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A phenomenological theory of magnetic anisotropy and low-temperature magnetization 
anisotropy, which arise because of anisotropic quenching of the orbital angular momentum, is 
constructed. A relation is found between the parameters of the theory and the electronic 
spectrum of the magnetic material. It is shown that for magnetic materials whose magnetic 
anisotropy is of this origin the spin-orbit interaction energy and the spin and orbital contributions 
to the magnetization and susceptibility of the paraprocess can be determined from the 
magnetization curves in the "easy" and "difficult" directions. The application of the theory to 
pure Co and to some intermetallic compounds of the type RCo5, where R = Y, La, Ce, 
and Th, is examined. The values obtained for the spin-orbit coupling constant per cobalt atom 
are close to the values known for 3d-metal ions and the values obtained for the spin and 
orbital magnetic moments agree with the values obtained by neutron diffractometry for Co and 
YCoS. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Magnetization anisotropy, i.e., the change in the magni- 
tude of the magnetic moment M of a single crystal in the 
region of the paraprocess as the orientation of the magnetic 
moment changes from the easy into the difficult direction, 
was first predicted at the end of the 1950s by E. R. Callen 
and H. B. callen.' They predicted that when the magnetic 
crystalline anisotropy energy E ,  is taken into account, the 
occupancy of the excited states at finite temperatures T de- 
pends on the orientation of the magnetization with respect to 
the axes of the crystal, and this results in anisotropy of the 
magnitude of the moment. Since at low temperatures only 
the ground state is occupied, this effect should vanish in the 
limit T--10. 

Magnetization anisotropy was first observed experimen- 
tally at the beginning of the 1970s by G. Aubert and P. 
~scudie? in Ni single crystals. The magnitude of the effect, 
i.e., the quantity AMIMII  , where AM is the difference of the 
values of the moment M measured along the easy ( M I / )  and 
difficult directions, was equal to only - 

In the mid-1970s, proceeding from arguments similar to 
Ref. 1, we studied the magnetization anisotropy in the com- 
pounds RCo5, where R=Tb, Dy, and Nd, accompanying 
spin-flipping  transition^.^ A giant effect AMIMII- lo- '  was 
first observed in these compounds. We viewed the observed 
effect as entirely only the anisotropy of the average value of 
the magnetic moment of the R ions, and the calculations 
performed in Ref. 3 also showed that the effect should vanish 
in the limit T-iO. According to our later investigations? 
however, the effect remains substantial even in the limit 
T+O and the quantity AMIMII  is determined completely by 
the change in the magnetization of the cobalt sublattice. Ad- 
ditional investigations, performed in Ref. 4 on Y(Co, Ni), 
single crystals, where the Y ions are nonmagnetic, made it 
possible to obtain a quantitative estimate of the observed 
low-temperature magnetization anisotropy in the cobalt sub- 
lattice. According to the data presented in Ref. 4 this effect 

amounts to 4% or 0 . 3 ~ ~  per formula unit, where ,UB is the 
Bohr magneton, and is virtually temperature-independent. 

The results obtained in Ref, 4 were later completely con- 
firmed by experiments on YCo5 (Ref. 5) and LaCo, (Ref. 6) 
in strong magnetic fields. It has now been determined experi- 
mentally that the low-temperature magnetization anisotropy 
is observed in Co (Ref. 7) and in an entire series of highly 
anisotropic intermetallic compounds containing Fe, Co, or 
~ i . ~ , ~  We note that in CeCo5 the effect reaches - 12%.1° The 
magnetization curves obtained in these experiments have the 
characteristic form displayed in Fig. 1. In the region of the 
paraprocess they are practically linear, the magnetization and 
susceptibility along the easy axis being greater than along the 
difficult axis. 

Besides the temperature dependence of the effect, there 
is one other very important factor, first noted in Ref. 4. The 
quantity AMIMII  is found to be of the same order of magni- 
tude as the ratio of the anisotropy energy E, to the exchange 
energy Eex : AMIMIl--  E ,  IEex . It is clear that for magnetic 
ions, in which the intra-atomic Coulomb interaction is strong 
compared to the crystal field, so that the orbital angular mo- 
mentum is a good quantum number, the ratio AMIMll  at low 
temperatures will be a second-order quantity relative to 
E,IE,, or E , I E S l ,  where EJl is the spin-orbit interaction 
energy. For this reason, it seems to be entirely natural that 
the sublattice of 3d atoms with strongly collectivized mag- 
netic electrons plays the main role in the formation of the 
magnetic moment of these systems with strong Iow- 
temperature magnetization anisotropy. 

Most theoretical investigations of the magnetization an- 
isotropy in collectivized magnetic materials are performed 
numerically in parallel with calculations of the magnetic an- 
isotropy constants. As an example, we cite one of the latest 
treatments, Ref. 11, which also contains a detailed bibliogra- 
phy concerning this question. The magnitude of the magne- 
tization anisotropy obtained for pure 3d metals agrees with 
the existing experimental data. The numerical character of 
the results obtained, however, makes it hard to analyze the 
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experimental data, even for the rare systems where the cor- 
responding calculations have been performed, to say nothing 
about most ferromagnetic materials, for which such calcula- 
tions have not yet been performed. For this reason, our ob- 
jective in the present work is to construct a simple phenom- 
enological model that describes the magnetic anisotropy and 
magnetization anisotropy of systems with strongly quenched 
orbital angular momentum. 

2. ENERGY 

In this section we shall derive an expression for the en- 
ergy E, of a magnetic material with strongly quenched or- 
bital angular momentum L. To make the exposition as clear 
as possible, however, we start with the opposite limiting case 
of a magnetic material with a localized magnetic moment 
and well-defined orbital and spin angular momenta. An ex- 
cellent example of such magnetic materials is systems based 
on 4f elements. The magnetic anisotropy of such systems is 
related to the dependence of the energy of the "charge 
cloud" of 4f electrons on the orientation of the cloud in the 
crystal field. We emphasize that the shape of the cloud does 
not change as the cloud rotates (the crystal field is weak and 
the orbital angular momentum L is a good quantum number), 
and the only source of the anisotropy energy is the Coulomb 
interaction energy of the cloud with its environment. For this 
reason, in the present case it is entirely natural to express the 
magnetic anisotropy energy as a function of the angles de- 
termining the direction of the orbital angular momentum L 
or, in the case of a strong spin-orbit interaction, the total 
angular momentum J. In the case of a magnetic material with 
uniaxial symmetry this expression has the standard form 

E,=K, s i n ' 6 + ~ ~  sin4 6+ ..., ( 1 )  

where 6 is the angle between the angular momentum (usu- 

FIG. 1 .  Typical form of the magnetization curves of magnetically 
uniaxial single crystals of the intermetallic compounds RCo, 
( R=Y, La, Ce, Th). The curves were measured by applying a mag- 
netic field parallel (H 11 c) and perpendicular (Hl c) to the easy 
magnetization axis. Solid lines-experimental data of Ref. 10 for 
CeCo, at 4.2 K; dashed lines--continuation of the linear sections of 
the function p(H) for H 1 c; points-characteristic parameters of 
the thwry (see text); p-average value of the magnetic moment per 
cobalt atom. 

of the magnetic electrons at a site does not rotate together 
with it, only the shape of the cloud changes slightly. The 
change in shape is due to the mixing of orbital states with the 
ground state as a result of the spin-orbit interaction and the 
interaction with the external magnetic field. On the one hand, 
this mixing results in partial unquenching of the orbital an- 
gular momentum and therefore a decrease of the spin-orbit 
and Zeeman interaction energies. On the other hand, the 
change in the shape of the "charge cloud" results in an in- 
crease of the interaction energy of the cloud with the crystal 
field. The latter contribution to the energy is anisotropic, 
since different excited states are mixed with the ground state, 
depending on the direction of the external field and the spin 
moment. Here the situation is identical to that in van Vleck 
paramagnets. In first order perturbation theory the ground 
state has the form 

(excl Qlgr) 
I @ - ' ) =  lgr)+ C l exc), 

exc Ear-E exc 

where Igr) and lexc) are the unperturbed ground and excited 
states, Egr and E,, are their energies, and 

In Eq. (3) i and g are the orbital and spin angular momen- 
tum operators at a lattice site, A is the spin-orbit interaction 
parameter, and H is the external magnetic field. From Eq. (2) 
we obtain the following expression for the anisotropy energy 
and the average value of the orbital angular momentum: 

I(grlplexc)12 
E,= C 

exc Esr-Eexc ' 

(L) = C (grILlexc) 
(excl Qlsr) + H.c. 

exc Exr-Eexc 

ally the total angular momentum) and the anisotropy axis and Hence one can see that, assuming the spin angular momen- 
K, are the anisotropy constants. tum operator to be a c number,' we obtain in the absence of 

An entirely different situation obtains when the orbital an external field 
angular momentum in the ground state is strongly quenched. 
Irrespective of whether the strong crystal field or the collec- E,= - &s(L(s), (5 )  

tivized character of the magnetic electrons is responsible for where (ILIs) is the average value of the projection of the 
the quenching,'2 as the spin moment rotates the charge cloud orbital angular momentum on the direction of the spin angu- 
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lar momentum, i.e., in this approximation the magnetic an- 
isotropy is related to the anisotropy of the orbital angular 
momentum. The easy and difficult directions are those in 
which the orbital angular momentum is least and most 
strongly quenched, respectively. 

The simplest phenomenological expression for the en- 
ergy E,  in the case of uniaxial anisotropy, taking into ac- 
count explicitly both contributions to it (the anisotropic 
quenching of the orbital angular momentum and the spin- 
orbit interaction) evidently has the form 

where L and S are the average values of the orbital and spin 
angular momenta at a lattice site, r is a quenching hardness 
coefficient, and ]) and I denote projections parallel and per- 
pendicular to the symmetry axis. Minimizing the energy (6) 
with respect to L gives 

and at the minimum the expression (5) is obtained for the 
value of E ,  . 

This concept of the magnetic anisotropy in magnetic ma- 
terials with quenched orbital angular momentum is well 
known (see, for example, the review by Irkhin in Ref. 13). In 
application to magnetic ions with a localized moment, it has 
been used many times for performing calculations both in the 
theory of EPR (Ref. 14) and in other problems (Ref. 15). In 
the methods employed, specifically, in the effective spin- 
Hamiltonian method," the contributions of the orbital and 
spin angular momenta to the magnetization are not separated 
and an anisotropic g-factor is used to describe the magneti- 
zation anisotropy. In the present work, however, an explicit 
separation of the contributions of the orbital and spin sys- 
tems to the magnetization at the outset appears to us to be 
preferable for the following two reasons. 

First, such a separation corresponds exactly to the phys- 
ics of the situation and thus allows us to introduce the mi- 
croscopic characteristics of the material into the theory as 
phenomenological parameters (the spin-orbit interaction pa- 
rameter X and the parameters rll and r, which characterize 
the hardness of the quenching of the orbital angular momen- 
tum and are directly related to the electronic spectrum). This 
also simplifies dramatically the analysis of the experimental 
results, making it possible, specifically, to relate the param- 
eter X directly to the anisotropy field H A  and at least to 
estimate the upper and lower limits of the contributions of 
the orbital and spin systems separately to both the magneti- 
zation and the susceptibility of the paraprocess, using only 
magnetization curves in the easy and difficult directions (see 
Sec. 4). 

Second, the quenching of the orbital angular momentum 
is most often associated with the collectivized character of 
the magnetic electrons, and the computational methods de- 
veloped for magnetic ions are inapplicable in this case. 
Moreover, a systematic calculation of the magnetic anisot- 
ropy energy and the dependence of the magnitude of the 
magnetization on the magnetization direction in these sys- 

tems is necessarily associated with the separation of the con- 
tributions of the orbital and spin angular momenta to the 
magnetization. 

Such a calculation is most easily performed by the tight- 
binding method. In the spirit of the works by BrooksL6 and 
~ r u n o , ' ~  in the absence of spin-orbit interaction the Bloch 
functions of an electron in a crystal can be represented as 
linear combinations of atomic orbitals 

Here v is the band number, k is the wave vector, a is the 
projection of the spin on the quantization axis 6,  which we 
assume to b~ parallel to the direction of the average spin of 
the crystal Y= N S  (N is the number of lattice sites and s is 
the average spin at a site). The states ImRu) appearing in the 
expression (8) are a combination of atomic functions at the 
Rth site that possess the symmetry corresponding to the 
point symmetry of the lattice. Specifically, for the 
d-transition metals m runs over the standard values xy, yz, 
zx, x2- Y2, and 3z2-r2. 

The functions Ivkcu) are the eigenfunctions of the 
Hamiltonian k0, which includes the translational energy of 
the electron, the energy of interaction of the electron with the 
periodic potential and the interaction with the external and 
exchange fields 

a0[ vka)= 2Tvu(k)I vku). (9) 

The orbital angular momentum is the sum of the orbital an- 
gular momenta at each site 

and the matrix elements do not depend on the coordinates of 
a site and the projection of the spin 

- 
and vanish for ml = m2. The average value (& is different 
from zero (in the absence of an external magnetic field) only 
when the spin-orbit interaction 

is taken into account as a perturbation. Using the creation 
and annihilation operators c:~~, and cVk(, for an electron in 
the states I vku) [Eq. (8)] these expressions can be put into 
the form 
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&= 2 a~2m2u(k)av1mlu(k)(ml~i~ml)c~2kucvlku~ 
"1 "2k 
mlm2" 

The energy E,=(VSI) and the average values of the opera- 
tors of the projections of the orbital angular momenta 
(ST), T = X , Y ,  and z ,  can now be calculated by the standard 
methods of perturbation theory: 

(ST)= -c2C w;:(k)(+nVkua,. 
vku -. 

Here a, are the direction cosines of the vector 7, 
n vku= f (gvu(k)) is the Fermi function, 

* 
Q:u,v.u.(k)= C a~m2~(k)avm;u(k)avtm~u~(k)av~m1~~(k) 

m1m2 
t t  

mlm2 

x(m2li,lml>(mllirlm;>. (15) 

It is simple to show that 

For this reason, (& and 9 are antiparallel for a less than 
half-filled shell and parallel for a more than half-filled shell. 

In the simplest variant of Stoner's model, setting 
&Yvu(k) = gv(k)  - 0.5uA, we obtain from Eq. (14) 

so that the summation extends only over the layer of singly 
occupied states near the Fermi surface. Since 

the average value of the projection of the orbital angular 
momentum at a site on the 7th axis can be written in the form 

L , = N - ' ( z , ) = ~ ~ s c ~ , ~ , ,  (19) 

where w, is virtually independent of S. 
The magnetic anisotropy energy (14) in this approxima- 

tion separates into three terms: E,= E?)+ E?'+ EL2). The 
first term 

remains finite and, when the ferromagnetic splitting vanishes 
( A d o ,  nvkU+nck), it is isotropic and does not depend on 
S. Therefore it is an additive constant and can be dropped. 
The second term 

is also isotropic, but its expansion in powers of the small 
quantity A starts with terms proportional to A2. For this 
reason, it is proportional to s2 and can be written in the form 

where Wo is determined in an obvious way from Eq. (22), by 
analogy to Eq. (20), and also depends weakly on S. Finally, 

where 

Therefore, dropping the S-independent constant (21), we 
can write the magnetic anisotropy energy per site in the form 

It is obvious that even in approximations which are more 
complicated than Stoner's model, specifically, in spin- 
polarized calculations taking into account the dependence of 
the exchange splitting on the band number and the wave 
vector, the same expressions (19) and (26) will be obtained 
from Eq. (14). The S-dependence of the parameters w,, 
wo, and W, appearing in them will remain weak even in this 
case, and to a first approximation they can be regarded as 
constants2 

For a magnetic material with uniaxial symmetry we ob- 
tain from Eqs. (1 9) and (26) 

Therefore 
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The second term here, neglecting the anisotropy of the mag- 
nitude of the spin moment, is isotropic and can be regarded 
simply as a correction to the exchange-interaction energy in 
a spin system as a result of its interaction with the system of 
orbital angular momenta. The anisotropic first term in Eq. 
(28) and the expression for L, in Eq. (27) are obtained im- 
mediately by minimizing Eq. (6), if we set 

w, - wll w, - wll 
x = 2 5  - , r,= 

2W,(W, - WII) ' r=11,1. (29) 
"'1 - WII 

The last step in deriving a phenomenological expression 
for the energy of a magnetic metal with a uniaxial symmetry 
is the addition to Eq. (6) of an expansion of the Ginzburg- 
Landau energy of the spin system in powers of s3) and the 
Zeeman interaction energy with the external field. Introduc- 
ing the notation ~ l ,  = 2 s  and PI= L for the spin and orbital 
magnetic moments of a site, which are expressed in Bohr 
magnetons, we obtain the final expression for the energy in 
the form 

~ = a p f  + b ~ , 4 - 0 . 5 h ( P ~ P I ) + r , ~ ( p ! ) ~ + r 1 ( ~ : ~ ~  

3. MAGNETIZATION CURVES 

We assume for definiteness that rll<r, , SO that the 2 
axis is the easy-magnetization axis, and the external field 
h= pBH makes an angle 8 with it. Since the anisotropy en- 
ergy in the basal plane is neglected, the vectors CL, , JU, , and 
H and the 2 axis lie in the same plane, and minimizing the 
energy (30) with respect to the variables ,u! ,pi ,p s  , and 6 
(where 6 is the angle between ~ c ,  and the &xis) leads to the 
following system of equations: 

pt= y,p, sin(6)+h sin 8/(2r,), (31) 

It is convenient to write the last equation of this system in 
the form 

cos 8 
8 b ~ : - ( 4 a + ~ ~ l l ) p ~ = 2 h ( 1  +YIl) a 

for cos 6 # 0  and in the form 

8bp:-(4a+A y1),u,=2h(1 + y,) (32b) 

for cos 9=0. In Eqs. (31)-(32) 

We shall study the solutions of these equations in two simple 
special cases: when the external field is parallel and perpen- 
dicular to the easy axis. 

a) 8=0, H parallel to the easy axis 

It is obvious that in this case both the spin and orbital 
angular momenta are oriented parallel to the Z axis irrespec- 
tive of the magnitude of the field, i.e., ,u; = O  and 6=0 .  For 
H=O we obtain 

Assuming the external field is weak compared to the ex- 
change field, we can represent the spin moment in the form 

and solve Eq. (32a) in an approximation linear in &,us. As a 
result, the field dependence of the total moment 
p= pS+ pl is linear 

b) t k m l 2 ,  H parallel to the diMcult axis 

In this case we obtain immediately from the last equa- 
tion of Eqs. (32) 

H 
sin 6= -, HA= 

XP:( Yll- Yl) 

HA ~ C L B ( ~  +YL) ' 

The reason that the factor ,LL: appears instead of ps in the 
expression for HA is clear from Eq. (32a): In a field oriented 
perpendicular (and only perpendicular!) to the easy axis the 
spin angular momentum does not change as it rotates: 

pssP$ for H S H A .  (38) 

As a result, the projections of the total angular momentum on 
the axis have the form 

where /.LA is the value of the magnetic moment in a field 
equal to the anisotropy field HA.  In strong fields (H>HA) 
the paraprocess starts once again, and as with Eq. (36) we 
obtain 

It is simple to show that for parallel ordering of the spin and 
orbital angular momenta (X>O) the inequalities 

XII>XL>O, PO>PA 

always hold. 

4. DETERMINATION OF THE PHENOMENOLOGICAL 
PARAMETERS FROM THE EXPERIMENTAL MAGNETIZATION 
CURVES 

The magnetization curves obtained in the preceding sec- 
tion are broken lines (see Fig. 1 )  with five main parameters 
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po , p, , HA , X I / ,  and xL . Instead of the last two parameters 
it is more convenient to use the parameters p i  (the magnetic 
moment in a field equal to HA but parallel to the easy axis) 
and pz (the value of the magnetic moment, directed parallel 
to the difficult axis, would have in a zero field) 

It seems natural to find all five phenomenological parameters 
appearing in the energy (30) from these five values which 
can be quite easily determined from experiment. Indeed, us- 
ing Eqs. (34), (37), and (39) we obtain 

We wrote out this important relation in two different forms 
for the following reasons. First, it is of interest to compare 
the expression for the anisotropy field (43) with the classical 
expression 

(Is is the saturation magnetization), which follows imrnedi- 
ately from Eq. (1) including the Zeeman interaction (IsH) 
and in the linear approximation (K2 = 0). In magnetic mate- 
rials with a strong magnetization anisotropy, for example in 
CeCo, ,lo the parameter I s  becomes hard to determine and 
the expression (43) for HA is physically more natural than 
the expression (44). 

Second, it is obvious from Eq. (43) that the spin-orbit 
interaction parameter A can be determined very simply in 
terms of the three quantities p o ,  PA, and H A ,  which can be 
found from simple magnetometric experiments. We empha- 
size that for magnetic metals it is very hard to determine A 
by other methods. 

The expressions for the quenching hardnesses rll and 
r, for known A can be easily obtained from Eqs. (34) and 
(39): 

The only unknown parameter appearing in Eq. (45) is ,u:, 
the magnitude of the spin moment in the absence of an ex- 
ternal field. In accordance with Eq. (34), it is determined in 
terms of the Ginzburg-Landau parameters a and b, which 
we can try to determine using the two experimental values 
XII and xL (or, which is the same thing, p0 and PLL,*) which 
have not yet been used. It is found, however, that in this 
model we have the identity 

On the other hand, this identity makes it possible to find the 
smaller, and therefore harder to determine experimentally, 
susceptibility X, in terms of XI!. On the other hand, it de- 
creases the number of independent parameters obtained from 
experiment from 5 to 4, which eliminates the possibility of 
determining p! uniquely on the basis of data on the magne- 

tization curves only (Fig. I ) . ~  Nonetheless, on the basis of 
these data it is simple to determine the maximum and mini- 
mum values of p!; the true value lies between them. 

Indeed, it is obvious that p;~pA=p:+ ,u:(H~). The 
equality in this expression holds only if the orbital moment 
in the difficult direction is completely quenched, i.e., 
r l - tm.  For this reason, taking into account Eq. (34), 

The limit of the possible values of these parameters on the 
other side can be easily determined from the experimental 
value of the susceptibility X? in the easy direction. As is 
clear from Eq. (36), there are two positive contributions of 
XII : The direct response of the orbital system to the external 
field and the response of the spin system (first and second 
terms, respectively), and they are both positive for A>O. For 
this reason, the minimum possible value of rll is determined 
from the condition (r l l ) , i ,=p~/2X~p.  Hence 

(~P) rnax=~o(~A*  - PO)I(PA* -PA). 
(48) 

The equations (47) and (48) make it possible to deter- 
mine also the limits of the true value of the magnetome- 
chanical factor g' in a zero field 

For E we have the inequality 

Finally, the upper limit of the possible values of the con- 
tribution of the spin system to the susceptibility in the easy 
direction is easily determined from Eqs. (47) and (36): 

Naturally, the lower limit of this ratio is zero, and it corre- 
sponds to the case (48). 

5. ANALYSIS OF THE EXPERIMENTAL DATA 

Quite accurate measurements of the magnetization 
curves for magnetically-uniaxial single crystals at low tem- 
peratures are available for pure Co (Ref. 7) and the interme- 
tallic compounds with a crystal structure of the CaCu, type: 
YCo, ,, LaCo, ,6 c~co,,'' and ThCo, , I 8  as well as for a 
number of other highly anisotropic intermetallic 
compounds:9 Y,Fe,, , YFe3 , YNi3, YCo3, Pr2Co,, , and 
Nd2Co17. 

The typical form of the magnetization curves of these 
single crystals is shown in Fig. 1. In the rotation and para- 
process regions they can be approximated well by straight 
lines. This makes it possible to determine the values of p o ,  
pA , H A ,  and X I I ,  and in some cases also X, . The experi- 
mental data for compounds of the type RCo, and Co are 
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TABLE I.  Experimental valucs of  the magnetic moments p, ,  P A ,  and the difference 
Ap=po-pA,  the susceptibility xi1 of the paraprocess ("longitudinal" susceptibility), X, 
("transverse" susceptibility) per cobalt atom, and the anisotropy field hA= p8HA according 
to measurements of the magnetization curves at T =  4.2 K for C O , ~  YCo5 ,' LaCo, ,6 

CeCo, , l o  and ThCo, (Ref. 18) single crystals. 

*The exact composition cornsponds to the formula Th0,965C~5.07. **The exact 
composition corresponds to the formula ThoS5C~5.10. The quantity h, for cobalt is 
indicated as an average over the data for the constants Kt (Refs. 24 and 25) and the 
magnetization (Ref. 7); the relative error in the values of po ,  p, , Ap, XI,, xL , 
and h, is (in percent) approximately in the case of cobalt 0.05, 0.05, 20, 5, 5, and 
10; for the series RCo5 the errors are 0.5,0.5,2, 10-30, 10-20, 2-5, respectively. 

presented in Table I. All characteristics besides HA are pre- 
sented per Co atom. In this connection, two remarks are in 
order. 

First, we assume that in the compound studied RCo5 
(R=Y, La, Ce, Th) the R atoms are completely nonmagnetic. 
This assumption is completely reasonable and generally ac- 
cepted in the case R=Y, La, and Th.475,8,18-2' At the same 
time the cerium atoms may contribute to both the anisotropy 
and magnetization of the compound C ~ C O ~ . "  The question 
of the magnitude of each of these contributions remains 
open, however, and we shall assume here that they are neg- 
ligibly small compared to the corresponding contributions 
from the cobalt sublattice. 

Second, it is well known that the Co atoms in the 
RCo5 crystal lattice occupy two nonequivalent crystallo- 
graphic positions 2c and 3g. The energy E ,  as well as the 
values of the magnetic moments of the atoms and their an- 
isotropy in these positions can be different. If this is indeed 
so, the spin-orbit interaction constant A must be found and 
the contributions of the spin and orbital subsystems to the 
magnetization must be separated separately for the 2c and 3g 
sublattices. This, however, requires that the contributions of 
these sublattices to the magnetization curves first be sepa- 
rated experimentally. This problem can be solved by using 
local methods for measuring the magnetic moments of atoms 
together with the standard methods of magnetization mea- 
surements. This problem has not been solved completely for 
any compound. At the same time, for H=O the magnetic 
moment of the Co atom in the 2c and 3g positions for 

ThCos** 
[I81 
1.446 
1.368 
0.078 
910 
- 

14.6 

YCo5 is the same, according to Refs. 19 and 20, and accord- 
ing to Ref. 18 it does not differ by more than 3% and the 
relative contribution of the orbital component of the mag- 
netic moment in these positions is 0.26 (5)  (2c) and 0.16 (4) 
(3g). These data suggest that the values X, ,us, and ,ul pre- 
sented below (Table 11), which must be regarded as averages, 
will not differ too much from the corresponding characteris- 
tics for cobalt atoms occupying different crystallographic po- 
sitions. 

Since the values of ,uo in Table I are scattered over a 

quite wide range, it makes sense to point out that the R atoms 
in the compounds RCos have valence 3 (Y, La), 4 (Th), and 
variable valence (Ce). For compounds in which the ions R 
have the same valence (Y, La) the values of both po and the 
other magnetic characteristics are virtually identical. Appar- 
ently, the change in the valence of the R ion produces a large 
change in the electronic states and, correspondingly, a 
change in the magnetic characteristics. Small changes in the 
cobalt concentration in the region of homogeneity of the 
compounds RCo5 with trivalent R ions do not lead to any 
large changes in the magnetic moment of the Co a t ~ m . ~ ~ ' ~ '  
On the other hand, small changes in the cobalt concentration 
in the region of homogeneity of the compound ThCo, can 
lead to marked changes in its magnetic properties and even 
to the appearance of metamagnetic transitions1* in a suffi- 
ciently strong magnetic field. The data presented in Table I 
for ThCo5 pertain to a low-field state, i.e., to a state before a 
metamagnetic transition occurs. 

We estimated the spin-orbit interaction constant X and 
the contributions of the spin and orbital systems to the mag- 
netization and susceptibility of the paraprocess from the data 
given in Table I1 for Co and the compounds considered here. 
All calculations were performed in accordance with the pre- 
ceding section. The results are summarized in Table 11. It is 
evident that the values obtained for X agree completely with 
the published data on the spin-orbit interaction constant of 
3d  elements.22 

CeCos 
[lo1 
1.424 
1.253 
0.171 
1450 
1200 
22.2 

PO/PB 
PAIPB 
A P l l l ~  

, 1 e r g  
xI/pB, 10'' erg-' 

hA,10-16erg 

According to neutron-diffractometry data, which were 
generalized in Ref. 18, for Co and YCo5 the ratio ,x~lPo  is 
equal to 0.07 and 0.20, respectively. These values are close 
to the values that we obtained assuming the complete ab- 
sence of a paraprocess in the spin subsystem. These results 
as well as the maximum values of the spin susceptibility, 
presented in Table 11, and the proposed model itself force us 
to reconsider Wohlfarth's criterion for separating "site" and 
"itinerant" magnetic materials." 

ThCos* 
[I81 

0.920 
0.800 
0.120 
6400 
2200 
8.7 

YCos 
[51 

1.666 
1.604 
0.062 
550 
- 

14.3 

Co 
[71 

1.7291 
1.7211 
0.0080 

406 
313 
0.98 
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LaCos 
161 

1.693 
1.633 
0.060 
1040 
- 

15.6 



TABLE 11. The spin-orbit interaction constant A ,  the spin magnetic moment p,, , and the orbital 
magnetic moment p,? , the relative orbital contribution p,! /p  to the magnetization, and the maxi- 
mum relative contribution of the spin susceptibility xiS' to the susceptibility ,yYP of the parapro- 
cess for pure cobalt and a series of intermetallides RCo5 per cobalt atom, calculated from experi- 
mental data, Table I, in accordance with the present theory in the approximation of a predominant 
orbital contribution to the paraprocess [data in the rows (a)] or in the approximation of zero orbital 
contribution to the magnetization and in the paraprocess with the magnetization in the "trans- 
verse" direction [data in rows (b)]. 

*The exact composition comsponds to  the formula Th0.965C9.07. **The exact 
composition corresponds to the formula Th0,95C05.10. 

', ( H  = 0) (a) 0.05 0.11 0.21 0.16 0.32 0.15 

6. CONCLUSIONS A ,  which is hard to measure by other methods. In this case 

Po 

X ~ ~ ' / X ; ' P  

We have shown that the source of the magnetic anisot- 
ropy energy in systems with strongly quenched orbital angu- 
lar momentum is the different degree of quenching of the 
orbital angular momentum in different crystallographic di- 
rections. The coefficients of the direct proportionality be- 
tween the change in the spin-orbit interaction energy accom- 
panying a reorientation of the magnetization and the 
magnitude of the unquenched orbital angular momentum 
were determined for a system of collectivized electrons in 
the tight-binding approximation. A simple phenomenological 
theory was constructed that describes both the magnetic 
crystallographic anisotropy and the anisotropy of the magni- 
tude of the magnetization. A relation was derived between 
the magnitude of the change in the magnetization on reori- 
entation of the magnetization in a single crystal with an an- 
isotropy field. This relation makes it possible to determine 
directly the spin-orbit interaction constant A from measure- 
ments of the magnetization curves for single crystals. Using 
such experiments and the present theory, it is also possible to 
separate the contributions of the orbital p, and spin p, mo- 
ments to the magnetization and susceptibility of the parapro- 
cess in a ferromagnetic material. The possibility of obtaining 
these important characteristics of a ferromagnetic material 
was demonstrated for the case of pure cobalt and intermetal- 
lic RCo5 compounds. 

We emphasize once again that the magnetization anisot- 
ropy studied in this paper occurs in a wide temperature 
range, specifically, in the limit T j O  and for T>T,,  where 
T ,  is the Curie temperature. This effect should occur in all 
magnetically ordered materials, but it should be most pro- 
nounced in magnetic materials with strongly quenched or- 
bital angular momentum and high magnetic anisotropy. 
Nonetheless, investigations of this effect in magnetic metals 
with a low magnetic anisotropy energy are also apparently of 
interest from the standpoint of determining the parameter 

quite accurate data on the change of the magnetization ac- 
companying a change in its orientation in a crystal can be 
obtained by measuring the signal produced in a circuit by 
rotating the sample. 
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(b) 
(b) 

'This will be a good approximation, for example, in the presence of a very 
strong exchange interaction. 
 his dependence together with the anisotropy of S contribute to the higher- 
order magnetic-anisotropy constants. 

3 ~ e  second term in Eq. (28) will be absorbed by the first term of this 
expansion in p S .  

4 ~ t  is readily shown that the required additional parameter can be obtained, 
for example, by measuring the field-dependence of the torque acting on the 
sample in a field. 
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