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Under nonlinear inverse bremsstrahlung conditions, when the electron distribution function is far 
from Maxwellian, a nonlocal linear theory is developed for the action on the plasma of 
relatively weak radiation with strong spatial variation. In the weakly collisional limit an analytical 
description is given for both the collisionless thermal electrons and the collisional cold 
electrons. It is shown how the nonlocal law for the coupling between the perturbed electron 
density and temperature and the radiation perturbing them depends on the radiation power. The 
form of the effective electron thermal conductivity is determined and the law describing 
how the limit on electron thermal conductivity is overcome as a function of heating power is 
derived. O 1995 American Institute of Physics. 

1. The efficiency with which a plasma absorbs strong Here 
electromagnetic radiation depends nonlinearly on the inten- 
sity in consequence of both the effect of the field on the 4 6  e 2 e ? n i ~  
electron ~elocitiesl*~ and the considerable modification of the vei = 

3m:v3T, 
(1.5) 

electron distribution function under conditions such that the 
electron heating velocity becomes comparable with their is the frequency with which a thermal electron collides with 
thermalization v e l ~ c i t ~ . ~ - ~  The latter holds when ions, ni is the ion number density, and A is the Coulomb 

logarithm. One usually refers to the plasma as collisionless 
ZV;>V&. ( lel) when condition (1.4) is satisfied. We, however, will refer to it . . 

H~~~ vr, = 4- is the electron thermal velocity, as a weakly collisional plasma. The reason is that the mean 

Z= leilel is the ionization rate, and vE= e~lmeo,  is the free path le(v) for an electron with velocity v for collisions 

oscillation amplitude of an electron in the high-frequency with 

electromagnetic field with electric field E and frequency q,, 
which is substantially greater than the electron-ion collision le(v)-v4(lei1v:e) (1.6) 

frequency. In what follows we will be interested in situations is shorter than the characteristic length scale for 
in which condition (1.1) holds, while at the same time we velocities 
have 

which in some sense allows us to treat the electromagnetic Hence are cold electrons that are to 
field as weakly affecting the electron velocity. conditions Strong collisions. Then the important question becomes: In 
(1.1) and (1.2) hold simultaneously in plasmas typically what processes does the effect of these cold electrons domi- 
found in laser inertial confinement fusion (ICF), where the nate? References 8 and 9 use the idea of separating the elec- 
ions have a high charge state trons into thermal collisionless and subthermal collisional 

groups to understand the essential cause of phenomena 
Z% 1, (1.3) which have long appeared paradoxical. The latter include the 

which we will assume to be the case in our treatment. We 
emphasize that conditions (1.1) and (1.3) are of particular 
interest in the case of ICF laser-produced plasmas specifi- 
cally when it is necessary to achieve high radiation absorp- 
tion efficiency through the inverse bremsstrahlung effect. 

When the electron distribution differs greatly from Max- 
wellian under conditions (1.1)-(1.3), the nature of transport 
in the plasma changes considerably. This change in a highly 
collisional plasma was discovered relatively early.7 We will 
be interested in the case of a weakly collisional plasma, 
when the mean free path of a thermal electron is much longer 
than the characteristic length scale L on which the electron 
distribution function varies, 

limit on the electron thermal transport in a laser plasma, long 
ago determined e ~ ~ e r i r n e n t a l l ~ , ' ~ . ~ ~  and the noncollinearity 
of the electron thermal flux and the temperature gradient, 
discovered in numerical simulations (see, e.g., Refs. 12 and 
13). It is worth emphasizing that many of the prevalent para- 
doxical ideas about laser-produced plasmas result from work 
using numerical simulation of collisional effects, which fre- 
quently obscure the fundamental physical concepts obscure. 
In contrast to numerical experiments, analytical kinetic trans- 
port theory allows one to see the essential physics with rela- 
tive ease. In this connection we note the work of Maksimov 
and silin,I4 in which an analytical approach was developed 
using an asymptotic expansion in inverse powers of the large 
Knudsen number Kn=LIlei and the decisive role of colli- 

l e i = ~ T e /  vei+L. (1.4) sional subthermal electrons was revealed. The fundamental 
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ideas introduced by Ref. 14 enabled the paradoxical proper- 
ties of laser plasma to be explained in Refs. 8 and 9. 

In the present work we report results of an analytical 
theory of nonlocal transport in a weakly collisional plasma 
subject to a relatively strong radiation field (1.1). The pur- 
pose of this exposition is partly to provide a theoretical ex- 
planation for the phenomenon found in the numerical experi- 
ments of Ref. 15, whose authors were far from using the 
physical picture of a weakly collisional plasma associated 
with the division of particles into thermal collisionless and 
subthermal collisional classes. At the same time, the phe- 
nomenon observed in Ref. 15 is unquestionably of interest. 
Specifically, Fig. 3 of Ref. 15 shows that as the radiation 
intensity increases there is a decrease in the inhibition of the 
electron thermal transport, which has long been known in 
laser plasmaslO.ll and which for a weak electromagnetic field 
has recently been studied in detail (see, e.g., Refs. 16-20). In 
Ref. 15, in analogy with the strongly collisional reduction in 
thermal transport found theoretically in Ref. 7, it is suggested 
that the effect of collisions increases even in the weakly col- 
lisional case because the role of the slow particles is en- 
hanced. As will be shown below, this idea is correct. How- 
ever, Ref. 15 was far from establishing the range of electron 
velocities which determine the electron thermal transport 
anomaly observed in the numerical experiment. In the 
present work a physical problem is posed which makes pos- 
sible an analytical description of the phenomenon observed 
numerically in Ref. 15. We obtain analytical results which 
reveal the physical nature of the decrease in the limit on the 
electron thermal transport as the intensity of the radiation 
source increases. Note that at the present time there is no 
clear evidence in an actual physical experiment for the weak- 
ening of the electron thermal transport inhibition. The mate- 
rial presented below can therefore be regarded as a theory 
developed in order to understand the numerical simulation of 
Ref. 15, which in turn allows us to better understand actual 
physical experiments. 

2. As is customary in the kinetics of collisional plasmas 
subjected to electromagnetic radiation at high frequency %, 
much larger than the electron collision frequency, we will 
use the approach of Perel and ~ i n s k i i ? ~  in which the electron 
distribution function is divided into a slowly varying part f o  
and a rapidly varying part Sf. To within terms of order w i 2  
the latter is linear in the strength of the high-frequency elec- 
tric field, 

We use the kinetic equation for the slowly varying function 
fo derived in Ref. 22: 

where Eo is the strength of the quasisteady electric field. In 
the electron-ion collision integral we neglect small terms of 
order the electron-ion mass ratio and use the expression 

where 

Finally, for the electron-electron collision integral we use the 
standard Landau collision integral (see, e.g., Ref. 23). 

In the special case of a spatially uniform pump field, 
where we have, first, 

second, Z+ 1, and third, condition (1.2) is satisfied, Eq. (2.2) 
assumes the following relatively simple form: 

The solution of this equation has a symmetric part f which is 
independent of the direction of v and a numerically small 
antisymmetric part which vanishes when averaged over 
angle. The latter is important for the tensor of the electron 
momentum flux density, but negligible in the treatment of the 
thermal transport. Below we will disregard this small anti- 
symmetric part. Then the function f satisfies the equation 

For real values of the Langdon paramete? 

this equation was studied numerically in detail in Ref. 24. 
There it was shown that in accordance with the suggestion of 
Ref. 7, solutions of Eq. (2.7) can be written as 

f(v, t )=f ,(v, t )=~,  exp[- ( v l ~ , ( r ) ) ~ ]  (2.9) 

or in the form 

where 
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Here T ( x )  is the I' function, and the electron temperature T, 
is defined by 

Reference 24 determined the following relationship between 
the parameter cr and the exponent p:  

Here p varies between two and five. In particular, for p=2 
we have a Maxwellian distribution, while for p=5 we obtain 
the Langdon distribution? where v 5  varies as a function of 
time according to 

Equation (2.9) has been used repeatedly to treat transport 
processes (see, e.g., Ref. 7).  The distributions (2.9) for dif- 
ferent values of p were also used in Ref. 15 in order to 
determine numerically the effect of strong electromagnetic 
fields on nonlocal transport in the plasma. The results of the 
numerical experiment reveal (see Fig. 3 of Ref. 15) that as p 
(and consequently a )  increases, corresponding to a rise in the 
intensity I ,  of the pump field, the magnitude of the charac- 
teristic gradient length scale decreases, whereupon the limit 
in the electron heat flux begins to be important. Here, fol- 
lowing Ref. 15, we use the distribution (2.9) in order to 
analytically exhibit the effect of the high-frequency field 
strength on the nonlocal behavior of electron transport asso- 
ciated with inverse bremsstrahlung absorption of the laser 
radiation by the plasma. 

3. In order to develop a theory of nonlocal transport we 
will assume that in addition to the spatially uniform heating 
radiation there is a small component of spatially varying 
pump field: 

Accordingly, we will look for the electron distribution func- 
tion in the form 

In what follows we will neglect the time dependence of Sf, 
since in accordance with Ref. 15 we are taking the heating 
rate to be less than the thermal transport rate on a scale K- ' ,  

which holds for ~l,(v,)+ 1 ,  where l,(v,) is defined in Eq. 
(1.6). Then, disregarding the effect of the quasisteady electric 
field E,, noting that we have Z B  1 , and keeping in mind the 
inequality (1.2) we find from (2.2) 

As was done in Ref. 14, we represent the perturbation of the 
electron distribution function in the form 

where 

For the function Sf, in the limit Z%- 1 ,  which allows us to 
disregard the contribution coming from substitution of (3.5) 
into the electron-electron collision integral, we have the fol- 
lowing equation: 

+ i k v S f c - J e i [ ~ f c l - J , , [ ~ f , l = Y ~ + Y , ,  (3.6) 

where 

Here 

and the quantity A is defined in (2.4). Equation (3.6) is writ- 
ten in a form such that for p=2, i.e., in the case of a Max- 
wellian distribution, it goes over to the distribution studied in 
Refs. 14 and 8. Equations (3.7) and (3.8) are written in a 
form which makes the passage to the case of a Maxwellian 
distribution most transparent. The results obtained by solving 
Eq. (3.6) dictate the subsequent conclusions. However, be- 
fore going on to study Eq. (3.6), we point out some conse- 
quences of the correction term (3.5) in the electron distribu- 
tion function. Thus, for the corresponding perturbation of the 
electron density we have 
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For p=2 this expression yields the usual density variation 
caused by the ponderomotive force of the high-frequency 
electromagnetic field. For the perturbation of the kinetic en- 
ergy density we have 

This expression does not depend on p. It corresponds to the 
time average of the energy density associated with the elec- 
tron oscillations due to the spatially nonuniform correction to 
the electromagnetic field heating the plasma. 

4. We start by considering the implications of Eq. (3.6) 
for collisionless thermal electrons with velocity greater than 
the value v* determined by Eq. (1.7). The perturbation 
Sf,,,(v) of the thermal electron distribution takes the form 
(cf. Ref. 8) 

where P denotes the Cauchy principal value and S (kv) is a 
Dirac Sfunction. It is not difficult to see that Eq. (4.1) yields 
a thermal electron density perturbation and a perturbation in 
their kinetic energy density. These are found to be smaller by 
a factor 

than expressions (3.11) and (3.12). Small terms of order (4.2) 
can be neglected. Here 

Next we note that the average over angle of the electron 
velocity yields 

We will be interested in the case p>2, since the case of 
weak laser intensities corresponding to a Maxwell distribu- 
tion, i.e., p=2, was treated previously.8 Expression (3.7) 
therefore does not give rise to a S(v) term, which simplifies 
our treatment. In particular, we find immediately that 

This means that there is no electric current in the direction of 
the vector k. The solenoidal electric current density resulting 
from inverse bremsstrahlung absorption is found to be 

In contrast with the electric current, the electron thermal flux 
density has an irrotational component, which can easily be 
discerned from the relation 

div q, = ikq, = dv - (ikv) Sf,,, I ";"' 
This permits us to write the following expression for the 
irrotational part q, : 

It follows from (4.7) that (4.8) describes the transport of only 
that part of the heat which is transferred to the plasma due to 
inverse bremsstrahlung absorption from the spatially nonuni- 
form part of the laser radiation [see Eq. (3.1)]. 

The solenoidal part of the electron thermal flux density 
is determined by f,(O) as in (4.7). Here we have 

This is just the part of the electron heat flux which is non- 
collinear with the temperature gradient. Attention has long 
been focused on this noncollinearity in numerical 
e~perirnents '~*'~ on heat transport in laser plasmas. Until re- 
cently, however, it has not been discussed theoretically. 

To summarize the results of the present section, we note 
that thermal collisionless electrons are primarily responsible 
for heat transport in a weakly collisional plasma. 

5. We now proceed to treat the electron distribution for 
subthermal electrons with velocities less than v *, when the 
collision integrals play the dominant role in Eq. (3.6). Then 
breaking Sf, into an isotropic part Sfo and anisotropic part 
Sf a , we have 

Then we obtain the following two equations: 

In Eq. (5.3) we have assumed ZS= 1. Since we have taken 
v 4 v * and collisions play the principal role in determining 
Sf,, the terms containing Sfa in the left-hand side of (5.3) 
are found to be small compared with Jei[Sfa]. As a result, 
Eq. (5.3) is readily solved, and Eq. (5.2) can therefore be 
written in the form (cf. Ref. 14) 

Here 
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(5.5) 

And 

1 d 

v' dv' [f~(vr)~fo(v)+fP(v)~fo(v')l. 

(5.6) 

In Eq. (5.4) we systematically take into account the small- 
ness of the electron velocity in comparison with v*. Then, 
for example, for p>2 the right-hand side of (5.4) can be 
written as follows: 

Simplification of the collision integral (5.5) yields the ex- 
pressions 

4rr2e4A 1 d 
Jee[ Jfol = 

3m: 

where 

Using Eqs. (5.7) and (5.8) we can write 

Then from Eq. (5.4) we obtain 

where under the conditions we have assumed 

Equation (5.11) differs from that studied in Ref. 14 on ac- 
count of the right-hand side, which in our treatment depends 
on the intensity of the radiation heating the plasma because 
of Eqs. (2.13) and (2.8). This dependence is the primary 
reason for the occurrence of the change in the nonlocal law 
relating the electron density and temperature perturbations to 
the radiation field causing them as a function of the intensity 
of the latter, and also for the corresponding nonlocal effec- 
tive electron thermal conductivity. 

The solution of Eq. (5.11) satisfying regular boundary 
conditions can be written in the form25 

#"(Y) = -N:O-')'~\V. ( t9[~ '"-4 '12~),  (5.13) 

where 

&= ~ 2 , / ~ y ,  

Here I,,, and Kl17 are Bessel functions of imaginary argu- 
ment. The solution (5.13) implies that the main contribution 
to the perturbation in the distribution comes from cold elec- 
trons with subthermal velocities 

This justifies the approximations (5.7) and (5.8) used above. 
For p>2  the solution (5.13) enables us to determine the 

electron density perturbation due to redistribution of the sub- 
thermal electrons: 

where 

Here we introduce for the integral the expression 

Numerical evaluation for some specific cases yields the re- 
sults 13=7.9; 14=4.5; 15=3.7. 

Because the electron velocities determining the per- 
turbed distribution (5.13) are small, we find that 

Hence for the temperature perturbation of the subthermal 
(cold) electrons we find 

The density perturbation (5.17) and temperature perturbation 
(5.21) are found to be larger than (3.11) and the correspond- 
ing increment in the electron oscillation energy in the field of 
a nonuniform pump under the condition 

It is clear that as p increases, i.e., as the intensity of the 
uniform electromagnetic field heating the plasma rises, it be- 
comes more difficult to meet this condition. This means that 
the efficiency with which a real plasma can be heated by a 
nonuniform radiation field decreases. 

Finally, we point out that the smallness of the subthermal 
electron velocities implies that the thermal flux associated 
with them is small in comparison with the thermal flux of the 
bulk of the electrons, given by (4.8) and (4.9) (cf. Refs. 8 and 
9) 
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6. In this section we briefly discuss how the intense field 
heating the plasma affects the nonlocal thermal transport. We 
begin by emphasizing that the presence of the factor 
N- ~ 1 7 - k -  2'17 in Eqs. (5.17) and (5.21) is associated, first, 

1L 
with the asymptotic expansion in inverse nonintegral powers 
of the large Knudsen parameter and, second, with the nonlo- 
cal relation between the electron density and temperature 
perturbations and the spatially nonuniform laser radiation 
qEl2 responsible for heating the plasma. At the same time, 
we should recall here that the concept of temperature is 
rather vague when we talk about heating the cold subthermal 
electrons (cf. Ref. 8). It is also rather imprecise to talk about 
a variety of nonlocal thermal transport mechanisms. Specifi- 
cally, while we have seen that the cold subthermal electrons 
can be heated up, the transport of the energy absorbed by the 
electrons from the radiation is due to the thermal electrons. 
Recalling this, we use Eq. (5.21) in order to express 4El2 in 
Eq. (4.7) in terms of the temperature perturbation ST,. In 
doing this we will not distinguish between the essentially 
identical values of q, and the total electron thermal flux 
density. Then we can write (cf. Refs. 20 and 8) 

where 

If now we use the relations 

for the longitudinal (irrotational) component of the electron 
thermal flux density to determine the effective electron ther- 
mal transport K~~~ (cf. Ref. 8), then Eq. (6.1) yields 

Although everything presented thus far presumes that the 
condition p>2  holds, our treatment in the case of a Max- 
wellian distribution (p=2) is inapplicable only because the 
numerical coefficient (6.2) cannot be used for p=2. At the 
same time, the dependence of the effective thermal conduc- 
tivity xeff on the wave vector k is given correctly by Eq. (6.4) 
(cf. Ref. 14, where the numerical coefficient needed for the 
case of a Maxwellian distribution is also derived). 

The denominator of Eq. (6.4), 

which in our treatment is large compared with unity, corre- 
sponds to the effect of electron thermal flux limiting due to 
nonlocal transport. As the intensity of the spatially uniform 
field heating the plasma increases, Eq. (2.13) shows that the 
exponent 1 -(pl7) decreases from 517 to the relatively small 
value 217. Consequently, expression (6.5) decreases as the 
radiation intensity increases for a fixed gradient length scale 
L- K -  '. This implies that the electron thermal flux limiting 
effect becomes weaker as the intensity of the laser radiation 
increases in a weakly collisional plasma. Here we emphasize 
that we are making these assertions in accordance with the 

usual assumptions in laser plasma theory, which deals only 
with the longitudinal component of the thermal flux and ne- 
glects its rotational part. 

7. Let us now discuss the results obtained above. We 
have treated a plasma subjected to a relatively uniform heat- 
ing field, such that the characteristic scale of the spatial 
variation of this field is relatively large. For a relatively pow- 
erful radiation field, when condition (1.1) holds at the same 
time as condition (1.2), inverse bremsstrahlung absorption 
causes the electron distribution to depart significantly from 
Maxwellian, which is consistent with the nonlinear nature of 
inverse bremsstrahlung. When the electron velocity distribu- 
tion is altered in this way in response to the radiation pro- 
ducing the heating, we have shown that a component of the 
radiation field that changes relatively rapidly in space has a 
nonlocal effect on the electrons of a weakly collisional 
plasma. The analytical theory presented here supports the 
qualitative remark in Ref. 15 about the inhibition of electron 
thermal flux limiting in a weakly collisional plasma as the 
strength of the laser radiation field heating it increases. We 
have derived an analytical law for the nonlocal thermal con- 
duction as a function of the power of the laser radiation. The 
observed behavior may be the reason why different experi- 
mental groups have reported very different values for the 
effective coefficient of the electron thermal flux limiting 
(see, e.g., Refs. 11 and 26). It can therefore also be asserted 
that the theory presented here provides an understanding of 
the reason for the new phenomenon indicated by the numeri- 
cal sim~lation'~ and opens up a possible approach to under- 
standing the discrepancy in the various experiments on elec- 
tron heat transport in laser plasmas. At the same time it 
should be acknowledged that we have thus far made only the 
first steps in understanding this paradoxical situation, which 
has prevailed for a long time in the exploration of inverse 
bremsstrahlung absorption and the transport associated with 
it in laser plasmas. In particular, it is obvious that the linear 
approximation we have used to derive the perturbed electron 
distribution, despite its demonstrated usefulness, is still not 
adequate to answer a great number of important questions, 
including the redistribution of electron energy between dif- 
ferent velocity ranges. 
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