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We examine the preparation and temporal evolution of quantum wave packets from Rydberg 
states of a hydrogen atom in a magnetic field; the energy range corresponds to classical chaotic 
dynamics. Excitation via an intermediate state of the regular Rydberg spectrum results in a 
significant simplification of the spectrum of oscillator strengths, and the production of wave 
packets that evolve along selected closed classical trajectories. O 1995 American Institute 
of Physics. 

1. INTRODUCTION 

The temporal evolution of Rydberg wave packets has 
recently come under close theoretical and experimental 
scrutiny.' A Rydberg wave packet consists of a superposition 
of high-excitation states that have been coherently populated 
by a brief laser pulse. It evolves in both space and time, and 
mimics the motion of a classical particle. One of the most 
important outcomes of such studies is that they afford clari- 
fication of fundamental questions about the correspondence 
between classical and quantum mechanics. 

Two typical situations have been addressed in studies of 
Rydberg wave packets thus far. In the first, the wave packet 
is excited in a minimally anharmonic region of the regular 
spec t r~m;~ a familiar feature seen in the temporal evolution 
of this sort of wave packet is a regular sequence of decays 
and reviva~s.~-~ In the second, an atom initially in its ground 
state produces a packet of states near the ionization thresh- 
old, close to the corresponding chaotic regime of classical 
dynamics.' In the latter case, the salient characteristics of the 
packet's temporal evolution are linked to the existence of 
closed classical trajectories that originate and terminate on 
the nuc~eus.~.~ Ordinarily, many such trajectories can be ex- 
cited from the ground state, and the evolution of the packet is 
fairly complicated. 

Bouloufa et a1.' recently advanced the idea of selective 
excitation of Rydberg states in the irregular part of the spec- 
trum. Selectivity results from excitation via an intermediate 
Rydberg state of the regular spectrum, making it possible to 
enhance the contribution of some chosen classical 
trajectory. 9 

Our objective here is to make use of the selective exci- 
tation concept in order to produce wave packets in the ir- 
regular part of the quantum spectrum. The quantum system 
considered is a hydrogen atom in a magnetic field, and we 
use one of the odd states of the diamagnetic multiplet as the 
Rydberg state of the regular spectrum. 

Atomic units are employed throughout, with 
h = e = m = l .  

2. HYDROGEN ATOM IN A MAGNETIC FIELD 

where p 2 = ~ 2 + y 2  and y=BIB, (B,=2.35- 1 0 5 ~ ) .  In the 
nonrelativistic approximation, yL,/2 is a constant of the mo- 
tion, and is equal to yml2. Henceforth we only consider 
states with m = 0. 

2.1. Weak-field limit (I-mixing regime) 

The operator y2p2/8 leads to diamagnetic splitting. If 
the splitting is much smaller than the separation between 
degenerate hydrogen levels that differ in n, i.e., 

y2n44 l /n3 ,  (2) 

the proper zeroth-order wave function will be 
n- 1 

In first-order perturbation theory, the energy levels will 
be E =  E(')+E(~), where E(')= - 1/(2n2) and the E ( ~ )  are 
the eigenvalues of the matrix 

All states have either even or odd parity, given by 
(- l)K'm, where K is the quantum number that labels the 
vertex of the multiplet, K = 0 ,..., n - (m 1 - 1. 

From the standpoint of classical mechanics, the presence 
of a weak magnetic field will lead to a slow alteration in the 
shape and orientation of the Keplerian ellipse. The orbit's 
semimajor axis oscillates near the direction of the field vec- 
tor or near the xy plane. These two possibilities correspond 
to vibrational and rotational motion, respectively. Vibrational 
motion occurs in quantum states in the lower part of a dia- 
magnetic multiplet, while rotational motion occurs in the up- 
per part. At maximum inclination of the semimajor axis of 
the ellipse, the electron's angular momentum L vanishes and 
the ellipse degenerates into a straight line. For a state with 
energy E("), the maximum inclination is given by 

The nonrelativistic Hamiltonian of a hydrogen atom in a 1 6 E(") 
sin2 0 -- 

magnetic field B that points in the z direction is '- 5 n 4 y 2  ' 
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This angle plays the role of the turning point in oscillations 
of the semimajor axis of a classical orbit. In the quantum 
problem, the angle 80 locates the maximum in the angular 
distribution of probability density for a diamagnetic state of 
energy E ( ~ ) . ~  The lowest vibrational state corresponds to 
80m0, and the highest rotational state to go-90". 

The angle plays an important role in an examination 
of optical transitions between sublevels of two different dia- 
magnetic Rydberg multiplets. In a classical setting, a Ryd- 
berg electron absorbs and emits light most intensely when its 
acceleration is greatest. This occurs when the electron comes 
closest to the nucleus, i.e., when the electron's orbit degen- 
erates into a straight line passing through the nucleus and 
making an angle 80 with the magnetic field. The present 
discussion applies both to the lower and upper diamagnetic 
Rydberg state. 

Since Bo is a turning point, and therefore represents a 
maximum in the probability density, we expect that the most 
likely of all feasible transitions between sublevels of two 
high-excitation shells are the ones for which these maxima 
overlap, i.e., for which 80 has the same value in the initial 
and final state. This has been borne out by numerical 
calculations? Hence, we have a distinctive Franck-Condon 
principle for optical transitions between perturbed Rydberg 
sublevels: transitions occur principally when the classical or- 
bit passes through the nucleus, with the velocity of the Ryd- 
berg electron at the time of passage changing in magnitude 
but not direction. 

2.2. Strong-field limit (mmixing regime) 

Closer to the ionization limit, diamagnetic multiplets 
start to cross. Accurate calculation of the quantum spectrum 
and wave functions in the n-mixing regime requires that we 
numerically diagonalize the Hamiltonian (1) in some suitable 
basis. Appendix A provides a brief description of the algo- 
rithm used here. 

The main result is that the spectrum turns out to be quite 
complicated. The irregular nature of the spectrum mirrors the 
onset of chaos in the corresponding classical problem. Peri- 
odic and closed classical trajectories play a major role in the 
semiclassical approach to calculating irregular quantum 
~ ~ e c t r a . ~ ~ ~ ~ ' ~ ~ "  

Consider an optical transition from a lower state located 
somewhere in the discrete spectrum. Since the initial state is 
typically much smaller than the excited states of the irregular 
spectrum, closed classical trajectories that pass through the 
nucleus are the most prominent contributors. The oscillator- 
strength density, defined as the sum over all final upper 
states, 

where E, and f, are the energy of the upper state and the 
corresponding transition oscillator strength (the absolute 
square of the dipole matrix element), is given in the semi- 
classical limit') by627 

A*($)A(~; )  ( S j  a) 
f ( E ) = f o ( ~ ) + ~ z  

j &i$Q 
sin h - u j y ,  

(7) 

where E is the energy in the irregular part of the spectrum; 
the sum is taken over all closed classical trajectories (includ- 
ing repetitions); fo(E) is a smooth function of the energy; N 
is a constant;  MY^ is a matrix element of the monodromy 
matrix; vj is the Maslow index of a given classical trajectory; 
A ( 0) is the angular distribution function for outgoing waves 
when a photon is absorbed by an electron near the nucleus; 
and 0; and 4 are the initial and final polar angles of a clas- 
sical trajectory that traverses the nucleus. For a linearly po- 
larized laser pulse, the angular distribution is 

where 19) is the wave function of the lower diamagnetic 
state, and I[nefl]lm) is the hydrogen wave function with prin- 
cipal quantum number equal to the integer part of 
neF I/-. 

The semiclassical expressions (7) and (8) hold for clas- 
sical trajectories with Bf, 0' # 0. The modification for a 
classical trajectory linear in the field is given in Appendix B; 
for A( 8),  it makes the factor = in Eq. (8) vanish. 

We now assume that the Franck-Condon principle also 
holds for transitions to states of the irregular spectrum-in 
other words, that immediately after a transition, the angle 
80 between the velocity of a classical electron and the mag- 
netic field is determined by the lower (regular) state. In the 
expansion (7), we then expect the greatest contribution to 
come from classical orbits with initial angles (between the 
field and the electron velocity upon emergence of the elec- 
tron from the nucleus) close to go. This is confirmed by the 
calculations: the semiclassical angular distribution function 
/A( 0) I 2  computed for transitions from some lower 1 -mixed 
diamagnetic state I#) does in fact have a maximum near the 
corresponding angle of maximum deviation of the semimajor 
axis 8 0 .  

In somewhat simplified terms, we may say that excita- 
tion from the various states of a diamagnetic multiplet selec- 
tively populates states of the irregular spectrum that are rea- 
sonably well localized along some closed classical trajectory. 
The polar angle at which the given trajectory exits the 
nucleus must equal do, the maximum deviation of the semi- 
major axis in the initial diamagnetic state [see Eq. (5)]. 

2.3. Closed classical trajectories in the chaotic regime 

The classical problem of a hydrogen atom in a magnetic 
field can, by a scaling transformation, be reduced to a prob- 
lem that depends solely on the parameter'2 

The limit e-+ - corresponds exactly to the integrable Cou- 
lomb problem. When E 4 - 1, classical perturbation theory in 
a weak magnetic field applies. As 8 increases, the chaotic 
component starts to fill phase space, and islands of regular 
motion concentrate about stable periodic orbits.12 The most 
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important of these are the shortest-period closed classical 
trajectories?) which are rectilinear trajectories along ( I , )  
and across ( I  ,) the field. 

Consider the evolution of I ,  and I ,  orbits as E increases. 
A bifurcation takes place at E -  -0.39, whereupon the I ,  
trajectory becomes unstable and a new stable closed trajec- 
tory I 2  is born. At E- -0.33, 1 ,  becomes stable and a new 
unstable trajectory is born. As we pass to the ionization limit 
E =0, I ,  undergoes an infinite series of like bifurcations.13 
The trajectory I ,  becomes unstable at E- - 0.29, accompa- 
nied by the birth of a periodic trajectory that does not pass 
through the nucleus. I I  remains stable down to E -  -0.13. 

Note that the bifurcations described above are accompa- 
nied by the emergence of new classical trajectories with the 
same period and action as the original one. The bifurcation 
of multiply periodic classical orbits is described by Holle 
et a1. l4  

3. EXCITATION BY A SHORT LASER PULSE 

Following excitation by a short Gaussian laser pulse lin- 
early polarized along the field, we obtain to first order in 
time-dependent perturbation theory the wave packet 

where E ,  and Is) are eigenvalues and eigenfunctions of the 
Hamiltonian (1); N is a normalizing constant; the expansion 
coefficients are 

and (slzl@) is the dipole matrix element from the upper 
state. 

For I$) we select one of the odd states of the quadratic 
Zeeman multiplet with n= 20, m = 0; the upper states Is) 
belong to the irregular part of the spectrum, and correspond 
to energies E = - 1 / (2n&), with n e e  90. 

3.1. Excitation of the orbit I, 

We see from the foregoing considerations that to excite 
states of the irregular spectrum localized along a linear tra- 
jectory Z,,, pointing in the direction of the field, we must 
choose the initial state to be the lowest-lying vibrational state 
with K =  19 for which the corresponding classical angle of 
maximum deviation of the semimajor axis is close to zero. 
The angular distribution function (8) corresponding to this 
case is shown in Fig. 1 (to calculate curve 1, we used A (  8) 
for a linear trajectory directed along the field). 

The oscillator-strength spectrum in the region corre- 
sponding to the reduced energy E = - 0.5 is shown in Fig. 2. 
It is obviously exceedingly regular, and its most important 
features can be explained in very simple terms. The main 
sequence of lines gives rise to a Coulomb series of levels: 

This can easily be accounted for if we assume that these 
levels correspond to the states most heavily localized along 
the field. According to ( I ) ,  such states are virtually unaf- 

FIG. 1 .  Angular distribution function A ( @ ) .  Excitation from lower diamag- 
netic states with 1)  K =  19; 2 )  K =  15; 3) K =  1. 

fected by the magnetic field, and are essentially Rydberg 
Coulomb states. Regular satellite lines are also visible in Fig. 
2, corresponding to quantization in the plane perpendicular 
to the given classical trajectory. 

To illustrate the nature of the selectivity, we show in Fig. 
3 the oscillator-strength spectrum for a "nonselective" exci- 
tation out of the 2 p  state. This spectrum is much more com- 
plicated, and the strongest contribution (main sequence) 
comes from states localized in the xy plane, i.e., associated 
entirely with the other classical orbit 1 , .  

The dashed curve in Fig. 2 is the pulse envelope, with an 
effective wave-packet width of An-6. Useful quantities 
characterizing the temporal dynamics of the wave packet in- 
clude the correlation function 

and the time-dependence of the expectation values of various 
physical observables in the packet state, i.e., 

FIG. 2. Spectrum of  oscillator strengths l ( s ( z ( $ ) ( '  upon excitation from a 
lower diamagnetic state with K =  19 in the energy range corresponding to 
s = - 0.5, with r re f f=  m. 
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The correlation function indicates the extent to which the 
initial state is reproduced, while the packet means, according 
to the correspondence principle, are related to the temporal 
evolution of the corresponding classical quantities. For the 
latter, we will be concerned with z2 and p2. 

Figure 4 shows the evolution of the correlation function 
as a function of the rescaled time t / T c l ,  where 

is the Coulomb period, which is the same as the orbital pe- 
riod of I,. In this plot we see oscillations at the classical 
period T,, modulated in amplitude by a process that corre- 
sponds to motion along the classical trajectory, with alternat- 
ing decay and revival of the wave packet. In among the 
oscillations at the fundamental classical frequency are faster 
oscillations at higher frequencies. 

Features such as these find a natural explanation in the 
quasi-one-dimensional evolution of a wave packet whose 
spectrum displays weak a n h a r m o n i ~ i t ~ . ~ ~ ~  The natural "one- 
dimensionalization" factor in the full two-dimensional prob- 

FIG. 3. Spectrum of oscillator strengths upon excitation from the 2 p  
state. 

lem is the strong localization of the wave packet al.ong the 
classical trajectory I,. By way of illustration, Fig. 5 shows 
surface plots of the evolution of the probability density over 
the time interval [O,Tcl]. 

Let us briefly recall the basic features of wave packet 
evolution for packets prepared in a regular spectral region 
with weak anharmonicity. The energy levels in that region 
can be written in the form 

We now substitute (16) into (10). At times of order l / w ,  we 
can neglect the contribution of all but the linear term to the 
phase of the wave functions in the packet (10). This leads to 
periodic oscillations at the classical period T c l = 2 r / w ,  
which corresponds to packet motion along the classical tra- 
jectory. At t + T c l ,  the nonvanishing anharmonicity A results 
in dephasing, with a subsequent series of decays and revivals 
of the wave packet at a period 

T,,= r r /  A. (17) 

In fact, at time t -  T,, , the quadratic anharmonicity leads to 
recovery of the original packet, shifted in time by T c I / 2 :  

I ( ~ I ~ > I ~  where 
0.6 r 1 

I 
It),n=, Z s ~, l s )exp(-  iwsr) 

is the wave packet with no allowance for anharmonic correc- 
0.4 tions to the spectrum. 

Furthermore, there exist so-called fractional-order reviv- 

0.2 
als at times T,,/2, T,,/3, etc., which are related to fragmen- 
tation of the wave packet. In a plot showing temporal evolu- 
tion, these correspond to oscillations at frequencies 2 0 ,  

0.1 3 w ,  etc. 3 

To calculate the revival period in the present instance, 

60 
we note that A ,  according to (12), takes the form 

0 20 40 80 t / T c l  
3 

FIG. 4. Time dependence of the correlation function; K =  19, E =  -0.5. 
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FIG. 5. Evolution of the probability density for a 
wave packet corresponding to the classical trajec- 
toly I,. Surface plots correspond to succesive 
times from 0 to T,, . Vertical axes show z ,  horizon- 
tal axes show p. 

Putting no=n,a, dA(no) ldn-0 ,  and using (17), we obtain 
T,,- 30 T c l .  

As a further illustration of the temporal dynamics of a 
packet, Fig. 6 shows a plot of ( t l z2( t ) l z :  over a long evolu- 
tionary time span (z,= 2n:g is the classical turning point for 
the trajectory I,). During the first hundred classical oscilla- 
tions, we can clearly make out a sequence of wave packet 
revivals at period T,, , and in between, a set of easily dis- 
tinguishable oscillations at twice the classical frequency. 
Gradually, this picture of successive revivals of the packet 
gets smeared out because of the quadratic anharmonicity, but 
at times of order 700 T c l ,  we again see an unusually clear- 
cut series of revivals. Moreover, at around 350 T c l ,  we ob- 
serve a sequence of revivals at half the classical period, 
T:,,= T,,12. Closer inspection reveals that such features can 
handily by explained in terms of the cubic anharmonicity in 
Eq. (16). Leaving aside a detailed analysis, we merely note 

that in complete analogy with our examination of quadratic 
anharmonicity, we can determine the period of the cubic an- 
harmonicity to be 

Thus, this period turns out to be one-sixth what one might 
expect from trivially requiring cancellation of the cubic con- 
tribution via 

At t-~:,??-rnT,,, with rn an integer, the cubic contri- 
bution leads to recovery of the original wave packet shifted 
in time by Tcl I6 + (rn/2)TcI : 

and we see a clear-cut sequence of revived wave packets. 
Curiously enough, if we can neglect higher-order terms 

FIG. 6. Time dependence of (tlz21t)lz: for K =  19, c: = -0.5, z,= 2rz5ff is the 
classical turning point for the tn~jectory I, . FIG. 7. Time dependence of (tlpLlt)lz,! for K =  19, E =  -0.5. 
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FIG. 8. Spectrum of oscillator strengths, K =  19, E =  -0.4. 
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(quartic, etc.), the revived wave packets at time $2; turn out 
to be even better defined than the first set of recurrences 
produced by the quadratic anharmonicity. 

We can characterize the feature of the temporal evolu- 
tion at t-350Tcl, by analogy with the quadratic anharmonic 
case, as a fractional revival associated with the cubic anhar- 
monicity. Recall that in the case of quadratic anharmonicity, 
the fractional revival of order 112 corresponds to splitting of 
the wave packet into two parts of equal amplitude, shifted by 
Tcl/2 and moving in antiphase.3 This corresponds to the on- 
set of oscillations at twice the classical frequency during 
wave-packet evolution. For the case of cubic anharmonicity, 
the evolution at time ~ ( ~ ~ / 2 - m ~ , , +  T, 44 corresponds to 
division of the wave packet into two similar but unequal 
parts that also move in antiphase. 

Finally, we present a plot of the temporal evolution of 
(tlP21t)lz: (see Fig. 7). As expected, the amplitude of the 
oscillations in the radial direction p is almost two orders of 
magnitude smaller than that in the z direction. The oscilla- 
tions occur at the Coulomb period TcI, which is the same as 
the period of trajectory I,. At the same time, the period of 
wave-packet revivals is associated with the anharmonicity in 
the energy differences between the main sequence and the 
first subordinate subsequence in the oscillator-strength plot 
of Fig. 2. 

Yet another example of excitation of the orbit I, is pro- 
vided by the case with &= - 0.4, in which the orbit winds up 

in the bifurcation region. The oscillator-strength plot is 
shown in Fig. 8. The elements of the main sequence form a 
"Coulomb" series, and are related in a natural way to the 
states most strongly localized along the field. The oscillator 
strengths corresponding to these states vary smoothly as the 
bifurcation region is traversed, decreasing abruptly upon 
emergence into the region of greatest instability of the orbit 
I,, where multiplets appear in the spectrum at the location 
of isolated lines; these multiplets result from interference be- 
tween the various classical trajectories. In the bifurcation re- 
gion, series corresponding to satellite subsequences have es- 
sentially vanished. The nature of this behavior becomes 
transparent when we analyze the semiclassical expression (7) 
for the oscillator strength. At the instant of bifurcation, 
M 12-f0, and the conventional semiclassical expansion goes 
to infinity, signifying the fact that the contribution of the 
given orbit has become anomalously large. 

Features in the oscillator-strength spectrum show up in 
the evolution of the correlation function and packet means. 
Fig. 9 shows the time dependence of the correlation function. 
The outstanding feature here is the faithfulness with which 
the wave packet has been recovered: max)(0lt))=0.9. Fig. 10 
shows the evolution of the p2, which is characterized by a 
lack of any evidence for wave-packet revival, and by a re- 
duction in the amplitude of oscillations relative to the case 
with E -  -0.5. 

In studying the evolution of z2 shown in Fig. 11, we 

RG. 9. Time dependence of the correlation function; K =  19, 
E = - 0.4. 
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I I 1 

0 20 40 60 80 ' Tc' FIG. 12. Shape of the classical trajectory I2 for E = -0.32. 

FIG. 10. T i e  dependence of (tlp21t)lz: for K =  19, E =  -0.4. 

again note the well-defined revival of the wave packet at 
times t -  1100 T,, . An analysis shows that this feature re- 
sults from the cubic anharmonicity in the following way. Let 
S be the coefficient of the quartic anharmonicity in Eq. (16); 
we can then define a new period related to the quartic term: 

At time t-T',,":- k~:;=(m + 2) T,, , (m and k are integers), 
the combined contribution of the quartic, cubic, and qua- 
dratic anharmonicity lead to a revival of the wave packet. 

3.2. Excitation of the orbit g 

We now consider the excitation of the geometrically 
nontrivial closed orbit I 2  (Fig. 12). The most favorable con- 
ditions for selectively exciting this orbit occur at 
E.J -0.32, where the contribution of the orbit I, is strongly 
suppressed. At this value of E ,  the initial polar angle of the 
I 2  trajectory is BIZ= 25.12", which is almost identical to the 
classical angle of maximum deviation of the semimajor axis 
Bo=25.04" for a vibrational diamagnetic state with K= 15. 

Figure 1 shows the quantum mechanical angular distri- 
bution function (8), which peaks near BO. The oscillator- 

strength spectrum in Fig. 13 in fact demonstrates the high 
degree of selectivity in the excitation of states of the irregular 
spectrum. It can easily be shown that the main sequence in 
the spectrum of oscillator strengths is directly related to the 
excitation of states localized along the closed orbit 12 .  To do 
so, consider the plot of energy differences between neighbor- 
ing states in the main sequence (Fig. 14). The sequence in 
question is clearly weakly anharmonic, and the mean energy 
difference corresponds to the frequency of classical oscilla- 
tions on trajectory 1 2 .  The two-dimensional gray-scale im- 
ages in Fig. 15 illustrate the temporal evolution of the prob- 
ability density. They are particularly impressive in the 
present example, and leave no doubt as to the localization of 
the wave packet along the classical trajectory I * .  

3.3. Excitation of the orbit I, 

As a final example, we examine the selective excitation 
of the closed trajectory I ,  for E =  -0.5. The diamagnetic 
state in this calculation is the state with K =  1, which is lo- 
calized near 0.~90". Excitation selectivity is somewhat 
lower in this case (see Fig. 1). As before, however, the main 
sequence in the spectrum of oscillator strengths in Fig. 16 is 
uniquely related to the states localized along the trajectory 
I,. An analysis of subordinate sequences in fact leads one to 

- -  . 

FIG. I I .  Time dependence of (t1z21t)l:: for K =  19, c =  -0.4. FIG. 13. Spectrum of oscillator strengths, K = 15, E = - 0.32. 
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FIG. 14. Energy differences AE = E, ,  , - E i  between neighboring states of 
the main sequence in the spectrum of oscillator strengths shown in Fig. 13. 

a novel and interesting conclusion about the relationship be- 
tween features of the classical dynamics and the behavior of 
irregular quantum spectra. 

In studying the evolution of a family of trajectories near 
I 2  with E = -0.5, we note that they mimic a certain closed 
classical trajectory with period T-3  T',1, . For E= - 0.45, a 
new closed classical orbit actually appears with a period that 
is a multiple of the period of the fundamental classical orbit. 
Thus, at E - - 0.5, we have a resonant or prebifurcation state 
of the classical system that leads to the emergence of corre- 
sponding energy levels in the quantum spectrum. 

The evolution of the packet in time is illustrated by the 
plot of (tlp21t)lp: in Fig. 17. We again see packet revivals in 
this figure, but they are badly smeared by the fact that a 
significant fraction of the packet associated with excitation 
of quasiresonant orbits decays rapidly. The evolution of the 
probability density shown in Fig. 18, bears out the proposi- 
tion that the packet consists of two differently evolving parts. 

4. CONCLUSION 

regular spectrum. A suitable choice of lower state leads to the 
isolation of states of the irregular spectrum localized along 
selected closed classical trajectories, and a substantial sim- 
plification of the spectrum of oscillator strengths, thereby 
making it possible to classify the spectrum in terms of the 
initial polar angle of the dominant classical orbit. A selective 
means of excitation results in the generation of wave packets 
that evolve along specified classical trajectories over the 
course of hundreds of classical periods. The basic features of 
the temporal dynamics of various physical quantities can be 
comfortably explained in terms of the quasi-one-dimensional 
evolution of a wave packet in a regular spectrum with weak 
anharmonicity. The natural "one-dimensionalization" factor 
is the strong localization of the wave packet al.ong the clas- 
sical trajectory. Analysis of long-term evolution of physical 
observables yields revival periods linked to higher-order an- 
harmonic corrections to the energy spectrum. 

Our work has been supported by the Russian Foundation 
for Fundamental Research (grant no. 94-02-06022), the In- 
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APPENDIX A 

To find the discrete spectrum and corresponding eigen- 
functions, it is necessary to diagonalize the Hamiltonian ma- 
trix (I) in some appropriate basis. The familiar complete 
basis of hydrogen wave functions contains both a discrete 
and continuous spectrum, and the latter can make a substan- 
tial contribution to the expansion of high-excitation states. In 
order to avoid any untowardness associated with the continu- 
ous spectrum, we can make use of the so-called Sturm basis, 
which is defined to be the purely discrete complete set of 
solutions of the equationI5 

We have examined the excitation of states of the irregu- 
lar Rydberg spectrum by way of intermediate states of the 

FIG. 15. Evolut~on of the probab~l~ty den- 
s~ty  for a wave packet corres~ondlng to 
the class~cal trajectory I, .  The scale along 
the p (horrzontal) axls 1s three tlmes the 
scale along the z axls. 
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FIG. 16. Spectrum of oscillator strengths, K =  1 ,  E =  - 

where the energy E is fixed and the charge is quantized: APPENDIX B 
z,= n m, n = 1 + 1 ,..., w. The eigenfunctions are 
orthonormal with weighting factor l l r :  Following ~ o ~ o m o l ' n ~ i ~  we give a brief derivation of 

the semiclassical expression for the spectrum of oscillator 
strengths (7). 

( @ n i m ~ ~ ~ @ n ~ i ~ r n ~ )  = a n n f a i i l a m m t .  (A21 We introduce the Green's function for the standard 
Schrodinger equation ( 1 ) :  

In our calculations, the hydrogen-atom wave functions in 
a magnetic field are given by the expansion 

where E,  and lx , s )  are the exact eigenvalues and eigenfunc- 
Is)= C B i n r n I @ n / m ) .  

1,n (A3) tions of the Schriidinger equation. 
Then 

The spectrum of energies E,  and eigenvectors BS are ob- 
tained by solving the usual matrix problem: Im G ( x r , x ; ~ ) =  - .rrx G(E-E , ) l x , s ) (x ' , s l ,  (B2)  

S 

( @ n r m l ~ - ~ ~ I @ ~ ~ l ~ ~ ) ~ I ; ' r k = o .  644)  and the function f ( E )  of Eq. (6) can be expressed in terms of 
the Green's function: 

We diagonalize the matrix using Lanczos' method. We 
choose the dimensionality of the basis by requiring that the 1 

f ( E ) =  - - I r n ( # , x l ~ ( x ' , x ; ~ ) ) # , x ' ) .  
eigenvalues be calculated to some desired accuracy; in the rr 

033) 

present case, the dimensionality numbers in the thousands. In the semiclassical approximation, the Green's function 
can be represented as a sum of two terms, 

N 

Q- character, the potential in the Schrodinger equation can be 
0.6 expanded in powers of the deviation from the point 

rn ( x r  + x ) / 2 ,  and in the leading approximation, G o  is identical 
C - with the Green's function in the Thomas-Fermi approxima- 
2. 0.4 tion. In the present problem, G o  is the pure Coulomb Green's 

1.0 - where G o ( x t  , x ; E )  is the contribution made by "short" clas- 

function with no account taken of the external field. The 
contribution of G o  to Eq. (B.3)  consists of a term f o ( E ) .  

The term GoSC(x' ,x;E)  is the contribution of "long" 
classical trajectories with large action. In the semiclassical 

0 100 200 300 400 500 I T c  limit, G"'r(x' ,x;E) can be represented as a sum over all 
classical trajectories that join x '  and x. In n-dimensional 

FIG. 17. Tinw dependence of ( t l p 2 1 t ) l p :  for K =  I, e =  -0.5. space, we have 

- 
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sical trajectories, whose classical action is small compared 
with Planck's constant. The semiclassical approximation is 
inapplicable to such trajectories, but because of their local 

0.8 
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FIG. 18. Evolut~on of the probability den- 
sity for a wave packet corresponding to the 
classical trajectoly I ,  . 

where Z,, is a sum over trajectories, and 
S(X' ,X;E)=J; '~-dq is the action along a trajectory, with 

Here the y are coordinates in an (n - 1)-dimensional plane 
perpendicular to the current trajectory, lql is the absolute 
value of the velocity, and v is an integer that comes up when 
there are points on the current trajectory at which the semi- 
classical approximation breaks down. 

The determinant A can be conveniently expressed in 
terms of the elements of the monodromy matrix. Let us fix 
upon a classical trajectory and write the linearized equations 
of motion for a nearby family of trajectories: 

Here we represent the matrix M(t) in block form. If T is the 
time required to traverse the classical trajectory, then the 
matrix M(T) is called the monodromy matrix of the given 
trajectory. 

The determinant A can easily be rewritten in the form1' 

where l q i l  and lqfl are the initial and final speeds. 
For trajectories that do not follow the field, the two- 

dimensional semiclassical theory holds in cylindrical coordi- 
nates z ,  p,  and the determinant in Eq. (B.8) reduces to the 

258 JETP 81 (2), August 1995 

matrix element MI2. For trajectories linear in the field, 
p= 0. Writing out the kinetic energy operator in cylindrical 
coordinates, 

we conclude that the two-dimensional semiclassical model 
breaks down in this case. 

Using the three-dimensional model, according to (B6), if 
the trajectory runs along the z axis and motion in x is inde- 
pendent of motion in y, then 

A='(")(+). q 1  x dy'dy 

As before, each of the second derivatives can be expressed in 
terms of the corresponding element of the monodromy ma- 
trix. 

The expression for the oscillator-strength density (B3) 
contains integrals of the Green's function multiplied by the 
initial wave function. When the initial state is one with small 
quantum numbers, the greatest contribution to the integral 
comes from values of x' and x close to the nucleus. The 
most important classical trajectories are therefore those that 
are closed at the nucleus. On the other hand, the simple semi- 
classical equations do not hold in the immediate vicinity of 
the Coulomb center, in general, and it is necessary to match 
a numerical solution to the exact Coulomb functions. 

The final semiclassical expression for the density of os- 
cillator strengths looks like 

Here fil(E) is the contribution of the trajectory along the 
field, 
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sums are carried out over all circuits of a trajectory that is 
linear in the field, and NII is a constant. The contribution 
f,(E) due to all other classical trajectories can be written in 
similar fashion: 

where summation takes place over all circuits of every clas- 
sical trajectory. 

')~lanck's constant fi has been introduced into Eq. (7) as a convenient small 
formal parameter for semiclassical expansions. 

a hydrogen atom in a magnetic field, all trajectories that are closed at 
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the nucleus turn out to be periodic. 
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