation~. The parametrization = ntan(rC1/2), n2= 1 has been 
used for it in numerous papers. It has a simple physical 
meaning: rotation of the reference frame through the angle 
@ around the axis assigned by the unit vector n. A param- 
etrization of the rotation matrix defined by the components 
of the four-dimensional unit vector v, , where p= 1-4, was 
found to be more convenient in the analysis of the spectrum 
of linear spin waves in a multiple-sublattice antiferromagnet 
in Ref. 21. 

Analysis reveals that a parametrization of the matrix 6 
based on Euler angles is most convenient for studying non- 
linear excitations in the model under consideration here: 
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The differential forms mi, which are defined in (6) and Since the total rotation angle of the reference frame + is 
have the meaning of components of the angular velocity, like related to the Euler angles by the known expression 
the potential energy (lo), do not contain elements of D~ and 
are equal to 4 8 ++40 

C O S  = cos-cos- 
2 2 2 '  (19) 

the localized solutions of the system of equations (16)-(18) 

(12) of interest to us have the boundary conditions 

0 4 0 ,  (*+ cp)+O, el+O, (*+ cp)'+O 

for z + ? M .  
Plugging (10)-(12) into (5) and taking into account the (20) 

external magnetic field H, which is aligned parallel to the z Let us move on to an analysis of some particular solu- 
axis, we obtain the effective Lagrangian of the system in the tions of the equations of motion (16)-(18) which satisfy the 
form boundary conditions (20). 

We note that in a spin glass, which has a higher symmetry 
than a noncollinear antiferromagnet, X, = XII holds (Ref. 6), 
and in the absence of an external magnetic field a spin glass 
can be described by a "Lorentz-invariant" 

The Lagrangian (13) contains two cyclic variables, viz., 
$ and cp, which correspond to two different integrals of the 
motion: 

The equations of motion corresponding to the Lagrang- 
ian (13) have the form 

4. SIMPLE WAVES 

First we consider the simple-wave solutions, for which 
0 = 0 ( 0 ,  = $(t),andcp=cp(5), where&=z-VtandV 
is the velocity of the wave. 

From Eqs. (17) and (18) we find 

where R2=  R ~ - ~ ~ ~ v I ~ M ~ ,  R1 and R2 are the first integrals 
of Eqs. (17) and (18), and c2= a ( g ~ o ) 2 / 2 X I  is the charac- 
teristic velocity, which coincides with the minimal phase ve- 
locity of the linear spin waves (see Ref. 21). In an antiferro- 
magnet this velocity has an order of magnitude of lo6 cmls. 

Substituting the expressions (21) and (22) into Eq. (16), 
after some simple manipulations we obtain 

Note that Eq. (23) has the same structure as the equation 
describing a heavy symmetric top and can be integrated in 
general form, i.e., with arbitrary values of R1 and i2 (see, 
for example, Ref. 24). Then the solutions can be expressed 
explicitly in terms of elliptic functions. 

However, we are interested only in localized solutions 
which satisfy the boundary conditions (20). It is easy to see 
that such solutions are obtained with the following definite 
values of the parameters: 

1 + cos2 0 XI a R2=0, R,=R2=--  
- ( &in2 0) 

v. 
gM0 

(24) 
2 "1 - (gMo)l df 

When the parameters have such values, Eq. (23) can be 
L &-:-a- n brought into the form 

d a 
a -($'+cpl cos0)- - 'I1 -(*+ ~ C O S O ) = O .  (18) where lo= zo Jw, B =2xllhVIPgMolo, and 

dz ( g ~ o ) ~  d t  ZO= m. 
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The localized solution of Eq. (25) can be represented in 
the form 

20 -  v* 1 - v2/v,2 
tan 

2 IV/ J w c o s h ( 2 ~ ~ ) +  I V I I V ,  ' 
(26) 

where we have introduced the notation 

Solution (26) describes a one-parameter simple-wave 
soliton propagating along the axis of a helical structure. This 
solution exists for V<V, , where V ,  is the limiting velocity 
of the soliton. Note that the value of the limiting velocity is 
smaller than the characteristic velocity c and decreases as the 
external magnetic field h increases. 

The amplitude Om,= 0 (0) of a soliton is determined by 
the parameter B and equals 

It is not difficult to see that Om,, as in the case of a 
ferromagnetic soliton,"25 decreases when the velocity of the 
soliton V increases and that as V-,V, it tends to zero, 
Om,- Jm, and the soliton degenerates. We also note 
that when the velocity of the soliton is fixed, its amplitude 
decreases with increasing magnitude of the external mag- 
netic field. 

In the absence of an external field or when V=O, the 
coefficient B in Eq. (25) vanishes, a soliton solution like (26) 
does not exist, and Eq. (25) has the nontrivial solution of a 
moving (when h = 0) or resting (when V= 0) " 180" domain 
boundary: " 

1 
sin 0 = 

cosh(~/lo)  ' (28) 

But if B< 1, i.e., if the velocity of the soliton is suffi- 
ciently small (VdV,) or if the value of the external field is 
small ( h 9  J=lXII the amplitude of the soliton is close to 
T, and it can be regarded as a bound state of two 180" 
domain boundaries separated by a distance proportional to 
1 1 4  - 

The energy E of the soliton excitation (26) equals 

The constant of motion NII,  in Eq. (22) corresponding to 
the soliton solution (26) is equal to zero, and the integral 
N ,  (21) can be represented in the form 

The energy E of the soliton and the motion integral N ,  
increase without bound as V-+O and tend to zero as 
v-, v, . 

To conclude this section we once again mention the fun- 
damental significance of the influence of the external mag- 
netic field on the character of the solution of the equations of 
motion under consideration: if there is no field, the localized 
soliton solution (26) does not exist, and only the nonlocal- 
ized solution (28) of the domain-boundary type is realized. 

5. PRECESSION SOLITONS 

Let us consider one more example of a one-parameter 
soliton solution of Eqs. (16)-(18), in which $= - cp= wt 
and 0= O(z). It is not difficult to see that in this case the 
equalities (17) and (18) hold identically and that the function 
O(z) satisfies the equation 

where we have introduced the notation 

A localized solution of Eq. (31) exists for R <  1 or 
w-< w< w+ , where 

The functional dependence of the solution of Eq. (31) is 
determined by the sign of the parameter a :  

Alcosh(Zz), R>0,  
tan - = 

Alsinh(Zz), R<O, 

where 

At positive values of the parameter Cl>0 (to which 
the frequency ranges o - < w < 0 and g H < w < w + corre- 
spond) the amplitude of the soliton equals Om, 
= 0 (0)=2arctanA<~; but if .R<O holds (i.e., in the fre- 
quency range O <  o < g H )  the amplitude equals Om,= T. In 
the latter case the solution (33) corresponds to a nonzero 
topological charge. ' 

It is important to note that solitons with a nonzero topo- 
logical charge (kinks) are of great importance in the solution 
of so-called soliton thermodynamics in one-dimensional 
magnetic systems (see, for example, Refs. 13, 14, and 26). 
As was shown in those papers, a kink density in thermody- 
namic equilibrium exists at finite temperatures, causing sig- 
nificant changes in the structure of the spin-spin correlation 
functions of the system, which determine the character of the 
neutron scattering. In particular, just such excitations form 
the experimentally observed central peak in the neutron- 
scattering s p e c t r ~ r n . ' ~ . ~ ~  
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The value R = 0 ,  to which two frequency values, viz., 
w=O and w = g H ,  correspond, is a special point of Eq. (3 1). 
Here, as in the case of Eq. (25) considered in the preceding 
section, the nontrivial solution of Eq. (31) defines a solution 
of the domain-boundary type and has a form similar to (28). 

We stress that in the absence of an external magnetic 
field, R 2 0  holds for all values of the frequency w and that 
there is, therefore, no solution with a nonzero topological 
charge. 

If the external magnetic field is sufficiently small, the 
frequency range (w- ,w+), in which there are no precession 
solitons, is determined by the antiferromagnetic resonance 
frequency wo=c/z0- s-I: wt=  + w0. Here the 
range for the existence of solitons with a nonzero topological 
charge (0,gH) is small, if the magnitude of the external mag- 
netic field is small. As the field increases, the width of the 
range for the existence of soliton excitations like (33) in- 
creases. 

On the basis of the structure of the rotation matrix 6 
(1 l), it is not difficult to see that the solution under consid- 
eration corresponds to the precession of the vector l3 in a 
spatially nonuniform reference system with an angular veloc- 
ity w around the z axis, which forms an angle 6 with that 
axis. At the same time, the vectors 1, and l2 precess in the 
plane perpendicular to 13.  

The energy of a precession soliton and the integrals N* 
and N, for either sign of R are specified by the common 
formulas: 

where p = 1 -XI[ /x1 . 
When w t  wt (R-. 1 ) holds, both the energy and the 

motion integrals N* and N, tend to zero; in the limit 
w j O ,  the values of E and N, diverge, and N*-+O. In the 
vicinity of the second special point w=gH all three motion 
integrals diverge. 

We present a simple relation, which holds for the motion 
integrals E, N, , and N+: 

6. TWO-PARAMETER SOLITONS 

In the preceding sections we considered one-parameter 
solutions of the equations of motion (16)-(18). More com- 
plicated localized solutions of these equations can be ob- 

tained for H = 0, if fi is set equal to - cp = const. In that case 
(17)-(18) hold identically, and (16) reduces to the familiar 
sine-Gordon equation: 

where the parameters zo and c were defined above. 
The sine-Gordon equation is exactly integrable,27 mak- 

ing it possible to construct solutions describing multisoliton 
excitations of a multiple-sublattice quasi-one-dimensional 
magnet. These solutions have been adequately studied, and 
there is, therefore, no sense in dwelling on them in detail 
here. We only note that, by virtue of the condition 
@= - q =  const, in the system under consideration all such 
solutions correspond to oscillations of the rigid reference 
frame around an axis lying in the xy plane, which in turn 
rotates around the z axis owing to the nonuniformity of the 
ground state. For example, when @= p= 0 holds, the oscil- 
lations occur around the vector I, , and for @= - cp = ~ / 2  
they occur around 12. 

We present two two-parameter solutions of Eq. (38). 
One of them is the two-soliton Perring-Skyrme solution: 

6 V sinh(zllo) 
tan -= - 

2 c cosh(Vtllo)' 

where lo= z o J m .  This solution describes the interac- 
tion of two nonlinear waves moving in opposite directions to 
one another with a velocity V. 

The second example is a solution which describes a 
bound state of two solitons (a breather): 

The solution (40) corresponds to an excitation moving 
with a velocity V, in which the vector l3 in the coordinate 
system associated with the wave precesses with a frequency 
w l = w m .  

In addition, we note that the sine-Gordon equation has 
various multisoliton solutions, including solutions with a 
nonzero topological charge (kinks) [in particular, a one- 
soliton solution like (28)]. As we have already noted in the 
preceding section, such solitons form the central peak in 
neutron-scattering experiments, which is presently the main 
evidence of their existence. 

7. CONCLUSIONS 

In the present work the nonlinear dynamics in multiple- 
sublattice magnets with a modulated structure have been 
considered in the concrete example of the three-sublattice 
model of CsCuCI,; however, within the effective Lagrangian 
method used the number of sublattices is of no importance 
(for N 2 3 ) ,  since the structure of the effective Lagrangian 
used to construct the dynamic equations of motion is speci- 
tied by the symmetry of the crystal and is not dependent on 
the number of sublattices. This refers primarily to the entire 
class of ABX,-type magnets (A and B are cations, and X is a 
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halogen), which are structurally similar to CsCuC13 consid- 
ered here, since the effective Lagrangian (5) is characteristic 
of all such crystals. An effective Lagrangian like (5) can also 
be constructed for multiple-sublattice magnets having a dif- 
ferent symmetry, regardless of the number of sublattices. In 
particular, as was noted in Ref. 6, the kinetic term in the 
Lagrangian for an arbitrary antiferromagnet has the form 

where xap is the magnetic susceptibility tensor. In uniaxial 
antiferromagnets (including CsCuC13, which we considered) 
this tensor has two independent components, X, and XII. In 
an antiferromagnet of the U02 type, which has cubic sym- 
metry, there is only one independent component (x, = X I / ) .  
In noncollinear antiferromagnets with orthorhombic or lower 
symmetry the magnetic vectors transform only according to 
one-dimensional representations, and the tensor xap will 
therefore have three independent components. The structure 
of the potential part of the Lagrangian can also be derived on 
the basis of symmetry arguments (as was done, for example, 
in Ref. 6 for magnets of the YMn03 and U02 types) or (as 
was done in the present work) on the basis of the form of the 
ordinary magnetic energy written in terms of the vectors 
M, of the sublattices, which is known for this magnet. More- 
over, in the general case the choice of the three mutually 
perpendicular vectors I?), which are related in definite man- 
ners to the vectors M,, is ambiguous and is determined by 
considerations of convenience. In particular, any three (non- 
zero in the ground state) irreducible vectors which are char- 
acteristic of a magnet with a specific symmetry can always 
(but need not) be chosen as such vectors. It seems most 
convenient to us to choose two irreducible vectors (1:') and 
I$')) and their vector product [see (3)] as such vectors. The 
latter procedure was used in Ref. 9 
to analyze the magnetic dynamics in six-sublattice perovs- 
kites, where the irreducible vectors I\') and liO) are related to 
the magnetization vectors of the sublattices by the expres- 
sions l(0) - ~ ( 0 )  - ~ ( 0 )  + ~ ( 0 )  - ~ ( 0 )  and $0) - ~ ( 0 )  + ~ ( 0 )  

1 1 2 4 5 1 2 
- 2Mi0'+ M&"+ M("- 5 2 ~ 2 " .  The effective Lagrangians 
and thus the equations of motion obtained for all noncol- 
linear antiferromagnets have a similar structure, and there- 
fore the results obtained above can be extended to other 
multiple-sublattice noncollinear antiferromagnets with a pre- 
dominant exchange interaction between the sublattices. 
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