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The surface and collisional mechanisms of light-induced drift of a one-component gas in a 
capillary are investigated theoretically. These mechanisms are based on various interactions of the 
excited and unexcited particles with the surface of the capillary and with one another. The 
kinetic equations for the velocity distribution functions of the excited and unexcited particles are 
solved numerically by the discrete-ordinate method. The velocity profiles and the gas 
fluxes, averaged over the transverse cross section of the capillary, are calculated as a function of 
the Knudsen number and the ratio of the radiative decay rate to the intermolecular collision 
rate. O 1995 American Institute of Physics. 

1. INTRODUCTION 

A theory of li ght-induced free-molecular surface drift of 
a one-component gas in a capillary is presented in Refs. 1 
and 2. It is shown that the Bennett peak and dip in the ve- 
locity distributions of these particles are deformed differently 
for various interactions of the excited and unexcited particles 
with the surface of the capillary, and they do not cancel one 
another. The asymmetry of the total distribution function 
relative to the zero value of the projection of the molecular 
velocity on the direction of propagation of the light wave 
determines the motion of the absorbing gas as a whole. We 
note that the possibility, in principle, of surface light-induced 
drift was first predicted in Ref. 3. In Ref. 4 calculations of 

Our objective in the present work is to develop a kinetic 
theory of the surface and collisional mechanisms of light- 
induced drift of a one-component gas in a capillary for arbi- 
trary values of Kn and the frequency parameter T,, , and to 
calculate the velocity profile and the mean gas flux over the 
cross section of the capillary. This multiparameter, math- 
ematically complicated problem can probably only be solved 
numerically. The optimal method appears to be the method 
of discrete ordinates, which is based on replacing the con- 
tinuous six-dimensional phase space by a discrete space. Nu- 
merical results obtained with guaranteed accuracy are also of 
particular interest in that they can be used to test various 
approximate theories of light-induced drift. 

this phenomenon were carried out in the hydrodynamic ap- 
proximation. The main deficiency of the results obtained in 2. ASSUMPTIONS AND BASIC EQUATIONS 

Ref. 4 are that the light-induced slip boundary condition for 
the Navier-Stokes equation was derived under the assump- 
tion that the particle-velocity distribution function remains 
unchanged across the Knudsen layer. 

In Refs. 5-8, collisional light-induced drift in a channel 
formed by two infinite parallel plates was calculated. This 
phenomenon owes its existence to the difference in interac- 
tion cross sections of the excited and unexcited particles. In 
Refs. 6-8, surface light-induced drift was also studied taking 
into account the spatial nonuniformity of the distribution 
function. In Ref. 6 this was done for both small and large 
values of the Knudsen number (Kn), in Ref. 7 for arbitrary 
values of Kn, and in Ref. 8 for small values of Kn 
( K n s  0.2). 

A kinetic theory of the surface and collisional mecha- 
nisms of light-induced drift of a one-component gas in a 
cylindrical capillary was developed in Ref. 9 for arbitrary 
Kn. However, the results obtained there are limited by the 
assumption that the radiative decay rate T, of an excited 
level is small compared to the intermolecular collision rate 
yn , i.e., r,,= r, 1 y n 4  1 .  Moreover, the Bubnov-Galerkin 
method used in Ref. 9 to solve the integral-moment equa- 
tions for the partial velocities and viscous stresses did not 
make it possible to investigate the light-induced drift veloc- 
ity profile and its evolution as the flow regime changed from 
hydrodynamic to free-molecular. 

We study the steady motion of a one-component gas in a 
circular capillary under the action of resonant optical radia- 
tion propagating along the z axis of the capillary. Let the 
length L of the capillary be much greater than its radius 
Ro, so that distortions of the velocity field at the ends of the 
capillary can be neglected. The radiation is absorbed by the 
gas particles in electronic or vibrational-rotational transi- 
tions from the ground state n to an excited state m .  The 
frequency o of the monochromatic radiation is offset from 
the center om, of the absorption line by a= ( w  - om,) 
< w,o,, . As a result of the Doppler effect, only particles 
with velocities v such that kv=a, where k is the wave vec- 
tor, interact most efficiently with the radiation. Particles that 
have absorbed radiation have a different collision cross sec- 
tion. Thus, the absorbing gas can be regarded as a binary 
gaseous mixture in which the particles have the same masses 
but different interaction cross sections. Particle exchange be- 
tween components of the mixture is possible as a result of 
radiative decay of an excited level, as well as collisional and 
stimulated transitions. 

The velocity distributions f, and f, of the excited and 
unexcited particles, respectively, have a peak and a Bennet 
dip,'' respectively, near the resonance values u,=Rlk, 
where V, is the projection of the velocity vector v on the z 
axis. For flf.0, these distributions are asymmetric with re- 
spect to v,=O. Consequently, oppositely directed macro- 
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scopic fluxes Jm and J, of excited and unexcited particles, 
respectively, exist along the capillary. If the probabilities that 
excited and unexcited particles pass through the capillaries 
are different because the interactions of the two types of 
particles with the surface and the transport cross sections are 
different, then there exists a resulting flux J= Jm+ Jn-the 
light-induced drift. 

In the two-level approximation, the distribution func- 
tions f m  and f, satisfy the following system of kinetic 
equationslO: 

where 

rm is the radiative decay constant, r is the homogeneous 
half- width of the absorption line, S, and S, are the Boltz- 
mann collision integrals, Eo  is the amplitude of the electric 
field, dm, is the transition dipole moment for the transition 
m - n, f i  is Planck's constant, and ~ ( v )  is the saturation 
parameter characterizing the probability of stimulated transi- 
tions and is proportional to the radiative intensity I. 

Let the gas and the capillary have the same coordinate- 
independent temperature T. We also assume that collisions 
of molecules with the capillary surface are elastic. Then 
Maxwell's specular diffusion model can be chosen to give 
the boundary conditions for Eqs. (I). According to this 
model, a fraction c j  of the particles in state j after a collision 
with the surface spreads out diffusively with Maxwell's ve- 
locity distribution f ; , while the fraction 1 - c j  is reflected 
specularly, i.e., 

where n is the inner normal to the surface of the capillary; 
the superscripts +, s, and - refer, respectively, to particles 
that are reflected, emitted diffusively from, and incident upon 
the surface; n; is the number density of particles emitted 
diffusively in the j-th state, mo is the mass of a particle, and 
kg is Boltzmann's constant. 

We now consider the case of low radiation intensity I, in 
which ~ ( v )  < 1. Then the states of the components of the gas 
mixture are slightly nonequilibrium, and the distribution 
functions f, and f m  can be represented in the form 

where 

fjo is the Maxwell-Boltzmann equilibrium distribution, njo 
is the equilibrium number density of particles in the j-th 
state, hj(r,v) is the perturbation of the distribution of the j-th 
component, and r is the two-dimensional radius vector in a 
plane perpendicular to the z axis. 

The intensity of the radiation is assumed to be uniform 
across the capillary. The saturation parameter ~ ( v )  does not 
depend on the radial coordinate r. In an optically thin me- 
dium, the radiation intensity changes very little over the 
length of the capillary, and therefore the dependence of the 
perturbation functions hi on the longitudinal coordinate z 
can be neglected. 

Under these assumptions, the kinetic equations!(l), lin- 
earized with respect to the perturbation functions hi, can be 
put into the following dimensionless form using McCor- 
mack's second-order model collision integrals:" 

where 

,.=A = 
J - " I P"z - c,cZEh dc, czEhj dc, mjrZ=-- 

u 2pj  

Uj, Pjrz ,  and Pi are the partial velocity, stress tensor, and 
pressure of the j-th component of the mixture; yjj and yji 
are the effective intermolecular elastic collision rates for col- 
lisions of type j- j and j- i, respectively; R is a tenuous- 
ness parameter, which is inversely proportional to the Knud- 
sen number (Kn is the ratio of the particle mean-free path 1 
to the capillary radius Ro); expressions for the frequencies 
vll) in terms of the Chapman- Cowling integrals, which 
depend on the form of the intermolecular interaction poten- 
tial, are presented in Ref. 11; c, is the two- dimensional 
component of the dimensionless velocity vector c in a plane 
perpendicular to the z axis; and, c, and c, are components of 
the vector cI . 

The boundary conditions for the perturbation functions 
hj  follow from (2) and (4): 
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The second term on the right-hand side of (7) does not de- 
pend on the molecular velocities, and consequently it does 
not contribute to the macroscopic velocity and stress tensor 
(6). It will therefore be dropped in the subsequent discussion. 

It should be noted that the probability of stimulated tran- 
sitions is small under low-intensity irradiation. Then the ratio 
nmlnn is also a small quantity, i.e., a m = n m l n n 4  1. 

Equations (5)-(7) make it possible to determine the 
functions hj(r ,c)  uniquely. However, it is of practical inter- 
est to determine the resulting particle flux (light-induced 
drift) averaged over the transverse cross section of the cap- 
illary: 

J = J m + J n = 2 ~ / o ' ( n n u n + n m u m )  r dr .  

For numerical calculations it is convenient to use the 
dimensionless quantity G, which is related to the flux J by 

where 

We now transform to a new coordinate system in veloc- 
ity space: we replace the independent variables c, and c, by 
the variables c, and 8 defined as follows: 

Since the longitudinal component c, of the molecular 
velocity appears in Eq. (5) as a parameter, we introduce the 
following truncated perturbation functions: 

where an= 1 and a,=n,ln,. 
We also introduce, in accordance with (6) and (12), new 

functions for the macroscopic velocities and viscous stresses: 

Xexp( - c:)c, dc, dB, (13) 

~exp(-c:)c:cos8 dc, do. (14) 

Neglecting terms of order a ,  and taking (11)-(14) into 
consideration, we obtain from (5) the following kinetic equa- 
tions for the truncated perturbation functions @ , ,  and at, : 

On the basis of (12), the boundary conditions (7) assume the 
form 

It is well known that for gas motion in a capillary, the 
accommodation coefficients E~ are close to unity,12 while the 
relative difference between the effective diameters of excited 
(a , )  and unexcited ( a , )  particles is srna~l '~: 

We choose the effective collision rate by analogy with 
the Bhatnagar-Gross- Krook model in the form y n = p I v ,  
where 7 is the dynamic viscosity coefficient and p is the 
pressure. We model the gas particles as hard elastic spheres 
with effective diameters a, and an for the excited and un- 
excited particles, respectively. Then the rarefaction param- 
eter R ,  is related to the Knudsen number by12 

By virtue of the inequalities (18), we have 

As a result, we obtain from Eqs. (15) and (16) for the hard- 
sphere molecular model 

d m  sin 8 a@, 
c,cose - -c, - - 

dr r 80 
+ R a m s  

Here the fact that t , =  - t,, as a result of momentum conser- 
vation has been taken into ac~oun t .~  
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Linearizing with respect to the small parameters (18) 
makes it possible to separate the surface and collisions 
mechanisms of light-induced drift. Then 

The kinetic coefficients G I  and G2,  which characterize 
the respective contributions of the surface and collisional 
mechanisms to light-induced drift, depend only on the rar- 
efaction parameter R and the rmn- the ratios of the radia- 
tive decay rate r, of the excited level to the intermolecular 
collision rate y,. In the approximation (18), the kinetic 
equations do not depend on e j  and Aalu, . 

Substituting (24) into Eq. (9) gives the following expres- 
sion for the light- induced drift flux: 

3. SOLUTION OF THE KINETIC EQUATIONS 

To solve Eqs. (21) and (22) with the boundary conditions 
(17), we employ the numerical method of discrete ordinates, 
which is based on replacing the continuous phase space by a 
discrete phase space. In so doing it is assumed that the gas 
molecules cannot move with arbitrary velocities, but only 
with velocities from a fixed set, which comprises 
c,;(i= 1 ,..., N,) and @,(q= 1 ,..., N,). This set forms the 
nodes of a computational mesh in molecular velocity space. 
We also introduce a discrete configuration space with nodes 
rk(k= 1 ,..., N,). 

Then the finite-difference scheme for Eqs. (21) and (22) 
takes the form 

@k- 1,i.q sin 0, q,fq-q,ki.q-l 
c,i cos eq n n 

A r 
-Cl ip  

r k A 8  

2 +- c,ist; cos 8, , 
3 i (26) 

k=1,  ... N,, i = l  N ,  q=1,  ... N,. 

Here @ f q  and @Eq are the values of the truncated perturba- 
tion functions (12) at the nodes, i.e., 

The points rk are distributed uniformly over the closed 
interval [0,1] such that ro= 1, rk=rk- ,-Ar.  and 
Ar = l/Nr ; the nodes 8,= 8,- + A B lie in the closed inter- 
val [ 0 2  T], with A @= 2 TIN, ; the points c,; are Gaussian 
nodes, which determine the values of the dimensionless ve- 
locity c, of the molecules in the interval ( 0 , ~ ) .  The dimen- 
sionless macroscopic velocities w;= wj(rk) and the tangen- 
tial stresses t;= tj(rk) for the excited ( j =  rn) and unexcited 
( j=n )  particles at any point rk  of the transverse cross sec- 
tion of a capillary are calculated using (13) and (14) with the 
following quadrature formulas: 

where Wr and ~f are the Gaussian weights for the velocities 
and stresses. 

The boundary conditions (17) become 

@f (c,~,@: ,ro= 1)=(1  - E ~ ) Q , ~ ( C , ~ , @ ~  ,To= 1), 
(30) 

k=O, i = l  N ,  q=O ,..., N,, j=n,m, 

the points 13; , which determine the directions of the veloci- 
ties of the molecules reflected from the surface of the capil- 
lary, lie in the interval ( ~ / 2 , 3  ~ / 2 ) ,  and the points 6; for the 
molecules incident on the surface lie in the interval 
(-TI2, + d 2 ) .  

Equations (26)-(30) were solved by iterative refinement. 
Using the zeroth approximation (p  = 0)  for certain (generally 
arbitrary) profiles of the partial macroscopic velocities and 
the stress tensor, the values of @yq can be obtained by itera- 
tion to any higher approximation. The new values of the 
macroscopic quantities w;(") and t?) are calculated from 
the formulas (28) and (29) at each iteration step (p>O). The 
rate of convergence of the iteration process depends largely 
on the choice of the zeroth approximation. In the present 
work the equilibrium state of the gas, in which 

was chosen as the zeroth approximation. The iterations were 
continued until the relative difference between the computed 
values of the macroscopic parameters in the p-th and 
(p - 1)-th approximations was less than a prescribed value 
E = 

A nonuniform mesh, consisting of N,= 11 Gaussian 
nodes, was used for the variable c, , and a uniform mesh 
with N, = 20 nodes was used for the variable 0. The mesh in 
configuration space consisted of N,= 200 nodes, distributed 
uniformly along the radius of the capillary. The computa- 
tional error was at most 0.1% for any values of the rarefac- 
tion parameter R and rate parameter r,, . 

The computational results are displayed in Figs. 1-4. 
Some of the computed values of the kinetic coefficients 
G I  (R,r',l,,) and G2(R ,T,,,) are presented in Tables I and 11. 
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FIG. 1. Kinetic coefficient G ,(R,T,,) or surface light-induced drift. 

FIG. 3. Dimensionless velocity w ,  as a function of the radial coordinate r 
for r,,=0.01 and various values of R (curve labels). 

4. RESULTS AND COMPARISON WITH EXPERIMENT 

The direction of the surface component of light-induced 
drift is determined by the signs of the difference 
AE = E, - E, between the accommodation coefficients of the 
unexcited and excited particles, and the frequency offset 
R =  w - w,, of the radiation from the center of the absorp- 
tion line. If AE >O, the surface component of drift is oriented 
in the direction of the radiation for a > 0 ,  and opposite the 
radiation for R < 0. 

Figure 1 displays the kinetic coefficient G I ,  which char- 
acterizes the surface light-induced drift velocity as a function 
of the rarefaction parameter R for various values of the fre- 
quency parameter T,, . Clearly G I  decreases monotonically 
as the Knudsen regime passes into the hydrodynamic regime. 
The decrease in surface drift velocity with increasing T,, 

and fixed R is explained by a decrease in the relative number 
of excited particles that collide with the capillary walls. 

For fixed T,,, the R-dependence of the kinetic coeffi- 
cient G2,  which characterizes the collisional light-induced 
drift, is nonmonotonic (Fig. 2). The curve G2(R) has a maxi- 
mum and a minimum, and for some value R(O)(T,,) of the 
rarefaction parameter, the coefficient G2 changes sign. This 
means that the direction of the collisional component of 
light-induced drift is determined not only by the sign of the 
frequency offset 0 from the center of the absorption line, but 
by the gas pressure in the capillary as well. A possible reason 
for this behavior of G2(R) is discussed in detail in Ref. 9 for 
Tm,6 1, where the inversion value R(') of the rarefaction 
parameter R is fixed. In the general case, the collisional 

FIG. 2. Kinetic coefficient G, as a function of the rarefaction parameter R FIG. 4. Dimensionless velocity w, as a function of the radial coordinate r 
and the frequency parameter T,,,, (curve labels). for r,,,,,=0.01 and various values of R (curve labels). 
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TABLE I. Kinetic coefficient G,(R,T, , , , )  for surface light-induced drift. 

light-induced drift reverses direction at R(')-0.05-0.25, 
depending on the value of the frequency parameter T, ,  (Fig. 
2).  Thus, the direction of collisional light-induced drift at 
fixed gas pressure in the capillary is also determined by the 
magnitude of the radiative decay constant T ,  . 

It can be seen from Fig. 2 that the greater the value of 
T,,  , i.e., the fewer the collisions an excited particle under- 
goes on average before being quenched, the smaller the value 
of the kinetic coefficient G2. In the limit T,,+ w, there is 
enough time for all excited particles to decay to the ground 
state during the time taken to cover one mean free path 
length, and there is therefore no collisional light-induced 
drift. 

Note that for r m , S 0 . 1 ,  the kinetic coefficients GI and 
G2 do not depend on T, ,  . In this range of values of T,,  , 
the results of Ref. 9 are valid. 

Figures 3 and 4 display the dimensionless macroscopic 
velocities w l  and w 2  as functions of the radial coordinate r. 
One can see (Fig. 3) that the surface component w l  of the 

velocity for R s  1 remains essentially constant across the 
capillary. This suggests that the viscosity of the gas does not 
greatly affect the surface light-induced drift. 

Note that the surface drift velocity calculated in Ref. 4 
has the typical parabolic profile of standard Poiseuille flow. 
The evolution of the profile of the collisional component 
w 2  of the velocity as the free-molecular regime passes into 
the hydrodynamic regime is interesting (Fig. 4). As long as 
the rarefaction parameter R is small, w 2  will be virtually 
independent of r. For R>0.10, the structure of the light- 
induced drift flow becomes more complicated. A "core" of 
the flow, directed in one direction, forms near the axis of the 
capillary, while in the layer near the wall the gas moves in 
the opposite direction. The existence of a counterflow is re- 
lated to the fact that the flux of the excited particles near the 
wall for intermediate values of R is higher than the flux of 
unexcited particles, and conversely near the axis of the cap- 
illary. In the almost free- molecular regime ( R  SO.  l) ,  the 
velocity w 2  is directed opposite the wave vector k, and w 2  is 

TABLE 11. Kinetic coefficient G2(R,I',,), for collisional light-induced drift. 
- - - - - - - - - - 
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FIG. 5. Comparison of theory (solid lines) with experimental data for 
CH3F molecules: 1) P (24, 13); 2) Q (12, 3); 3) R (4, 3); 4) R (31.9). 

greater near the wall than on the axis of the capillary (con- 
cave profile). In the hydrodynamic regime, for R> 10, the 
velocity w2 is oriented in the same as the direction as the 
wave vector k, and w2 increases away from the wall. 

Light-induced drift has been studied e~perimental l~ '~ in 
CH,F molecules. Resonant C 0 2  laser radiation was directed 
along a quartz capillary with radius Ro-0.75 mm and length 
L-300 mm. The mean gas pressure in the cell was varied 
over the range 0.7-280 Pa, which corresponds to rarefaction 
parameters R - 0.1 - 47. 

The results of the measurements are presented in Ref. 13 
for the quantity9 

where ~ ( a )  is an antisymmetric function of the detuning 
a (Ref. 14), and Gp is a kinetic coefficient that characterizes 
Poiseuille flow and depends on the parameters R and E ,  .I2 

TABLE 111. Parameters A E  = 8,- E ,  and Anla,,= (a, - u,,)/o, recon- 
structed from experiments on light-induced drift of CH,F molecules in a 
quartz capillary. 

In Fig. 5 the theoretical results are compared with the 
experiment of Ref. 13. The values chosen for the parameters 
A E and A a1 a, are presented in Table 111. The small discrep- 
ancy with the results of Ref. 9 results from our more accurate 
numerical calculation, and the uncertainty in the values is 
due to the experimental uncertainty in the homogeneous 
half-width r of the absorption line, and thus the function 
cp(a). l4 The theoretical curves corresponding to the Eq. (3 1) 
satisfactorily describe the experimental data at all pressures. 
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