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A method for finding the binding energy of atoms in clusters with a face-centered-cubic structure 
and a pairwise interaction between the atoms at zero temperature is developed. The growth 
sequence of clusters with a short-range interaction between the atoms, which corresponds to inert- 
gas clusters, is devised. It is shown that the clusters grow by adding blocks, each of which 
is an element of a flat surface. Other structures of clusters with a short-range interaction between 
the atoms are compared. O I995 American Institute of Physics. 

1. INTRODUCTION 

Clusters with a pairwise interaction between the atoms at 
low temperatures can have a face-centered-cubic (fcc) struc- 
ture and a hexagonal crystal lattice, as well as an icosahedral 
structure. In each of these structures each interior atom has 
12 nearest neighbors, but in the first two structures (close- 
packed structures) the distances between the nearest neigh- 
bors are strictly fixed and equal to the equilibrium distance 
Re between the atoms in a diatomic molecule, while in the 
icosahedral structure these distances differ somewhat 
from R e .  

When we select the optimal structure of a cluster, the 
optimal configuration of the atoms in a cluster with a given 
structure must be determined, and then the binding energies 
of the atoms in clusters with different structures having the 
optimal distribution of the atoms for that structure must be 
compared. This paper is devoted to finding the optimal con- 
figurations of the atoms in clusters of fcc structure with a 
pairwise interaction between the atoms. We start out from 
inert-gas cluster, i.e., the clusters considered can be cut out 
from a crystal of an inert gas with an fcc lattice. Then, by 
moving the surface atoms from certain sites to others, we can 
determine the optimal configuration of the atoms in a cluster 
containing an assigned number of atoms. Of course, the op- 
timal arrangement of the atoms in a cluster depends on the 
interaction potential U ( r )  of two cluster atoms ( r  is the dis- 
tance between the atoms). 

The total binding energy E of the atoms in a cluster is 
expressed in terms of the pairwise interaction potential of the 
atoms 

where ri j  is the distance between the ith and jth atoms and 
the prime indicates that in this sum i is not equal to j and 
that each pair of atoms is taken into account in the sum only 
once. Being a convenient model potential, the Lennard- 
Jones potential often serves as the pairwise interaction po- 
tential of atoms (see, for example, Refs. 1-7). Another con- 
venient model pairwise interaction potential is the short- 
range potential.89 In a system of bonded atoms the short- 
range potential acts only between nearest neighbors, while 
the Lennard-Jones potential also acts between distant atoms. 

In order to chose between these two types of interaction po- 
tentials, let us compare them by analyzing the parameters of 
crystals of inert gases. 

The sublimation energy of crystals of inert gases per 
atom in units of the dissociation energy of a diatomic mol- 
ecule is equal to 6 (half of the number of bonds for each 
atom) in the case of the short-range interaction potential and 
to 8.61 (Ref. 10) in the case of the Lennard-Jones potential. 
The mean value of this parameter for crystals of inert gases 
is equal to 6.420.7 (Refs. 8 and 9), i.e., the short-range 
interaction potential describes this parameter of crystals of 
inert gases more accurately. This also applies to the distance 
between nearest neighbors, which is equal to 1 (in units of 
the bond length in the diatomic molecule) for the short-range 
interaction between the atoms, 0.97 (Ref. 10) for the 
Lennard-Jones potential, and 1.00+0.01 (Refs. 9 and 11) 
for real crystals of inert gases (with the exception of helium, 
which is not considered here because of the quantum nature 
of the system of bound atoms). Another argument in favor of 
the short-range interaction potential of atoms is that a crystal 
with the Lennard-Jones interaction potential has a hexagonal 
crystal lattice,12'13 while all inert gases have an fcc crystal 
lattice.14 The short-range potential is equally applicable to 
both structures. In addition, the melting point of a crystal 
with the Lennard-Jones interaction potential15 is higher than 
that of crystals of inert gases and corresponds to their boiling 
point. 

It follows from these facts that the short-range interac- 
tion potential more accurately describes the crystal of an in- 
ert gas than does the Lemard-Jones interaction potential. 
Therefore, we shall examine crystals with the short-range 
interaction potential acting between the atoms. Our goal is to 
calculate the binding energy of the atoms in such clusters at 
zero temperature, as well as to compare the values of this 
parameter for an fcc cluster and clusters with other struc- 
tures. 

2. ENERGETICS OF fcc CLUSTERS 

We take the dissociation energy of an unexcited diatomic 
molecule composed of the atoms under consideration as the 
unit of energy and the equilibrium distance between the at- 
oms in that molecule as the unit of length. Since there is no 
long-range interaction in a cluster, the distances between the 
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nearest neighbors are strictly equal to unity, and the total 
binding energy of the atoms E is equal to the number of 
bonds between nearest neighbors. This circumstance greatly 
simplifies the treatment. In particular, introducing the surface 
energy of a cluster as 

we obtain the following expression for this quantity: 

where nk is the number of nearest neighbors around the kth 
atom, and the summation is performed over all the atoms. 
For a very large cluster (n S 1 ) , the surface energy of the 
cluster is proportional to the area of its surface n2I3. For this 
reason it is convenient to introduc~ the specific surface en- 
ergy of a cluster as 

A(n)=E sur /n2'3=6n113-~/n"3. (4) 

In the limit of large n this quantity terlcis to certain constants, 
which correspond to clusters of definite form. In the general 
case the function A(n) has a nonmonot~~lic dependence on 
n, and the minima of this function [ar he maxima of the 
total binding energy of the atoms in the ~iuster E(n)] corre- 
spond to the so-called magic numbers of atoms in a cluster. 
The magic numbers usually correspond to filled layers, 
shells, or blocks in the structure of a cluster. Magic numbers 
ensure the highest stability of a cluster. 

Let us now move on to a cluster with an fcc structure 
and the short-range interaction potential acting between the 
atoms. One special feature of an fcc structure is that the 
atoms in this structure can be located in the (100), (110), and 
(1 11) planes in the notation usually used,16 where a plane is 
characterized by the coordinates of the vector which is per- 
pendicular to it and passes through the origin of coordinates. 
Since there are six (100) planes, twelve (110) planes. and 
eight (111) planes, figures of fcc structure containing flat 
faces, which can number up to 26, can be constructed. If we 
cut out such clusters from a crystal lattice, we obtain clusters 
with magic numbers. This approach is the basis for ideniify- 
ing the optimal configurations of the atoms in a cluster and 
the magic numbers for clusters with an fcc structure. 

A more general approach employing this conception was 
presented in Ref. 17, where it was shown that the magic 
numbers can correspond to the filling of any of the flat faces 
of an fcc cluster. There are still the questions of which shapes 
are magic and which planes must be filled to obtain the 
magic numbers of atoms in the cluster. These points can be 
elucidated by comparing the binding energies of the atoms 
for different figures of the cluster and thereby determining 
the optimal configurations of the atoms in the cluster. In this 
paper the problem is solved for clusters with the short-range 
interaction between the atoms, which simulates inert-gas 
clusters. 

Considering the fcc crystal lattice, we note that it has the 
Oh symmetry of a cube1* relative to its center, which corre- 
sponds to the following transformations: 

x s - x ,  y 2 - y ,  2 s - z ,  x s y 2 z .  (5) 

Here it is convenient to select the directions of the axes of 
the unit cell of the crystal lattice, which has the form of a 
face-centered cube, as the x ,  y ,  and z  axes and to select 
either one of the lattice atoms or the center of the unit cell as 
the origin of coordinates. In both cases the infinite fcc crystal 
lattice is maintained under the transformations (5). 

We cut out an fcc cluster from the crystal lattice around 
one of the sites indicated. We call a set of atoms which 
change places with one another under the transformations (5) 
a shell of the cluster. The maximum number of atoms in one 
shell is 48. We introduce the new unit of length R e /  4. In 
these units an atom with the coordinates x ,  y, z  has 12 near- 
est neighbors with the coordinates 

This, of course, applies to the short-range interaction be- 
tween the atoms, for which the distance between the nearest 
neighbors depends both on the cluster size and their positions 
within the cluster. On this basis we can devise a method for 
determining the optimum configuration of the atoms in an 
fcc cluster by using the cluster symmetry (5). This symmetry 
allows us to restrict ourselves to considering only one atom 
from each shell. Hence, by transposing the surface atoms 
from some shells to others, we can find the optimal configu- 
ration of the atoms for any number of atoms in the cluster. 
This also makes it possible to obtain the optimum type of 
growth of the cluster. 

This method was previously developedlg for fcc clusters 
whose symmetry center corresponds to one of the atoms in 
the original crystal lattice. Such clusters will henceforth be 
called clusters with a central atom, and the filling sequence 
of the shells in these clusters is presented in Table I. How- 
ever, the center of the unit cell of the fcc crystal lattice can 
be chosen as the origin of coordinates, and the filling se- 
quence of the shells in such clusters, which we shall call 
clusters without a central atom, is given in Table 11. From 
these two symmetries, the symmetry which corresponds to 
the maximum binding energy of the atoms in the cluster must 
be chosen for every given number of atoms in the cluster. As 
the cluster grows there is alternation of the optimal symme- 
try of the fcc clusters, so that in some ranges of cluster sizes 
the structure with a central atom is optimal, while the struc- 
ture without a central atom is optimal for others (see Fig. 1). 

It follows from an analysis of the data in Tables I and I1 
that a cluster is enlarged by adding to it individual blocks, 
which include several shells. These blocks are flat elements, 
which cover the flat faces of the cluster in accordance with 
the general scheme for assembling clusters.17 Tables I and I1 
give the optimum configurations of the atoms in each cluster, 
which have the form of shapes with filled flat faces. The 
planes to which the filled elements of each cluster belong are 
indicated. 

A comparison of the data in Tables I and I1 makes it 
possible to understand the possibilities of the method for 
finding the optimal configurations of the atoms in a cluster of 
an assigned size. As an example, we consider a cluster con- 
taining 116 atoms. Such a cluster without a central atom 
corresponds to the filled shape of a truncated octahedron and 
contains filled 122, 113, and 123 surface shells. Its surface 
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TABLE I. Growth of clusters with an fcc structure and a central atom. 

Note. The values in parentheses indicate the number of nearest neighbors. 

energy is equal to 180. If a cluster with a central atom of 
such size is constructed (see Table I), it should contain a 
spherically symmetric core of 79 atoms and should include 
blocks of 7 atoms from the 222 and 123 shells. To correct 
this scheme, three atoms from the 033 shell should be added 
to two such blocks. The addition of a large block of 17 atoms 
increases the surface energy of the cluster by 21. To con- 
struct a cluster containing 116 atoms, three more atoms (one 
from the 222 shell and two from the 123 shell) should be 
added to the core in addition to this block. The surface en- 
ergy of this cluster with a central atom equals 186, i.e., the 
structure of the cluster without a central atom is more favor- 
able for a cluster of this size. 

Let us construct the optimal structure of the cluster in the 
coordinate system corresponding to the cluster with a central 
atom. The optimal configuration of the atoms in the cluster 
corresponds to a spherical core containing 55 atoms. In ad- 
dition, it contains 20 atoms from the 013 shell, 24 atoms 
from the 113 shell, four atoms from the 222 shell, four atoms 
from the 033 shell, one atom from the 004 shell, four atoms 
from the 114 shell, and 4 atoms from the 024 shell. Such a 
cluster is highly asymmetric in this coordinate system and 

Fied shells* 

Oll(1 - 5) 
002(4) 

112(3 - 5) + 022(5) 
013(4 - 6) 

222(3) + 123(4 - 6) 
033(5) + 004(4) + 114(5) + 024(6) 
233(3 - 5) + 224(5) + 134(5 - 6) 

015(4 - 6) + 125(5 - 6) 
044(5) + 035(6) 

006(4) + 116(5) + 026(6) 
334(3 - 5) + 244(5) + 235(5 - 6)+ 

+ 145(5 - 6) + 226(5) + 136(6) 
055(5) + 046(6) 

017(4 - 6) + 127(5 - 6) + 037(6) 
008(4) + 1 18(5) + 028(6) 

444(3) + 345(4 - 6) + 255(5)+ 
+336(5) + 246(6)+ 

+ 156(5 - 6) + 237(5 - 6) + 147(6) 
066(5) + 057(6) + 228(5)+ 

+ 138(6) + 048(6) 
019(4 - 6) + 129(5 - 6) + 039(6) 

455(3 - 5) + 446(5) + 356(5 - 6)+ 
+347(5 - 6) + 266(5) + 257(6)+ 

+338(5) + 248(6) + 158(6)+ 
167(5-6)+239(5-6)+149(6) 

077(5) + 068(6) + 059(6) 
00 lO(4) + 11 lO(5) + 12 10(6)+ 
+22 lO(5) + 13 lO(6) + 04 lO(6) 
01 11(4 -6)  + 12 11(5 - 6)+ 

+03 1 l(6) 
00 12(4) + 1 1 12(5) + 02 12(6) 

therefore does not conform to the system of clusters with a 
central atom, which consists of clusters which are more or 
less spherically symmetric relative to their center. 

This example makes it possible to comprehend the pos- 
sibilities of the scheme under consideration. By adhering to a 
definite scheme of symmetric clusters, we can rule out clus- 
ters which are highly asymmetric relative to their center. This 
method thereby ignores extensive rearrangements of the at- 
oms. Therefore, the final result is that the optimal configura- 
tions of the atoms are grouped around two structures with a 
spherical core: a cluster with a central atom and a cluster 
without a central atom. This follows intuitively from the 
symmetry of an fcc crystal lattice. The correctness of these 
statements is supported by the fact that all closed cluster 
structures which have the form of regular geometric shapes 
can be constructed using these two symmetries. 

An analysis of the geometric shapes cut out from an fcc 
crystal lattice reveals that an atom located in a (111) plane 
has nine nearest neighbors, an atom in a (100) plane has 
eight nearest neighbors, and an atom in a (110) plane has 
seven nearest neighbors. Therefore, the preferred geometric 
figures of fcc clusters are bounded by faces lying in (111) 

E,u~ 
6 - 42 
42- 54 
54- 114 
114-138 
138 - 210 
210 - 258 
258 - 354 
354 - 402 
402-414 
414 - 450 

450 - 594 
594-606 
606 - 654 
654 - 690 

690 - 858 

858-894 
894 - 942 

942-1158 
1158 - 1170 

1 170 - 1230 

1230-1278 
1278 - 1314 

n 

2 -  13 
13- 19 
19-55 
55-79 
79- 135 
135 - 201 
201 - 297 
297 - 369 
369-405 
405 - 459 

459 - 675 
675-711 
71 1 - 807 
807 - 861 

861 - 1157 

1157-1289 
1289 - 1385 

1385-1865 
1865 - 1925 

1925 - 2099 

2099-2195 
2195 - 2249 
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Filled 
block 

- 
110 
100 
111 
100 
11 1 
100 
110 
100 

1 11 
110 
100 
100 

11 1 

110 
100 

111 
110 

100 

100 
100 



TABLE 11. Growth of clusters with an fcc structure and no central atom. 

Filled shells Filled I -1 

and (100) planes. In fact, all these shapes can be obtained family of such shapes, selecting the number rn as a parameter 
from an octahedron by cutting off regular pyramids from of the family such that m+ 1 atoms are found on each edge 
each of its six vertices. Therefore, we first examine the fam- 
ily of octahedral clusters (Fig. 2a). The surface of an octahe- 
dron contains eight triangles in (1 11) planes. We construct a 

FIG. 1. Specific surface energy of fcc clusters. The filled circles correspond 
to clusters with a central atom, and the unfilled circles correspond to clusters 
without a central atom. 

FIG. 2. Geometric shapes which can correspond to the magic numbers of 
clusters with a pairwise interaction between the atoms: a) octahedron (fcc 
structure); b) truncated octahedron and tetrakaidecahedron (fcc structure); c) 
cuboctahedron (fcc structure); d) icosahedral structure. 
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(the two terminal atoms belong to vertices of the shape). The 
first shape of the family contains six atoms. The clusters in 
this family of shapes with even m have a central atom, while 
octahedral clusters with odd m do not contain a central atom. 
The number of atoms in the octahedral clusters equals 

To compute the surface energy of each cluster according 
to Eq. (3), we note that each atom of an edge separating 
(1 11) planes has seven nearest neighbors and each vertex 
atom has four nearest neighbors. In addition, the surface at- 
oms of an octahedral cluster include six vertex atoms, 
12(m - 1) nonvertex atoms located on edges of the octahe- 
dron, and 4(m - l)(m - 2) atoms located within surface tri- 
angles. Accordingly, for the surface energy of an octahedral 
cluster Eq. (3) gives 

The truncated octahedrons under consideration have six 
square (100) faces along with the eight (111) faces. Let us 
first consider a truncated octahedron (see Fig. 2b), in which 
there are three atoms on the each side of a square. Such a 
cluster is obtained from an octahedral cluster by cutting off 
six pyramids, each of which contains 5 atoms. The number 
of atoms in this cluster is thus 30 less, and its surface energy 
is 36 less than that in the octahedral cluster. The surface 
energy of this cluster can be found by the standard method, 
since the vertex atoms of the figure each have seven nearest 
neighbors. We note that the series of magic numbers for fcc 
clusters listed in Tables I and II (55, 116, 201,3 14,459,640, 
861, 1126, 1804) correspond to this shape. 

We move on to a cuboctahedral cluster (see Fig. 2c), 
which has the form of a truncated octahedral cluster obtained 
in such a manner that each edge is divided in half when the 
corresponding pyramid is cut off. Such an operation is pos- 
sible only for an octahedron with a central atom, i.e., a cub- 
octahedron is an fcc cluster with a central atom. The surface 
of a cuboctahedron contains eight triangles with (1 11) planes 
and six squares with (100) planes. The cuboctahedron ob- 
tained from an octahedron with edges on which there are 
2m + 1 atoms has 24 edges, on each of which there are m + 1 
atoms, two of them being vertex atoms. Thus, the surface of 
a cuboctahedron includes 4(m - 1 )(m - 2) atoms within tri- 
angles, which have nine nearest neighbors, 6(m - 1)2 atoms 
within surface squares, which have eight nearest neighbors, 
24(m - 1 ) nonvertex edge atoms, each having seven nearest 
neighbors, and 12 vertex atoms, each having six nearest 
neighbors. This gives the following expressions4 for the 
number of atoms in a cluster and for the surface energy, 
which is determined from Eq. (3): 

The first clusters in the family (n = 13, 55) are magic num- 
bers for fcc clusters. 

Let us examine one more figure of a truncated octahe- 
dron, viz, a tetrakaidecahedron: in which each (1 11) face is 
a regular hexagon (see Fig. 2b). It can be obtained from an 
octahedron in which each edge contains 3m + 1 atoms. Then 

the length of the edge of each pyramid cut off equals one- 
third of the length of an edge of the octahedron. We take 
advantage of the fact that each atom in a (1 11) plane has nine 
nearest neighbors, each atom in a (100) plane has eight near- 
est neighbors, each nonvertex atom on an edge (their total 
number equals 36m - 36) has seven nearest neighbors, and 
each of the 24 vertex atoms has six nearest neighbors. Then 
on the basis of the approach used, we arrive at the following 
values for the parameters of the cluster under 
consideration: l9 

We note that the tetrakaidecahedrons of all sizes considered 
in Tables I and I1 (n=38, 201, 586, 1289) correspond to 
magic numbers for an fcc cluster. In addition, we stress the 
high symmetry of all the figures considered, which is char- 
acterized for each of them by three fourth-order symmetry 
axes and four third-order symmetry axes. It is significant that 
all the symmetric figures considered can be obtained by the 
method for assembling fcc clusters considered and belong to 
one of the cluster structures, i.e., have or do not have a cen- 
tral atom. 

3. COMPETITION BETWEEN CLUSTER STRUCTURES WITH 
THE SHORT-RANGE INTERACTION BETWEEN ATOMS 

Along with the fcc structure, clusters with a pairwise 
interaction between the atoms can have a hexagonal or icosa- 
hedral structure, and our problem is to understand which of 
them is preferable in a given range of cluster sizes. A nu- 
merical analysis of the character of the interaction between 
the atoms in a cluster would probably be most reliable here. 
Then, after a definite configuration is assigned to the atoms 
in the cluster, it should be altered so as to increase the bind- 
ing energy of the atoms (this technique is called cluster re- 
laxation). The optimum distribution of the atoms in a cluster 
can be determined through cluster relaxation. However, such 
a procedure is not realistic due to the large number of local 
maxima of the binding energy, which, for example, amounts 
to 988 for a cluster consisting of 13 atoms with the Lennard- 
Jones interaction between the atoms.3 This number increases 
as the cluster size increases. Therefore, a realistic technique 
is to "guess" distributions of atoms which are close to opti- 
mal and then to relax these distributions (see, for example, 
Ref. 5). This procedure is simplified in the case of the short- 
range interaction between the atoms, since the distances be- 
tween nearest neighbors are rigidly fixed in close-packed 
structures. Then, we can look through the configurations 
which claim to be optimal and compare their energies. Es- 
sentially this technique was used to compose Tables I and 11. 
In this case the problem is greatly simplified owing to the 
high symmetry of fcc clusters and the assumption that the 
optimum distributions of the atoms in a cluster should have a 
spherical core. 

Thus, the general approach to finding the optimum struc- 
ture of a cluster is to perform an analysis for each of the 
structures separately and then to compare the binding ener- 
gies for the optimum configurations of the atoms in each of 
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these structures. In general this provides an understanding of 
the role of each particular structure of a cluster with a pair- 
wise interaction between the atoms. 

Let us first consider a hexagonal structure. The atoms in 
fcc and hexagonal structures have identical positions on the 
(111) plane, while the atoms on the two sides of this plane 
are arranged differently relative to one another. This common 
feature of these structures leads to an important phenomenon 
for metals, which is known as "twinning" and involves the 
transition from one structure to the other when a (1 11) plane 
is interse~ted.'~ However, this phenomenon is not so signifi- 
cant for clusters with a pairwise interaction between the at- 
oms. 

The lower symmetry of the hexagonal structure in com- 
parison with the fcc structure should be noted. This differ- 
ence is manifested, in particular, by the fact that in symmet- 
ric shapes of hexagonal clusters the surface atoms do not 
form flat faces. Therefore, the surface energy of a hexagonal 
cluster is generally higher than that for an fcc cluster, and 
due to the nonmonotonic character of this dependence on the 
cluster size, hexagonal clusters can have an advantage over 
fcc clusters at relatively small sizes, at which the icosahedral 
structure is preferable. Thus, the hexagonal cluster is ener- 
getically inferior to the fcc cluster at large sizes and to the 
icosahedral cluster at small sizes. There are only a few num- 
bers of atoms in the lOOen4 1000 range for which the hex- 
agonal structure is preferable to the fcc and icosahedral 
structures. Thus, the hexagonal structure is not of great in- 
terest for clusters with a pairwise interaction between the 
atoms. 

Let us examine an icosahedral cluster, whose surface 
consists of 20 regular triangles when the shells are closed 
(see Fig. 2d). The distances between the nearest neighbors in 
the same layer differ somewhat (by about 5%) from the dis- 
tance between nearest neighbors belonging to different lay- 
ers. However, since these distances are close to the equilib- 
rium distance between the atoms in a diatomic molecule, the 
total binding energy of the atoms in a cluster is determined 
primarily by the number of bonds between the nearest neigh- 
bors. Since this quantity is greater for clusters with an icosa- 
hedral structure than for fcc clusters, the icosahedral struc- 
ture is preferable for small cluster sizes, and the fcc structure 
is preferable for larger sizes. 

Comparing these structures, we focus on the fact that 
when the surface layer of an icosahedral cluster is filled, the 
fcc structure of the surface layer may be more advantageous, 
since the number of surface-triangle atoms located in the 
spaces between atoms in the preceding layer is greater for the 
fcc structure than for the icosahedral ~tructure.~~" Since the 
interaction between the triangles is stronger for the icosahe- 
dral structure, when the upper layer is filled to a significant 
extent, its fcc structure becomes less favorable than the 
icosahedral structure. These circumstances were taken into 
account in constructing the dependence of the total binding 
energy of the atoms in the fcc and icosahedral clusters on the 
number of atoms for the short-range interaction between the 
atoms. This dependence is shown in Fig. 3 for the range of 
cluster sizes where there is competition between the struc- 
tures under consideration. The second derivative of the pair- 

FIG. 3. Specific binding energy of atoms in clusters with short-range inter- 
action between the atoms. The filled circles correspond to fcc clusters with 
a central atom, the unfilled circles correspond to fcc clusters without a 
central atom, the filled triangles correspond to clusters with an icosahedral 
structure for the interior shells and an fcc structure for the surface layer of 
atoms. 

wise interaction potential acting between atoms separated by 
the equilibrium distance:' which was assumed to correspond 
to the Lemard-Jones potential [UM(R, )  = 721, appears in the 
results for the icosahedral clusters. 

Analyzing the data in Fig. 3, where the binding energies 
for the magic numbers of atoms in the structures considered 
were used, we arrive at the conclusion that there is competi- 
tion between the structures at the numbers of atoms 
n=200-500 in the case of the short-range interaction be- 
tween the atoms. Then the fcc structure is preferable for 
some cluster sizes in this range, and the icosahedral structure 
is preferable for others. In the case of a Lennard-Jones in- 
teraction potential acting between the atoms, the competitive 
region shifts to higher values of n close to 1000 (Ref. 6). We 
note that the widely used method of comparing given struc- 
tures on the basis of the Lemard-Jones potential is confined 
to a comparison of the binding energies in clusters with cub- 
octahedral and icosahedral structures and filled  shell^.^^,^^ 
The convenience of such a comparison stems from the fact 
that the numbers of atoms in the clusters with filled shells 
compared coincide. However, such a comparison does not 
provide a true picture of the competition between the struc- 
tures, since the cuboctahedral structure is not optimal for fcc 
clusters. 

4. CONCLUSIONS 

Thus, the method presented makes it possible to deter- 
mine the binding energy of atoms in an fcc cluster in a rela- 
tively simple manner and the corresponding optimum distri- 
bution of the atoms in the cluster for the short-range 
interaction between the cluster atoms, which correctly de- 
scribes the interaction in systems of bonded inert-gas atoms. 
This method can serve as a basis for numerical calculations 
for a more complicated pairwise interaction potential acting 
between the atoms. 
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Fund for Fundamental Research. 
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