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It is shown that the spatial inhomogeneity of the intensity distribution of laser radiation 
diffracted by an opening that is small in comparison with the wavelength leads to resonant 
selection of atoms due to the resulting gradient dipole force acting on the atom. As a result, the flux 
of atoms passing through the opening increases or decreases, depending on the frequency 
offset of the laser field relative to the frequency of the atomic transition. This effect is sensitive 
to the type of atom, its velocity, and its direction as it passes through the opening. 

O 1995 American Institute of Physics. 

1. INTRODUCTION the results of computer modeling. In Sec. 3 we present ana- 
lytic expressions for the effective cross section when a qua- 

The advent of lasers and the invention of a number of siequilibrium gas is made to flow through a small opening 
methods of selective action of laser radiation on atoms and irradiated by resonant laser radiation. In Sec. 4 the results of 
molecules have opened up new possibilities in the selection Secs. 2 and 3 are illustrated by selecting 2 0 ~ e  and 2 2 ~ e  iso- 
of atoms and molecules, and in particular, isotopes (see Ref. topes using the 1s5-+2P9 transition. We conclude by analyz- 
1). However, the most effective laser methods are destructive ing the results and indicating directions for future work. 
since they are based on the photoionization of atoms and 
photodissociation of molecules. It is of fundamental interest 
to search for other methods of selection, even without regard 

2. SELECTION OF AN ATOMIC BEAM NORMALLY INCIDENT to their practical application. Methods of this kind include 
ON AN 

those based on resonant action of light on 
The possibility of using a spontaneous resonance force 

to select atomic isotopes was considered in Refs. 4 and 5. In 
the present paper, an extension of Ref. 6, we propose a non- 
destructive way of sorting neutral, slow (cold) atoms and 
molecules, based on the use of the dipole gradient force that 
arises in the near field of resonant laser light diffracted by a 
circular opening small in comparison with the wavelength. 

The structure of this near field is most remarkable and 
was analyzed in detail in Refs. 7 and 8 (see also Ref. 9), in 
which relatively simple analytic expressions were found for 
the fields. The same notation will be used here as in those 
papers. 

By the right choice of frequency and intensity of the 
laser light, it is possible to vary the magnitude of the atomic 
flux through an opening and to bring about preferential pas- 
sage through the opening of one or another sort of particle, 
which ultimately leads to particle selection. The geometry of 
the problem is shown in Fig. 1. It is not our goal to create an 
industrial method of isotope selection. Rather, the idea here 
is to design a more sensitive scientific instrument intended, 
for example, for the selection of enantiomers, and also a 
check the fundamental relations between information and 
entropy.'' 

In Sec. 2 we examine the variation in particle flux 
through a small opening when this opening is illuminated by 
resonant laser light, for which we introduce the concept of 
the effective cross section of the opening. We then find ana- 
lytic expressions for the effective cross section within the 
framework of perturbation theory, which we compare with 

The essence of the effect considered here is illustrated in 
Figs. l(a) and l(b), in which the solid curves represent the 
energy density contours of laser light with a negative fre- 
quency offset, diffracted by a small-diameter opening (diam- 
eter 2a,  where U S A ) .  The gradient of the energy density 
determines the magnitude of the force on the atom." Figure 
2 shows the dependence of the mean square of the electric 
field in the vicinity of the opening. The magnitude of the 
gradient force depends not only on the intensity gradient, but 
also on the magnitude and sign of the laser frequency (o) 
offset relative to the resonance point wo of the atomic tran- 
sition (see Ref. 12). 

If the laser frequency o has a negative offset 
R=o-oo<O, the gradient force pulls the selected atoms into 
the stronger field region, so that the particle flux through the 
opening grows in comparison with the case of no near field. 
A positive offset produces the opposite result. 

It is convenient to describe the flux variation by intro- 
ducing an effective particle capture cross section for the 
opening plus field, seff=rngff, so that the flux variation is 
described by Seff/So = r&la2. 

Strictly speaking, two cases of interaction of the atoms 
with the near field are possible: 1) motion of the atoms into 
the oncoming field, in which an atom begins to interact with 
the field while in the ground state (the "dressed" state) (Ref. 
13) and remains in it for a short interaction time (Fig. la, and 
2) motion of atoms in the same direction as the incident laser 
light, in which an atom begins to interact with the diffracted 
field while in a mixed state (Fig. lb) due to a lengthy inter- 
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FIG. I .  Geometry of the problem in the case of 
an attractive gradient force for motion of the 
atoms counter to the incident light wave (a) and 
in the same direction with it (b). The dashed 
lines correspond to the trajectories of the atoms 
without the laser field. The solid lines with ar- 
rows correspond to the trajectories of the atoms 
in the presence of the field. The solid lines with- 
out arrows are level lines of the potential of the 
gradient force. 

action with the field of the standing wave formed in front of sin2(kz) sin(kz) 
the obstacle. [ 187r2 (ka)2 -67r- 

ka 
In the first case, the potential of the gradient force is 

given by13 
tY= x ( ~ A + B ) + A ~ + ( A + B ) ~ + c ~ ,  z < O  (4) 

and in the second, by14 

Here p is the electric dipole moment of the transition, 
1312=n2+(r/2)2, Q=-a+,, w and a+, are the laser frequency 
and the transition frequency, respectively, and r is the total 
width of the transition. ( E ~ )  is the mean square of the electric 
field, which in the case of normal incidence of a circularly 
polarized wave 

E o m  Eh=- (cos(wt - kz), sin(wt- kz),O), Jz 

is given by7,8 

where 

[ A ' + ( A + B ) ~ + C ~ ,  z>O 

where 

In the case of normal incidence the problem becomes 
planar, and the motion of an atom in potential (1) or (2) is 
given by Newton's laws, 

or Hamilton's equations, 

NG. 2. Three-dimensional distribution of the 
mean square of the electric field of the laser ra- 
diation in the vicinity of the opening (ka=2,  
E,, = 37r12 CGS units). 
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FIG. 3. Qualitative dependence of the radius of the point of impact on the 
screen, r, on the impact parameter ro in the case of an attractive (I) and a 
repulsive (2.3) potential. 

For definiteness we assume throughout that motion takes 
place in the xz plane; M is the mass of the particles. 

The nature of the motion of an atom depends critically 
on the sign of the frequency offset of the laser illumination, 
since the gradient force can be either attractive or repulsive. 
Repulsion is simpler, since trajectories up to the screen do 
not change substantially in comparison with the no-potential 
case. In attraction, a particle approaches the screen mono- 
tonically (along the z axis). For radial motion there is a po- 
tential well, in the vicinity of the opening so it can in prin- 
ciple be oscillatory. Thus, if we plot the qualitative 
dependence of the radius r (from the center) of the point of 
impact of the particle on the screen on the impact parameter 
ro of the particle, then for a negative offset (an attractive 
potential) it will look like Fig. 3 (curve I ) .  Interestingly 
enough, at low enough velocities, the atom can fly through 
the opening and then fly back out. Figure 4a shows such 
trajectories. We, however, will not take effects of this kind 
into account in our study of the effective cross section, both 
because of their small effect and the need for special mea- 
sures to collect the atoms that have passed through. 

In the case of positive offsets (repulsive potential), the 
particle trajectories are more complicated. Some of then 
(curve 3), in spite of repulsion, go through the opening, some 
collide with the screen, and some, for a large enough poten- 
tial gradient, are completely reflected (curve 2). Moreover, if 

the particle velocity of the beam is not high enough, total 
reflection of the entire beam is possible. Such trajectories are 
shown in Fig. 4b. Figure 3 (curve 2) shows the qualitative 
dependence of the radius of impact of the particle as a func- 
tion of its impact parameter. 

In either case, determining the effective capture radius of 
the beam particles reduces to solving the equation 

that is, of course, if it exists. Here r= r(ro ,z) is the equation 
of the particle trajectory, Before solving Eq. (8), we must 
first find the trajectory of the atom by solving Newton's 
equations (6) and (7). Here, depending on the parameters of 
the problem, various approaches are possible. 

Thus, if the velocities of the particles are high enough, 
the potential can be considered a perturbation, and can serve 
as the basis of a proper perturbation theory. If, however, the 
potential cannot be considered a perturbation, we must use 
numerical methods. 

To start with, we consider a small potential. To construct 
the perturbation theory, we assume that 

Here G is the saturation parameter of the transition in the 
incident field (without the screen), A=2WT, and To is the 
kinetic energy of the atoms. These conditions can easily be 
satisfied. Thus, for example, for a beam of neon atoms 
(1s5-t2p9 transition) with velocity 1 m/s, the most important 
parameter 7=hI'/2To-50. 16 is already small, and by an ap- 
propriate choice of offset we can always satisfy (9). 

If the first of these two conditions is satisfied, the square 
root in Eq. (1) and the logarithm in Eq. (2) can be expanded 
in Taylor series, whereupon expressions (1) and (2) both re- 
duce to 

WE now find the effective cross section of the opening 
as given by perturbation theory. To start with, we consider 
the simpler case in which the particle and laser beams propa- 
gate in opposite directions (Fig. la). In this case, prior to the 

FIG. 4. Trajectories of ~ e "  atoms with 
turning points beyond the opening in the 
case of (a) an attractive potential (the beam 
propagates counter to the radiation, A= 
- 1000, G =  1 06, ka=2, Vo=3 mls), and (b)  
a repulsive potential (the beam propagates in 
the same direction as the radiation, A= 1000, 
G =  lo6, ka =2, V,= 12.85 mls). 
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interaction with the screen, the beam particles do not interact 
with the standing wave formed by reflection of the incident 
laser radiation from the screen. 

In the zeroth approximation, the influence of the gradient 
force can be neglected, and the motion of the atoms is given 
by 

z(0)= -V , t , x('J)= xo 3 (1 1) 

where xo is the impact parameter of the trajectory and Vo is 
the initial velocity of the atom. The first-order corrections to 
these equations are given by 

the solutions of which can be found by quadratures: 

a I 
Mx(')= -- 

ax, I-, U ( x ~ * - ~ ~ t ' ) ( t - t ' ) d t ' ,  

Obviously, the time of impact with the screen differs only 
slightly from zero, so that we can expand (13) in powers of 
the dimensionless time .r=Votla. As a result, the equations 
of motion in x and z (dimensionless coordinates i = x l  
a;?=z/a) take the form 

The small dimensionless parameter E and the dimensionless 
square of the electric field B have already been introduced 
[see Eqs. (9) and (4)]. 

Now, eliminating time from these equations with the 
help of the equation z=0,  and retaining terms up to first 
order in E, we obtain an equation relating the radius x (or r) 
of the point of impact of the atom with the screen to the 
impact parameter xo (or ro): 

Now, setting x equal to a and solving the resulting equation 
to first order in E, we obtain the final expression of the ef- 
fective radius reff of the opening when the atomic beam and 
the laser beam propagate in opposite directions: 

The integral in this expression is a universal constant; having 
computed it, we finally obtain 

reff=(l  - 5 . 2 1 ~ ) a .  (17) 

FIG. 5.  The function f(ka). 

As can be seen from (9), for a negative offset E<O, the 
effective cross section is greater than when there is no laser 
illumination, and conversely for a positive offset. 

We now consider an atomic beam and laser beam that 
propagate in the same direction (Fig. lb). In this case, we can 
perform completely analogous calculations, as a result of 
which we obtain the following expression for the effective 
radius of the opening: 

An important difference between (18) and (16) is that the 
integral in (18) is now a universal function of ka, and not a 
universal constant as in (16): 

reff=a[l -&f(ka)]. (19) 

A graph of this function is shown in Fig. 5. For small ka 
(O<ka<2), it is possible to find a good polynomial approxi- 
mation to this function: 

The dependence of the effective cross section seff on the 
relative frequency offset A is shown by the dashed curve in 
Figs. 6a and 6b. 

Expression (17) and (19) for the effective cross section 
of the opening, found within the framework of perturbation 
theory, have a large, albeit bounded, region of applicability, 
and where conditions (9) are not satisfied to a sufficient de- 
gree it is necessary to use numerical methods. 

In an attractive potential gradient, the topology of the 
trajectory up to the plane of the screen is simple (it has no 
turning points), and after eliminating time and invoking en- 
ergy conservation, Hamilton's equation (7) reduce to a sys- 
tem of two first-order differential equations, 

P a 
p l = z  q(x,z,p), 

q(x,z,p) ' 
(21) 

where 
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FIG. 6. Relative effective capture cross section of ~ e "  atoms as a function 
of the relative frequency offset A of the field in units of r/2 for G =  lo6, 
ka=2. Vo= 15 mls. The solid line plots the result of numerical modeling, 
and the dashed !in- plots the approximate analytic solution obtained by 
perturbation theory: a) atoms move b the same direction as the field; b) 
atoms move counter to the field. 

q(x,z,p)= +: J ~ M ( T o -  u)-pZ , 

and a prime denotes a derivative with respect to z, while the 
sign of the square root is determined by the direction of 
propagation of the beam. 

Supplying system (21) now with boundary conditions 

p ( z  = + m) = 0 (normal incidence), 

x(z = 0) =a (trajectory incident at the 
boundary of the opening), 

we have a well-posed boundary-value problem, which can be 
solved to yield X(W) = reff. 

To solve this boundary problem, we apply the shooting 
method,15 where the test shot proceeds in two steps: first by 
dichotomy and then by the secant method. The shot itself is 
realized by solving (21) with initial conditions p (  + m) = 0, 
X(W) =x0, where xo is some value of the impact parameter, 
generally different for each shot. The trajectory of the par- 
ticle is determined by integrating (21) using the Runge- 
Kutta-Feldberg method of order 4-5.16 

For a positive frequency offset, especially with suffi- 
ciently slow atoms, turning points of the trajectories are pos- 
sible, and even total reflection. Because of the highly varied 
character of the trajectories (see Fig. 4b), determining the 
effective cross section with the method described above (for 
a negative frequency offset) is more difficult, and for a posi- 
tive offset the effective capture cross section was determined 
by direct modeling of the beam particle trajectories, with 
subsequent selection of those particles that passed through 
the opening. The particle trajectories in this case were also 
calculated with the help of the Runge-Kutta-Feldberg 
method of order 4-5.16 

The results obtained with the help of perturbation theory 
and numerical modeling of the passage of a beam of ~e~~ 
atoms with a velocity of 15 m/s through an opening illumi- 
nated by laser light are shown in Figs. 6a and 6b for various 
values of the relative frequency offset and G = 1 06. Analysis 
of these figures shows, first of all, that laser illumination of a 

small opening has a substantial effect on the flux of atoms 
passing through it; second, the effect substantially depends 
on the direction of propagation of the atomic beam relative 
to the laser field; third, the results obtained via perturbation 
theory have a broad range of applicability (especially for 
counterpropagating beam and radiation). The agreement im- 
proves as the velocities increase. 

Thus, a laser near field is capable of having an efficient 
influence on sufficiently cold and slow atomic and molecular 
beams. For a more accurate determination of the effective 
scattering cross section, it is necessary to take into account 
small corrections associated with the atoms' turning back 
after passing through the opening. For faster atoms it is nec- 
essary to use more accurate expressions for the gradient 
force that depend on velocity.13 

3. INFLUENCE OF THE NEAR FIELD ON THE RATE OF 
OUTFLOW OF AN EQUILIBRIUM GAS THROUGH 
A CIRCULAR OPENING 

The results of the preceding section demonstrate that la- 
ser illumination of the opening has a substantial effect on the 
rate of passage through it of a single-velocity beam of neu- 
tral particles. In connection with this, it is of interest to in- 
vestigate the effect that illuminating the opening has on the 
rate of outflow of a gas of neutral particles whose velocity 
distribution is not single-velocity, but, say, Maxwellian. 

Note that in the absence of laser light, the rate of outflow 
of particles of one kind or another from the opening depends 
on their thermal velocity or (in equilibrium) on their mass. In 
our case, a dipole gradient force exerts a much greater influ- 
ence, and therefore the velocity effect will not be mentioned 
again in what follows. 

If we assume that after turning on the laser illumination 
enough time has passed for the establishment of equilibrium 
in the gas, and that the outflow of gas through the opening 
does not alter the equilibrium, then the single-particle distri- 
bution function f (r,v) will be a Maxwell-Boltzmann distri- 
bution: 

f(r,v)= exp ( - "+CTyzl2), 

where U(r) is the potential of the gradient force (2). 
If we now assume, as usual, that the rate of outflow of 

gas is determined by the number of atomic and molecular 
collisions in the opening, then the relation between the rate 
of gas outflow with and without a laser near field is 

where 

is the rate of outflow through the opening in the absence of a 
field (M is the mass of the particles, and no is the particle 
number density far from the opening). From this expression 
we can find the effective capture cross section introduced in 
the previous section: 
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Here the integral is over the cross section of the opening. 
From this expression it follows that the rate of outflow is 
determined by the potential of the gradient force over the 
opening. 

To find the potential of the gradient force over the open- 
ing, we can make use of the general expression (4) with 
z=0. However, it is simpler to obtain the unknown energy 
density from the boundary condition on the opening, accord- 
ing to which the normal component of the field vanishes, and 
the tangential component is given by 

where K is the density of the induced surface current and is 
given by 

Here & = Eom 1 fi[ - i ,1,0] in our case of a circularly po- 
larized wave. 

Taking all of the above into account, the mean square of 
the electric field over the opening is 

Substituting this expression into the gradient force potential, 
we can represent the effective capture cross section in the 
form of the simple integral 

seff=7ra2 d w [ l + [ ( 2 + 5 w + l / ~ ) ] - ~ ~ ~ ' ~ ,  (28) 
lo' 

where 

This integral cannot be expressed in terms of elementary 
functions; however, its numerical integration does not 
present any difficulties. Let us turn our attention now to the 
fact that for negative frequency offsets (attraction) and low 
enough temperatures, the integral (28) diverges. This hap- 
pens because the singularity of the gradient force potential in 
the vicinity of the boundary of the opening leads to a singu- 
larity in the number density and flux of the particles. Here 
the total number of particles in the vicinity of this singularity 
becomes infinite at low enough temperatures, which points to 
the necessity of taking account of additional physical effects. 
In particular, we cannot taken the screen to be infinitesimally 
thin, and if its thickness is d, then the singularity vanishes, 
since the energy density in the vicinity of the boundary of the 
opening is proportional to l ld .  As a result, we have for the 
effective cross section 

FIG. 7. Relative effective capture cross section of atoms of the equilibrium 
gas ~e ' '  as a function of the relative frequency offset A of the field in units 
of l-12 and the saturation parameter G for = fir/2kgT=0.01 (T=0.02 K ) .  

where S= (dla)' characterizes the thickness of the screen d. 
Here, of course, in order to ensure that our expressions for 
the laser near field remain valid, the condition S 4 1 must be 
satisfied. 

Figure 7 shows the dependence of the effective cross 
section of the opening on the intensity of the incident radia- 
tion and its relative offset in a gas of NeZ0 atoms at T=0.02 
K (%=0.01). It is clear from this figure that in the case of a 
quasi-equilibrium gas illumination of the opening by reso- 
nant laser radiation leads to an appreciable change in the rate 
of outflow. 

4. APPLICATION OF THE METHOD. SELECTION OF NOBLE- 
GAS ISOTOPES 

In the foregoing sections we demonstrated that under 
reasonable and accessible conditions (intensity and fre- 
quency of resonant laser light) it is possible to substantially 
increase the effective capture cross section of particles of the 
required sort. For this selection method to be usable, it is also 
necessary that such an increase not taken place for other 
kinds of particles, in other words, it is necessary that the 
structure of the transitions of the atoms or molecules that are 
to be separated differ sufficiently. Thus, the problem reduces 
to finding spectral lines that differ substantially between the 
selected and unselected atoms either in frequency or in po- 
larization (enantiomers). Below, in the case of isotopes of 
noble gases (neon), we demonstrate that selection with the 
help of a laser near field can be quite effective. 

Applying the results of Sec. 2 to a beam consisting of a 
mixture of NeZ0 and ~ e " ,  it is not hard to find a relation 
between the effective capture cross sections of the two iso- 
topes as a function of the frequency offset (G = 1000, Vo= 1 
m/s, for counterpropagating beam and radiation). We con- 
sider the transition 1s,3p2+2p93d, with wavelength 640.2 
nm, isotopic shift 1.62 GHz, and total line width 
r / 2 7 ~ = 8 ~ 1 0 ~  s-l. The results of our calculations are shown 
in Fig. 8 from which it can be seen that effective selection is 
possible via an appropriate positive offset (relative to ~ e " ) .  

We stress again that we are not talking here about a 
practical implementation of isotope separation, merely about 
a physical effect. It can also be used for selection of, say, 
left- and right-handed molecules in a circularly polarized 
field. 
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R, MHz 

FIG. 8. Effective capture cross section of ~e~ atoms (solid line) and ~e~~ 
atoms (dashed line) in a metastable state as functions of the offset of the 
laser light (ka = 2, A=640.2 nm, G = lo3, V,= 1 d s ) .  

5. CONCLUSION 

In the present paper, in the instance of, generally speak- 
ing, nonequilibrium systems we have shown that illumina- 
tion of an opening (or a set of openings), small in compari- 
son with the wavelength, by resonant radiation allows one, in 
a nondestructive way, to influence a flux of atoms or mol- 
ecules passing through the opening, and thus to implement 
selection of neutral atoms and molecules. 

An important feature of this effect is its dependence on 
the direction of travel of the atoms. This is especially pro- 
nounced in the passage of an atomic beam through the open- 
ing (see Figs. 6a and 6b). The dependence on the direction 
leads to the idea not only of using this effect to select one 
type of particle, or another, but also to implement Maxwell's 
demon, i.e., to separate a mixture of gases with the least 
possible energy expenditure. 

Indeed, consider the scheme shown in Fig. 9. Let an 
atomic gas be located in two cavities connected by a small 
opening with radius a, satisfying the condition 

where r ,  is the characteristic radius of the atom, which for 
slow atoms is determined not by the radius of the electronic 
shell, but by the de Broglie wavelength. Under equilibrium 

FIG. 9. Scheme for implementing selection of particles in a laser near field. 

conditions, i.e., without laser irradiation, the composition, 
pressure, and temperature for a two-component mixture of 
atoms are the same in both cavities (Fig. 9a). Now let the 
small opening by illuminated from one side through an op- 
tical window by laser light. It is clear that the total "gas 
+laser field" system is now far out of equilibrium. If the 
laser frequency w is in resonance with the quantum transition 
of atoms of some given kind, then for a negative offset 
i2=o-c0,,~<0, the atoms from the field-free region (the re- 
gion on the left) will have a larger effective capture cross 
section than the atoms approaching the opening from the 
right (from the side of the laser light source; see Fig. 9b). As 
a result, on the left side the number density of the atoms N, 
will be less than its original value N:, N,<N:, and con- 
versely, on the right side we will have N, >N:. 

This laser version of Maxwell's demon, of course, obeys 
the second law of thermodynamics. First, energy is trans- 
ferred from the laser field to the atoms due to recoil when 
momentum hAk=h(kl -k2) is transferred to an atom. Here 
kl and k2 are the wave vectors of the absorbed and reemitted 
(stimulated emission) photons, respectively. Second, the en- 
tropy of the atomic gas decreases, while the entropy of the 
light increases. The latter takes place due to fluctuations, not 
considered here (see Ref. 12), in the number and direction of 
the reemitted photons. Thus, despite the fact that to a first 
approximation the dipole (gradient) force is a potential (con- 
servative) force, in the total "gas+unidirectional laser field" 
system, energy is pumped from the laser field to the atomic 
gas, and entropy, from the gas to the field. 
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