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The present work treats the initial stage of the transition from laminar to turbulent flow in a 
current-carrying plasmalike medium, regarded as an incompressible fluid with constant transport 
coefficients. A model similar to that of Lorenz for the initiation of large-scale hydrodynamic 
and current eddy structures is proposed, based on a small number of modes. It is shown that this 
model describes a nonequilibrium phase transition as a result of which the initial highly 
conducting state is destroyed. The types of bifurcation and the dependence on the system 
parameters are analyzed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The aim of the present work is to develop a model of the 
initial stage in the transition from laminar to turbulent flow 
in current-carrying plasmalike media, based on a small num- 
ber of modes. For this we use the analogy that has been 
established' between the initial stages in the nucleation of 
turbulence in an incompressible fluid and the electrical ex- 
plosion of cond~ctors?~ which is a typical example of a 
nonequilibrium phase transition (NPT) in current-carrying 
media. 

Below, following Refs. 1 and 4, we assume that the plas- 
malike medium is an incompressible conducting fluid with 
constant transport coefficients: electrical conductivity a and 
shear viscosity p (this permits us to emphasize the dynamic 
character of the NPT we are considering). Note that in the 
derivation of the NPT in Refs. 1 and 4 the unperturbed so- 
lution of the magnetic diffusion equation was taken to be the 
solution corresponding to a uniform current density over the 
cross section of the conductor, and terms quadratic in the 
perturbation were dropped. Below in Sec. 2,  in constructing 
our model of the initial stage of the transition from laminar 
to turbulent flow using the spectral Galerkin method5 we 
refrain from making these approximations. As a result, as 
will be shown in Sec. 3, depending on the value of the con- 
trol parameter, the loss of stability of the unperturbed solu- 
tion in the present model may be either soft or hard (in the 
model of Ref. 4 only hard excitation was possible, corre- 
sponding to subcritical bifurcation). 

where v, H, p are respectively the velocity, magnetic-field 
strength, and pressure; p is the density; u= v / p  is the kine- 
matic viscosity, and vm=c2(4m)-' is the magnetic viscos- 
ity. 

From the first of Eqs. (3) it follows that the velocity 
satisfies v=curl A (here A is the vector potential of the ve- 
locity, for which we use the Coulomb gauge div A=O). If we 
direct the z axis along the axis of the conductor and use 
azimuthal symmetry we can set v={ur(r,z, t) ,O,uz(r,z, t)) ,  
H={O,H(r,z,t),O}, and A={O,fir,z,t),O}. Then we have 
ur= -d$ldz and uz=d$ldr+t,blr. As a result of applying 
the curl operator to Eq. ( 1 )  and using the assumptions given 
above we find for the functions I,$ and H a system of equa- 
tions 

where DA = d 2 ~ l d r 2 +  ( l l r ) ( d ~ l d r ) - ~ l r ~ +  d2Aldz2. 
2. DERIVATION OF THE NONEQUlLlBRlUM PHASE Note that in contrast to Refs. 1 and 4, where terms of the 
TRANSITION MODEL form ( d t , b l d z ) ( ~  *lr)  and (dt,bldz)(Hlr) were dropped, here - - 

As an example of the starting model we will use the we include all terms of Eqs. (4) and (5). 

equations of magnetohydrodynamics (MHD). Here, as in We look for a solution of Eqs. (4) and (5) in the form 
+=$(r,z , t)  and H = H , ( r , t ) + h ( r , z , t ) ,  where H l ( r , t )  is Refs. 1 and 4, we consider an incompressible liquid-metal 

conductor with radius ro and electrical current i ( t ) .  The the unperturbed solution of Eq. (5) satisfying the boundary 
conditions H,(O,r) =O and H o ( t ) = H l ( r o  , t )  = 2 i ( t ) l c r o ,  # MHD equations of an incompressible fluid with constant ki- 

netic coefficients take the form and h are perturbations with zero boundary conditions, 
t,blr=o = # I r z r n  = 0 and hlr=o = hlr=,, = 0 .  

1 1 dv 
- + ( v , V ) v =  - - V p  + - [rot H,H] + v A v ,  The unperturbed solution H , ( r , t )  is easily found from 
dt P ~ T P  Eq. (9, applied to a stationary medium: 
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where ~ ( r , x )  = a ~ ( ~ , x ) l d r ;  here the function R ( T , x )  is de- 
fined by 

pn is the nth root of the Bessel function J l ( x ) .  The simplest 
special case is that in which the current i ( t )  and conse- 
quently Ho( t )  depend on time as i ( r )  = i ( ~ ) e x ~ ( v , r , ~  7 t ) .  
where 7>0 is a dimensionless parameter. Then by using ( 6 )  
and (7)  we can represent the unperturbed solution in the form 

where Z l ( x ) = i J l ( i x )  is a modified Bessel function of the 
first kind (the main results of the present work are derived 
using this expression for H I ) .  

The use of the unperturbed solution in the form ( 6 )  and 
(7)  or ( 8 )  permits us to relax one additional assumption made 
in Refs. 1 and 4 ,  specifically, the assumption that the unper- 
turbed current density profile is uniform over the cross sec- 
tion of the conductor. Then we can construct a model of the 
NPT which applies for large d i l d t .  

From Eqs. (4)  and (5)  we find a system of equations for 
the perturbations: 

d  - ( r r )  1 ah  -- +-- 
dt 

( ~ ~ + h ) + v D ~ @ ,  (9) 
d ( r , z )  2mpr  d z  

dh ( h r r )  d+ dH1  H 1  
-= +- --- 
dt d ( r , z )  dz  ( h r  ) + v&h, (10)  

where d ( A , B ) l d ( r , z )  = ( dA ldr ) (dB ldz )  - ( dA ldz ) (dB ldr ) .  
Equations (9) and (10)  are analogous to the Saltzman 

system for the perturbed temperature and velocity fields in 
the theory of the Benard effect6 except that the Cartesian 
coordihate system must be replaced by cylindrical coordi- 
nates and the scalar temperature must be replaced by the 
vector magnetic field. This permits us to use a substitution 
that resembles that employed by ~ o r e n z : ~  

where we have introduced the notation ki=  p i l r o .  Here k  is 
the wave number of the structures in the z direction. The 
justification for restricting ourselves to three perturbation 
modes in Eqs. (11) and (12)  (one for @ and two for h )  may 
be found in the well-known Ruelle-Takens hypothesis: 
which says that the transition from laminar to turbulent flow 
in an incompressible fluid is determined by a finite number 
of unstable modes, as well as the hypothesis of Volkov and 
1skol'dskii4 regarding the discrete nature of the reduction in 
the spatial scale (see also Ref. 9 ,  where a model of the initial 

stage of the refinement of the spatial scale in a conductor 
with a current was constructed using a small number of 
modes, and it was shown that it is a model for a first-order 
NPT). 

Substituting Eqs. (11)  and (12)  in ( 6 )  and ( 7 )  and using 
the spectral Galerkin method5 to reduce ( 6 )  and ( 7 )  to a 
system of three nonlinear ordinary differential equations for 
the amplitudes X, Y, and 2, we find 

where cl=0.29,  c2= - 1.73, and c3=2.34, and also 

It is not difficult to show that in a rectilinear coordinate 
system we would have c =0, c 2  = - c 3 ,  which corresponds 
to the Lorenz model.7 Note that for the equations of the 
model of Refs. 1 and 4  the values of these coefficients cor- 
respond to the conditions cl=O, c2<0, and c3<0.  

The current i ( t )  in the conductor is determined by the 
external electric circuit and its effective resistance, which is 
given by 

i 2 ~ , # =  Snds ,  4 
where S=(cl4m)[E,H] is the Poynting vector; E = j / a  
- [ v ,H]  IC is the electric field; j is the electric current den- 
sity; d s  is an element of the conductor surfaces; and n is the 
outward normal to it. Using the assumptions specified above 
we find 

where Ro is the original resistance of the conductors, corre- 
sponding to the case @ = h  =0, and R is the amount by 
which it changes (an increase, as will be shown below), as- 
sociated with the nucleation of vortical current structures. 

3. INVESTIGATION OF THE MODEL; DISCUSSION 

We study the time-independent solutions of Eqs. (13)- 
(15) .  To first order we note that the trivial steady solution 
( X =  Y = Z =  0 )  of Eqs. (13)-(15)  becomes unstable for 
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Introducing the magnetic Rayleigh number 
R = ~ i r i / 2 r r ~ v v ,  (Refs. 1 and 4) we find that its critical 
value at which the trivial solution (+ =h =0) of the original 
equations (9) and (10) becomes unstable corresponds to a 
minimum of the function 

For this function we have R ( k ) - t ~  in the limits k-++O and 
k+m. Its minimum value is %,*(k) =!)Ic, corresponding to 
a value of k given by k*=kllv2. This means that we have 
tli, =27/~$4cu( rl)~(v)]-l. Thus, modes with k = k* becomes 
unstable in first order, which enables us to set k=k* in the 
region close to the critical value in what follows. 

As regards the dependence of the critical Rayleigh num- 
ber on the parameter 7, we have R c 4 w  for 7-++0, 
whereas in Refs. 1 and 4 the case i=const corresponded to 
the finite value Rc=978. The reason for this is that a current 
density which is uniform over the cross section of the con- 
ductor is stable. In the limit 77 +w we have !)IC-+w, because 
for large values of 7 the current is concentrated in a narrow 
surface layer of the conductor, which reduces its effect on the 
growth of large-scale perturbations that span the entire vol- 
ume of the conductor. For 77 = $ = 8.73 we have R, 
= !)Ic mi, = 7.8 . ld, from which it follows that the mini- 
mum threshold value of the electric current is i* 
= c Jrp Y v , ~ ,  mi,/2. 

The characteristic size of structures in the z direction 
will be A = 2r lk*  = r023'2rr/p1 = 2.32r0. AS shown in Ref. 
9, this corresponds to a pair of vortex rings (Benard cells 
closed into a torus). Figure 1 shows the hydrodynamic ve- 
locity field in the conductor. It is clear that slices (strata) can 
develop between vortex rings with oppositely directed rota- 
tion (i.e., with oppositely directed vectors curl v). In Ref. 11 
it is shown that this distance correlates well with the experi- 
mentally observed separations between strata3 

Note that so far we have assumed that a constant current 
corresponds to a current density profile which is uniform 
over the conductor cross section. It is clear, however, that the 
current density profile will be nonuniform. This may be 
caused by conductor geometry that differs from cylindrical, 
by nonuniform heating, or by some other process (see, e.g., 
Ref. 12) that also gives rise to a U-shaped current density 
profile. In order to treat a nonuniform unperturbed current 
profile we introduce corrections to the coefficients a and /3 
of Eqs. (13)-(15), i.e., we replace them by the coefficients 
47)  +a* and /3(7)+P*, where P*>O. 

In Ref. 10 it was shown that for metals like copper we 
have s= v/v,--10-~, i.e., s e l .  In this case the amplitudes Y 
and Z will be adjusted adiabatically in response to the slowly 
changing amplitude X, whose time variation is therefore 
given by a single first-order ordinary differential equation. 
For the case Ho=const (or what is the same thing, ?;I =0) this 
equation can be written in terms of the dimensionless ampli- 
tude XI = X( umP2) - Jq and time r =3 r v,k:/2, in 
the form 

LlG. 1.  Distribution of the hydrodynamic velocity v in the conductor. 

where p =WR, and 6= -c,P*lc2(a(0)+a*)>0. 
The bifurcation curves of this equation for two different 

values of the parameter t are depicted in Fig. 2. The trivial 
solution of the equation (X,=O) corresponds to the absence 
of vortex structures in the conductor. It is stable for OCp < 1 
and unstable for p > 1. 

But in the case of the nontrivial time-independent solu- 
tions, as can be seen from the figure, for p>l (if 0<&1 
holds) or for p>po=4t/(&+ 1)2 (if 5 >1 holds) a pair of 

FIG. 2. Bifurcation curves of Eq. (17). Here I is the trivial time-independent 
solution. Trace 2 corresponds to 5=0.75< 1 and trace 3 to 5= 1.75> 1 .  Un- 
stable solutions are represented by the broken traces. 
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stable stationary points develops, corresponding to a steady 
vortex motion of the cofiducting fluid. But {or po<p< 1 (if 
6 <0 holds) a second pair of stationary points develops, 
which in contrast to the first pair is unstable. Thus, for 
0<&1 the bifurcation is supercritical as in the Lorenz 
model, while for 5 > 1  it is subcritical, as in the model of 
Refs. 1 and 4. 

We turn our attention now to the analogy between the 
behavior of the effective resistance (16) of the conductor 
close to the stability boundary and that of the specific heat 
Cp near the critical point in an equilibrium phase transition." 
Specifica!!~ 1' die characteristic times -rare much larger than 
Ils, then for 0<<<1, depending on how the effective rzsis- 
tance varies with the external control paranieter p, we have 
an inflection point: 

where we have written y=-Jo(p2) lpzP*  
(2.rrr&rc2)"-' j > 0 .  This type of nonanalytical behavior of 
the function Reff  is analogous to that of the thermodynamic 
functions in a second-order phase transition. 

In the case 6 > 1 ,  depending on how the function Reff  
varies as the external control parameter p increases slowly 
(i.e., over times much larger than l l s ) ,  we have a disconti- 
nuity: 

But for a slowly decreasing parameter p we have the discon- 
tinuity 

This behavior of the function ReE is similar to that of ther- 
modynamic functions in a first-order phase transition. 

In any case it is clear that the value of the effective 
resistance ReR of the conductor when vortex structures de- 
velop in it exceeds the original resistance Ro even in the case 
of constant local kinetic coefficients (see also Refs. 4, 10, 
and 1 1 ) .  Thus, e.g., in the limit we have limp,, ReE=R0+ y. 
Note also that in plasma physics the behavior of the so-called 
anomalous resistivity associated with the flow of an electric 
current through the plasma has been related to the onset of 
turbulence.14 The increase in the effective resistance of the 
conductor which we have derived is also related to the tur- 
bulence in a plasmalike medium (in our case, a liquid metal). 
However, the resulting vortex structures have a spatial scale 
comparable with the conductor radius. This gives us some 
reason to expect that the model proposed here is the simplest 
model of the initial stage of the transition from laminar to 
turbulent flow in current-carrying plasmalike media. 

4. CONCLUSION 

Thus, we have derived a model for the initial stage of the 
transition from laminar to turbulent flow in a current- 
carrying plasmalike medium, represented as an incornpress- 
ible conducting fluid with constant transport coefficients. We 

have shown that a nolluniform electric current density profile 
is unstable. The instability develops when the magnetic Ray- 
leigh nurr:ber % reashes a critical value and the convective 

inflow of magnetic flux into the conductor is comparable 
with tint due b diffusion. 

The study of how different original current profiles affect 
stability reveals that the critical Rayleigh number %, de- 
pends on the current parameter g -d ln i ld t ,  and for 
7=8.73 it attains its minimum value, 7.8. lo3. It should be 
rated that in this work %, turns out to be much larger than 
?Ls 1 ,I.:e 978 found in Refs. 1 and 4. The characteristic size A 
of the periodic structures in the conductor turns out to be the 
same as ilk Refs. 1 and 4 and is equal tc 2. 32ro. 

We have studied the simplest model with a small number 
of modes for the initial stage in the transition from laminar to 
turbtdent flow in a current-carrying medium, which PJms out 
to be different from that proposed in Refs. 1 and 4, and is 
generally reminiscent of the Lorenz modeL7 By analyzing 
the model we find that the appearance of vortex structures in 
the conductor increases its effective resistance even when the 
local transport coefficients are constant (see also Refs. 4, 10, 
and 1 1 ) .  We have shown that, depending on how the function 
Reb varies with the control parameter p-'3 near its critical 
value, there is a discontinuity or an inflection point, which is 
analogous to the behavior of thermodynamic functions close 
to the critical point for an equilibrium ph2se transition. 
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