
The quantum-field renormalization group in the problem of a growing phase boundary 
N. V. Antonov and A. N. Vasil'ev 

St. Petersburg State University, 199034 St. Petersburg, Russia 
(Submitted 7 February 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 108, 885-893 (September 1995) 

Within the quantum-field renormalization-group approach we examine the stochastic equation 
discussed by S. I. Pavlik (JETP 79, 303 (1994)) in describing a randomly growing phase 
boundary. We show that, in contrast to Pavlik's assertion, the model is not multiplicatively 
renormalizable and that its consistent renormalization-group analysis requires introducing 
an infinite number of counterterms and the respective coupling constants ("charges"). An explicit 
calculation in the one-loop approximation shows that a two-dimensional surface of 
renormalization-group points exists in the infinite-dimensional charge space. If the surface 
contains an infrared stability region, the problem allows for scaling with the nonuniversal critical 
dimensionalities of the height of the phase boundary and time, Ah and A , ,  which satisfy 
the exact relationship 2Ah = A, + d, where d is the dimensionality of the phase boundary. 63 1995 
American Institute of Physics. 

1. INTRODUCTION 

Over the years a problem that has constantly aroused 
interest is the deposition of a substance on a surface and the 
growth of the corresponding phase boundary (see, e.g., Refs. 
1-15 and the literature therein). The results of numerical 
experiments suggest the presence of infrared (large times and 
distances) scaling with universal critical 
dimensionalitie~.~'~~~~~~~ The common starting point in the at- 
tempts to build an analytical theory is the stochastic equation 

in which h ( x ) = h ( t , x )  is the random component of the 
height of the phase boundary, f is the Gaussian random 
force with a correlator specified in Eq. (1) and proportional 
to 6 ( x - x ' ) = ~ ( t - t ' ) ~ ( ~ ) ( x - x ' ) ,  d is the dimensionality 
of space x, vo and Do are positive initial parameters, V ( h )  is 
a nonlinearity parameter, and d2=A is the Laplace operator. 
The linear contribution vod2h models surface tension. 
(Strictly speaking, f is expected to have a certain constant 
component (f ( x ) )  = const that guarantees ( h )  = 0, which fol- 
lows from the meaning of h, but in actual calculation one can 
ignore ( f )  and ( h )  simultaneously and assume they are 
zero.) 

Kardar, Parisi, and zhang6 studied a model with the sim- 
plest nonlinearity ~ ( h ) =  ( ~ h ) ~ / 2 .  Such an interaction is 

logarithmic for d= $(dh12. Such an interaction is logarith- 
mic for d  = 2 ,  nonessential for d > 2 ,  and can be studied by 
the standard d  = 2  - E renormalization-group (RG) technique 
for d s 2 .  The RG-analysis done in Ref. 6 (which actually 
reproduces the results of an old paper by Forster, Nelson, and 
Stephen, who discussed an d-dimensional generalization of 
Burgers' stochastic equation) showed that in the ( 2  - E )  ex- 
pansion this model contains no infrared (IR) stable fixed RG- 
points in the physical region Do ,vo>O, i.e., the justification 
of IR-scaling customarily employed in the theory of the be- 
havior of the critical state17 is not valid here. Note that the 
results of Refs. 6 and 16 recalculated in terms of the more 
convenient minimal subtraction calculation scheme lead to 

the expression p ( u )  = - E U  - u2 for the one-loop 
p-function of the renormalized charge u  corresponding to the 
bare charge uo= ~ ~ v , ~ / 4 . r r .  It is the "wrong" sign in front 
of u2 that forced the fixed point u ,  - E  to be in the nonphysi- 
cal region u<O. But if we still assume (without rigorous 
substantiation, because the contributions of the higher pow- 
ers of u  in the expansion of the /?-function are unknown) that 
somewhere in the range of positive u  of order unity the 
/?-function has the necessary fixed point, i.e., p(u , )=  0  and 
p' ( u  ,) >0, then the relationship between the renormaliza- 
tion constants of the model of Ref. 6 leads to an equation 
Ah+ A,+ 2 =  0 for the critical dimensionalities of field and 
time, and for d=I the fluctuation-dissipation theorem makes 
it possible to find these dimensionalities exactly: Ah= - $ 
and A,= - $. But since the very fact of the existence of the 
necessary fixed point is an unprovable hypothesis, the situa- 
tion cannot, naturally, be considered satisfactory. 

Recently ~avlik '  suggested another variant of problem 
(1) with the equation 

The nonlinearity d2h2 = 2(13h)~ + 2hd2h contains the ordi- 
nary interaction6 and an additional term interpreted in Ref. 1 
as a random correction to vod2h (in the presence of nonlin- 
earity pavlik1 introduced an additional factor a, but this fac- 
tor can be eliminated by a stretching transformation 
a h - t h ) .  In his paper Pavlik used the minimal subtraction 
calculation technique and claimed that the model (2), in con- 
trast to that studied in Ref. 6, contains the necessary fixed 
point in the ( 2  - E )  expansion (one of the equations in (16) 
in Ref. 1 is equivalent to the expression P, = - ~ g  + 2gg2 
+ . . - for the one-loop /?-function of the renormalized charge 
g  with the "proper" sign in front of g 2 ) .  

In this paper we wish to focus attention on several mis- 
takes made in Ref. 1 and perform a consistent RG-analysis of 
the model of type (2).  The principal remark is the following: 
~av l ik '  failed to notice that the model (2 )  is actually not 
multiplicatively renormalizable, since the interaction a2h2 
necessarily generates an infinite number of new counterterms 
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TABLE I.  

F h h' vo,v m0.nl .p g o  R ~ o  R,R,, 

of the form d2hn with any n = 1,2,3,. . ., with the result that 
the complete renormalized theory contains an infinite num- 
ber of parameters ("charges") gn  and corresponding 
p-functions in the RG-equations. 

The second mistake is the incorrect treatment of the IR 
divergences present in the model (2) (in contrast to that of 
Ref. 6), which Pavlik erroneously interpreted in the same 
way as he did the ultraviolet (UV) divergences, not distin- 
guishing the IR and UV poles in E when he calculated the 
renormalization constants. In reality the IR and UV diver- 
gences are of different origin, and only the latter can be 
removed by the standard renormalization procedure (see, 
e.g., Refs. 18 and 19). If there are IR divergences, they must 
be first removed by appropriate regularization. In the model 
(2) this can be done by substituting (d2-m2)h for d2h, 
where m is the "infrared mass" (by its very meaning llm is 
the maximum characteristic dimension in the system). Intro- 
duction of the "regularizer" m removes the IR poles in E but 
does not influence the UV poles, which are the only ones that 
must be taken into account in calculating the renormalization 
constants Z. The fact that the Z in the minimal subtraction 
scheme are independent of mass m in no way means that 
these constants can be directly calculated form = 0 when the 
model has IR singularities at E = O ;  this would mean unjus- 
tified merging of the UV and IR poles in E .  

To be sure, modifying the minimal subtraction scheme 
by introducing a mass m into (2) dramatically changes Pav- 
lik's result, leading to a &function with a minus in front of 
g2, as in the model of Ref. 6. But if the first remark (see 
above) is taken into account, the result cannot be considered 
final, since a rigorous RG-analysis requires allowing for all 
the necessary counterterms. 

In this paper we do such a calculation in the quantum 
field ~ e t t i n ~ . ~ " ~ '  In Sec. 2 we analyze the structure of the UV 
divergences of the massive generalization of the model (2) 
and substantiate the need to go over to a model with an 
infinite number of vertices and corresponding charges. In 
Sec. 3 we explicitly calculate in the one-loop approximation 
the renormalization constants and the RG-functions of an 
infinite-charge model that generalizes Eq. (2), and analyze 
the corresponding RG-equations. It appears that this model 
contains a complete two-dimensional equation of fixed 
points in the infinite dimensional charge space. We were un- 
able to do a complete investigation of the stability of these 
points, but we believe this situation allows for IR scaling 
with nonuniversal (i.e., depending on the choice of parani- 
eter-s) critical exponents. 

2. ANALYSIS OF THE UV DIVERGENCES AND 
COUNTERTERMS OF MODEL (2) 

According to the general t h e ~ r g ~ ' ~ '  any stochastic prob- 
lem of type (1) is equivalent to the quantum field model with 
a double number of fields @= h,hf and the action functional 

(integration with respect to x = t , x  in this and similar equa- 
tions is implied). Applying this theorem to the massive ana- 
log of problem (2) and, for convenience, stretching the fields, 
h--+DiJ2h and h ' --+Do lJ2h ' , we arrive at a model with the 
action 

The action is assumed unrenormalized and all its parameters 
have their bare values. For this reason they have a subscript 
"0" to distinguish them from the renormalized analogs with- 
out such a subscript, which will be discussed shortly. The 
role of the bare charge (the coupling constant) in the model 
(3) is taken by the combination go= ~ ~ ' ~ v ~ ~ ~ ~ .  The Green's 
functions Gn = (@(xl).  . . @(xn)) of model (3) are repre- 
sented by a functional integral of products of the correspond- 
ing fields with a weight function exp s(@). The standard way 
to represent such objects is to use Feynman diagrams, with 
the lines determined by the free (quadratic in the fields) part 
of S(@) and the vertices by the interaction (the contribution 
of the nonlinearity in (I)). 

As is known, an analysis of the UV divergences is re- 
lated to an analysis of canonical dimen~ionalities.'~.'~ Dy- 
namical models of the type (3) are two-scale, i.e., with each 
quantity F we can associate here two independent canonical 
dimen~ionalities?~ the momentum dimensionality d$ and the 
frequency dimensionality d; , and hence the total dimension- 
ality dF=d$+2d," (in the free theory d,-d2). By definition, 
d i=  -d i=dz= -dy.'= 1 and d~=dz=dk,=d:=0, while 
the dimensionalities of the other quantities are determined by 
the requirement that all terms in the action be dimensionless 
(the momentum and frequency components separately). The 
dimensionality data for model (3) are listed in Table I, where 
for convenience we include the leading coupling constants 
and renormalization parameters, which appear later in our 
discussion. 

Table I shows that the theory becomes logarithmic 
(dgo=O) for d= 2. The UV divergences emerge as poles in 
e=2-d in the Green's functions. The total canonical di- 
mensionality of an arbitrary 1 -irreducible diagram (the "for- 
mal divergence index") is 8= d+ 2 - dhNh- d , N h  where 
N,[, is the number of corresponding external lines. Counter- 
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terms are generated only by "surface-divergent" 
I-irreducible diagrams: a diagram is surface-divergent if its 
real divergence index (see below) in the logarithmic theory 
(E = 0) is a nonnegative integer, with S at E = 0 determining 
the degree of homogeneity of the counterterm in momenta 
and frequencies. Also, when analyzing divergences in the 
model (3), we must take into account the following addi- 
tional con~iderations:~~ 

( I )  All 1-irreducible Green's functions with Nht = 0 van- 
ish. 

(2) Integration by parts allows shifting the operator d2 at 
a vertex in model (3) to the field h'. Hence in any 
1-irreducible diagram each field h' "releases" the square of 
the corresponding external momentum, and the real diver- 
gence index 6' is smaller than the formal index 6 by the 
corresponding number of units: S' = S- 2Nht. 

Allowing for these ideas, one can easily see that in the 
model considered here surface UV-divergences are present 
only in the 1-irreducible diagrams of the Green's functions 
(h'h . . h) with any finite number of fields h. For all these 
diagrams S= 2 and 6' = 0 hold, and the corresponding coun- 
terterms are certain to contain d2h', which means that they 
can be reduced to h'd2hn (other ways of placing the gradi- 
ents or for d, and m to participate are forbidden). Hence to 
ensure multiplicative renormalization, to the action (3) we 
must add all the vertices h'd2hn, which means a transition to 
a theory with an infinite number of charges. One can easily 
verify that the new vertices do not generate counterterms that 
differ from h' d2hn, so that a model incorporating all such 
vertices with independent coefficients (charges) is already 
multiplicatively renormalizable. 

3. RG-ANALYSIS OF A MODEL WITH AN INFINITE NUMBER 
OF CHARGES 

We examine the generalization of the model (3) that in- 
cludes in the unrenormalized action all renormalization- 
generated vertices with independent coefficients: 

The corresponding renormalized action is 

where all the Z are dimensionless renormalization constants, 
which in the maximal subtraction scheme have the form 
" I  +poles in e. " The bare (initial) charges go={gno, 
n = 2,3, ...) and the completely dimensionless renormalized 
charges g={gn,  n =  2,3;. .) are expressed in terms of the 
parameters A. and A in Eqs. (4) and (5) as follows: 

where the renormalization mass p is an additional parameter 
of the renormalized theory. 

The action (5) is obtained from (4) by the following 
renormalization of parameters (no renormalization of the 
fields q5 is required): 

The constants Z in Eqs. (7) and (5) are related as follows: 

The relationship S(@,eo) = SR(@,e,p),  where eo is the 
set of all initial parameters and e the set of all renormalized 
parameters, yields the following RG-equation for the Green's 
functions G, = ( a  - - . a )  of model (5): 

where we have introduced the notation gY=yd,  for every 
variable y, and the RG-functions (the p-function and the 
anomalous dimensionalities y) are specified as 

with F=v,m,g,;  and Bp=pd,  for fixed eo. Note that 
gRG in (9) is the operation gp in the variables e and p. We 
note also that because there is no field renormalization the 
initial Green's functions G,(eo) coincide with the renormal- 
ized Green's functions Gn(e,m) (the difference is only in the 
choice of variables), with the result that both can be em- 
ployed on an equal basis when critical behavior is analyzed. 

We calculate the constants Z in (5) in the one-loop ap- 
proximation. In the expansion of the generating functional 
I?,(@) of the 1-irreducible Green's functions of model (5) in 
the number p of loops, 

m 

R E p ro(@)=SR(@), 
p = o  

(11) 

the loopless ("tree-like") contribution is simply the action 
(5), and the one-loop contribution is given by the following 
relation (see, e.g., Ref. 23): 

where W is a linear operation with the kernel 

and Wo is a similar expression for the free (quadratic in the 
fields) parts of the action (5). Both W and Wo are 2-by-2 
matrices in the pair cP = h, h ' ; the matrix that is the inverse of 
matrix Wo represents the lines in the diagrams of model (5). 

The constants Z can be found from the requirement that 
the UV divergences (poles in e )  in Eq. (1 1) are removed, and 
if the additional condition that they are of the type 
Z= l +only poles in e (the minimal subtraction scheme) 
holds, they are determined uniquely. When the one-loop cal- 
culation is performed, in (12) we must put Z =  l ,  and in the 
loopless contribution (5) we must allow for the contributions 
of order g in the constants Z. We introduce the notation 
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interpreting these objects as functions of a single variable 
h(x), and V', V", etc., as the corresponding derivatives with 
respect to this variable. In this notation the matrix (13) with 
Z  = I can be symbolically represented as 

where L=d,- v(d2-m2)-d2vr, and LT= -dl- v 
X (d2- m2) - Vrd2 is the transposed operation. 

To determine the constants Z we do not need the exact 
expression (11) but only its divergent part, which, as we 
already know (see Sec. 2), has the form 

with a function R(h) similar to (14). This implies that the 
Tr ln of matrix (15) is needed only to first order in its hh- 
element - d2h 'V". Using the well-known formula 
4TrIn K)=T~[K-'SKI, from (15) we obtain (with the re- 
quired accuracy) 

where D ~ ~ = ( w - ' ) ~ ~  at hr=O. By its very meaning, Dhh is 
the ordinary propagator (hh) of model (5) with Z  = 1 and 
with vd2+d2v' substituted for vd2. 

One more circumstance must be taken into account. Af- 
ter d2 is shifted to the outer factor h'  , only a logarithmically 
divergent expression remains in the counterterm, with the 
result that in calculating the divergent part of a given dia- 
gram we can set all its external momenta to zero (IR regu- 
larization is ensured by the mass m). This means that in 
selecting the pole part (in r )  in (16) we can ignore the inho- 
mogeneity of d2h'(x) and h(x), i.e., both quantities can be 
assumed constant. Then Dhh(x,x) can easily be calculated by 
going over to the momentum-frequency representation: 

where the dots stand for the UV-finite part. To avoid a mis- 
understanding we note that according to the rules of dimen- 
sional regularization'9 in an expression with low-order de- 
viations (of order r )  of the dimensionality from an integral 
value these deviations are always represented by fractional 
powers of p only, rather than any other variables. Substitu- 
tion of (16) and (17) into (12) yields the following expres- 
sion for the divergent part of r ,  (@) with the necessary ac- 
curacy: 

In the sum of (18) and the loopless contribution in (11) 
the pole in r cancels out, which makes it possible to find the 
one-loop contributions of order 1/r in all constants Z. We 
introduce the notation 

m 

Vrr(h)(v+ Vr(h)) = 2 pE(n+1)12v(n+1)'2rnhnln! , 
n = O  

(19) 

where rn are completely dimensionless coefficients (polyno- 
mials in the charges g,). If the above condition for the can- 
celing out of poles in e is combined with (6), we get 

Z =  1 - r1/4.rrr + - - ., Zn= 1 - rn/4.rrrgn + . . . . (20) 

It should be kept in mind that when the renormalization con- 
stants are used to calculate the RG-functions (lo), in terms of 
the functions of the form (20) depending only on the charges 
g, the operation &@ in (10) assumes the form 

To this accuracy it is sufficient to use only the first terms in 
the p-functions (10). This yields 

m 

Bfi= - (812) g g ,  9g= 2 (n - l)gndgn. n=2 
(21) 

Bearing this in mind and employing the constants (20) to- 
gether with (8) and (lo), we can easily arrive at the following 
expressions for the one-loop RG-functions: 

From the definitions (19), (14), and (6) we find the explicit 
expressions for the first four coefficients rn  [the first term 
with ro in (19) contributes nothing to (IS)], 

r4=g,j- 5gzg5 + 20g;g4- 10g3g4+ 30g2g;- 60&3 

+ 24g;, 

which when substituted into (22) yield 

Yn= - ~ ~ 1 2  =a(2g3-2gi), (234 

P2=rg2/2 + a (  -2g4+982g3-7g:), 

p3= - 2rg3/2 +a ( -  2g5+ 8g2g4 

+ 1 0 ~ ; - 2 8 ~ ~ ~ ; +  1 2 ~ ; ) ,  (23b) 

etc. ( a=  118~) .  
When we discard the g,, and PI, with n >  3, Eq. (23b) 

yields an expression for the p-function of model (3) modi- 
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fied only by the introduction of the IR regularizer m. The 
expression differs qualitatively from Pavlik's result' since it 
has a different sign in the one-loop contribution (the charge g 
in Ref. 1 is related to g2 in (23b) as follows: g = &4rr). But 
such an approach is, of course, not consistent, since even for 
zero leading charges g, with n 3 3  their p-functions do not 
disappear because of the presence of "generation terms" of 
the form gl in p3. 

We now return to the complete system (23b) of 
p-functions. The fixed points of these functions, 
g,={g,,), can be found from the condition P,(g,) for all 
n = 2,3,. . . . The explicit form of the p-functions (23b) im- 
plies that in determining g, we can choose the quantities 
g2, and g3, arbitrarily, and all the other g,, with n 2 4  can 
then be uniquely determined from the equations Pk(g,) = 0 
with k23 .  This means that in the infinite-dimensional space 
of the charges g={g,) the RG-equation (9) has a two- 
dimensional surface of fixed points g, parametrized by the 
values of g2, and g3, . 

Generally, studying the nature of these points is a diffi- 
cult task. According to the general rule,I7 a point g, is IR- 
stable if the real parts of all the eigemumbers of the matrix 
on, = dp, /dg,l g.* are strictly positive. The necessary condi- 
tion for IR-stabihty is the requirement that all the diagonal 
elements on, be positive. Equation (2) can be used to calcu- 
late these elements for all values of n: 

and for n 2 4 we have 

on,= - ~ / 2 ( n -  l ) + a ( n +  l)[(n+ l)g3,-(2n+ I)~:,]. 

In a certain region g3,27gg,/3+const all these quan- 
tities are positive. Although this is only a necessary condition 
and not a sufficient condition, we can assume that the surface 
of fixed points g, contains a region of IR-stability. If this is 
so, then in the model considered there can be IR-scaling with 
nonuniversal critical dimensionalities (i.e., depending on the 
choice of the parameters g2, and g3, in the stability region). 
In dynamic models of the type (3) the critical dimensionality 
AF of an arbitrary quantity F  is given by the following 
relationship:22 

where d i  and dg are canonical dimensionalities, At is the 
critical time dimensionality, y;= y,(g,) is the proper 
anomalous dimensionality of F  if it is renorrnalized, 

In the given case for F =  h we have y; = O  since the fields 
are not renormalized. Then, combining (24) with the data of 
Table I, we arrive at the exact relationship 2hh=A,  
+d,and for A, in the one-loop approximation we find from 
(23a) that A,= - 2+  (g3*-g;,)/4rr. Generally, these quan- 

tities do not satisfy the condition Ah+ A,=  - 2,which in the 
model of Ref. 6 is assumed to hold and which, apparently, 
agrees with the numerical experiments discussed in Refs. 4, 
5, 10, and 11. 

CONCLUSION 

Even with proper treatment, the model of Ref. 1 can 
hardly claim to be a satisfactory "microtheory" for the prob- 
lem of a growing phase boundary. In any case, it has no 
advantages over the usual model of Ref. 2 although the latter 
is unable to rigorously substantiate IR-scaling. We also note 
that the Pavlik model has a disadvantage compared to the 
model of Ref. 6 in that the dynamic equation (2) contains the 
height h itself, rather than only its derivatives. 

The general conclusion is pessimistic: the problem of 
building a satisfactory microtheory of the given phenomenon 
remains unresolved. 
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