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We examine various problems involving the transition of a nonlinear interaction to chaos under 
energy exchange between two modes in a quantum system with distributed feedback. Our 
principal emphasis is on clarification of the structure of the emergent chaos, the feasibility of 
controlling that chaos, and the experimental measurement procedure appropriate to an 
actual quantum system. We write down the fundamental relations and the basic equations; to 
solve the latter we use quantum perturbation theory for two-soliton states in the semiclassical 
approximation. The basic nonclassical effects in these states are discussed, the major ones 
being the onset of quantum chaos and methods of controlling it for solitons in tunnel-coupled 
optical fibers. The feasibility of experimentally verifying this fundamental state in such a 
system is related to the problem of making quantum nondemolition measurements of photon 
numbers in the coupled-soliton problem. O 1995 American Institute of Physics. 

Notwithstanding a great deal of work having been de- 
voted to the quantum properties of optical solitons (see, e.g., 
Ref. I and the recent Refs. 2-4), a number of problems 
related to the generation of quantum coupled soliton states 
remain open, both from a practical and a more fundamental 
standpoint. 

Indeed, the elucidation of the physics and the conditions 
under which quantum coupled solitons are produced has fu- 
eled some hope of applying them to optical information pro- 
cessing in multichannel communications systems. On the 
other hand, the actual physics of soliton wave packet behav- 
ior is an interesting optics problem in its own right, since it 
may lead to new, nontrivial effects. 

From a quantum point of view, we are dealing with the 
possible occurrence of optical wave packets with sub- 
Poisson statistics, the feasibility of quantum nondemolition 
measurements, and the production of light (solitons) in a 
quadrature squeezed state.273 Furthermore, analysis of the 
classical problem shows that the behavior of soliton-like en- 
tities in nonintegrable systems can be so complicated that 
stochastic dynamics and chaos ensue (as manifested in the 
parameters of these quasisolitons).5 

Although it is well known that the nonlinear Schrodinger 
equation with periodic boundary conditions is completely in- 
tegrable (a fact we make use of in the present paper; see Ref. 
5, for example), the use of approximate analytical methods in 
modeling (as in the nonlinear oscillator example, for in- 
stance) and allowance for losses are of interest in their own 
right, and can lead to instabilities. 

Discussion of the analogs of these phenomena in quan- 
tum theory, therefore, is essentially a new problem in quan- 
tum optics (cf. Ref. 6). That problem is examined in the 
present paper as it applies to two interacting solitons in a 
special type of optical fiber with efficient energy exchange 
between modes. 

In the simplest case, the quantum theory of two-soliton 
states is presented, for example, in the seminal paper by Za- 

kharov and   ha bat.^ The approach developed in that paper, 
however, does not deal with the actual interaction between 
the solitons, merely assuming that they are infinitely far apart 
when the interaction begins and ends. Taking the same ap- 
proach, it has even been shown3 that quantum nondemolition 
measurements are feasible when both solitons possess appro- 
priate integrals of the motion, specifically the number of 
photons and momentum. 

Here we develop a different approach that we believe 
better captures the physics of the problem, and takes the 
details of the interaction into account. We solve the problem 
in the adiabatic approximation of perturbation theory,' detail- 
ing three possible scenarios: Two-soliton states of interest 
(higher-order solitons) are produced in a conventional non- 
linear optical fiber. Coupled soliton states are produced in a 
special type of optical fiber--one with two tunnel-coupled 
strands-due to efficient (linear) energy exchange between 
the modes propagating in the fiber strands. Intrinsic two- 
soliton states are produced in each of two tunnel-coupled 
strands of such a fiber. In this last case we have a four-body 
problem (two solitons in each channel). 

We employ the Hartree approximation in the Schro- 
dinger representation for the quantum calculations in this 
problem. The usefulness of this approach in such problems 
(see Refs. 3 and 9, for example) stems from its generality 
and the simple physical interpretation of results that it pro- 
vides, which facilitates comparison with classical analogs. 

Rather than going directly to our original results, we 
point out that the class of equations that engenders the soli- 
ton solutions we consider here have the nonlinear Schro- 
dinger equation as their archetype. These equations have ap- 
peared in various forms, however. They are discussed in 
Refs. 10-12, and we relate them to the present problem in 
Appendix 1, where we actually justify the validity of our 
approach. 

The paper is organized as follows. Section 2 lists the 
basic relations and equations. Quantum perturbation theory 
is developed for two-soliton states in Sec. 3. The major non- 
classical effects for these states are discussed in Sec. 4. Sec- 
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tion 5-the heart of the paper4etails the emergence and 
control of quantum chaos in tunnel-coupled optical fibers. 
The main conclusions are summarized at the end of the pa- 
per. Two appendices address collateral questions that are im- 
portant to an understanding of the central problem; in par- 
ticular, Appendix 2 provides calculations of quantum 
nondemolition measurements of the number of photons in 
the coupled-soliton problem. 

2.BASIC RELATIONS 

In the Schriidinger picture in tunnel-coupled optical fi- 
bers, the propagation and interaction of two solitons (which 
we denote by 0 and h) can be described by the Hamiltonian 

where the first term on the right-hand side accounts for the 
dispersive medium, the second accounts for the cubic non- 
linearity ( K - ~ ( ~ ) )  responsible for the interaction, and the 
third describes the soliton interaction (we specify the cou- 
pling constant e below). Operators ai(x) and a+(x) 
(i=O,h) are annihilation and creation operators, respec- 
tively, which obey the commutation relations for a Bose- 
Einstein system: 

[ai(x);ai(x)]= [a'(x);a:(x)]=~, (2b) 

i,j=O,h. 
We seek a system state vector 15) in the Schrodinger 

picture in the form3 

where the function f n m  is defined in (6). The state vector 
satisfies the Schrodinger equation: 

Here t is the longitudinal coordinate for soliton propagation; 
in quantum theory, this is the time?.1°,12 Note that in the 
Heisenberg picture, all of the operators introduced thus far 
are functions of time, so we obtain the familiar quantum 
Schrodinger equation for the ai(t,x) (see below). 

The quantities wnm are responsible for the initial 
(t = 0) photon distribution (which we assume to be Poisson), 
i.e., the light is in a coherent state at t=O. Then 

where 1 aO,l2 and I awl2 are the respective initial mean pho- 
ton numbers in the two modes (0 and h). 

With the interaction Hamiltonian (I), we proceed to 
solve this problem in the Hartree approximation. We assume 
that 

f n m f m  r=l j=n+l i + j  9 )  (6) 

where *:) and *:in are the desired wave functions for the 
0 and h solitons, with the normalization 

Plugging (5) and (6) into the Schrodinger equation (4), we 
obtain 

Equation (8) can be interpreted physically in terms of a 
Bose gas model in which "two types" of particles interact. 
Specifically, terms with derivatives d2/ax; correspond to the 
kinetic energy of types 0 and h bosons; the term with coef- 
ficient 2~ describes a delta-function interaction among these 
same 0 and h modes; and the last term describes the interac- 
tion between the 0 and h modes. 

Subsequent calculations are similar to those used in Ref. 
3. We multiply Eq. (8) on the left by fim and integrate over 
all lIy= , d x i l I ~ t ~ +  l d ~ j .  We ultimately obtain a certain func- 
tional, which when varied yields a system of equations for 
*:t;l")m(x,t): 
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The equations (9) for the wave functions (c numbers) of the 
interacting solitons can be brought into correspondence with 
the classical coupled nonlinear Schrodinger equations that 
describe the propagation of optical wave packets in tunnel- 
coupled fibers by specifying the meaning of the variables t 
and x .  In the classical nonlinear Schrijdinger equations for 
optical solitons, t [which we take to be the time, as in quan- 
tum mechanics; see Eq. (4)] is the longitudinal coordinate 
with regard to soliton propagation, and x is either the dy- 
narnical coordinate (see Appendix 1 and Ref. 5) or the trans- 
lational coordinate of the center of mass, which moves with 
group velocity v,,= l ~ k ' . ~  In the latter case, t=k"z121k'1~, 
x=vgrr-z, and ~ = X ( k ' 1 ~ 1 ~ / k "  accounts for the Kerr 
nonlinearity, I is a mean (or initial) normalized intensity 
measurement, and k" specifies the group velocity dispersion 
to second orde*). The equations (9) then correspond to Eq. 
(A2) of Appendix 1. 

The parameters tNL,,- l l n ~  and tNL,m- l l m ~  are the 
characteristic phase modulation time scales (which deter- 
mine the corresponding spatial scales) for either soliton; 
tb- lle is the characteristic "linear" beat period between the 
two channels (see Ref. 13), and E actually specifies the in- 
teraction within the system. 

In our previous paper? we assumed that 
tNL,, , tN,rm> tb . Here, we propose instead a perturbation 
solution of (9) for solitons in the adiabatic approximation? 
and assume that ~b*tN,-,~, tNL,m. In addition, we take 
m-nS 1. Normalizing t with a factor of 2 and setting 

we obtain 

where k= n + m and E ' = e l2  (as before, we denote the nor- 
malized value of t by the same symbol for the sake of brev- 
ity). 

We are presently most interested in two-soliton coupled 
states in the two-channel system (11). It is therefore worth- 
while to consider two-soliton states in each channel individu- 
ally. This problem, which we analyze in the next section, has 
much in common with that of the fundamental solitons de- 
scribed by (1 1). 

3. QUANTUM PERTURBATION THEORY FOR TWO-SOLITON 
STATES. ANALYTICAL METHOD 

For two weakly coupled channels (8 ' = 0) , Eqs. (1 1) be- 
come independent, as do the two-soliton states produced in 

each strand of the optical fiber. It is therefore sufficient to 
consider the formation of coupled second-order solitons, in 
the 0 channel, for example, which are described by the wave 
function w:). 

On the other hand, we can make use of the general 
theory of two-soliton quantum states (denoted by subscripts 
nlVz) in the Hartree approximation.3 The wave function then 
takes the form 

Here n l  and n2 give the number of photons in the two soli- 
tons produced in the 0 channel (nl  + n2= n) and described 
by the wave functions and *I:). Physically, Eq. (12) 

describes well-separated solitons. The equations for !Pi:),2 
can be derived (in the Hartree approximation) by minimizing 
a functional (with 8' = 013; they take the form 

Inserting (12) into (13) and assuming n l  ,nz% 1, we have 

Proceeding, we introduce G*(:),, as in the 
derivation of (10) and normalize t; we then have from (14) 

Equation (15) is identical to the corresponding equation 
in the classical theory8 A perturbation solution can be ob- 
tained in the adiabatic approximation. This differs from the 
approach taken in Ref. 3, which was based on previous 
work7 that did not take soliton interaction into consideration. 
The last term in curly brackets in (15) explicitly allows for 
that interaction (interference), which results from the nonlin- 
earity. Furthermore, in the present problem, we can treat it as 
a perturbation (as in Ref. 8) and write 

According to the theory described in Ref. 7 and the quantum 
theory of two-soliton solutions? the solitons are initially in- 
finitely far apart. They then interact, although the specifics of 
their interaction are not spelled out. Finally, they again re- 
treat to infinity, acquiring some phase shift and coordinate 
displacement as a result of the interaction. In contrast to this 
approach, here we analyze the interaction itself (see Sec. 5). 
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The solutions obtained in Ref. 7 then correspond to the as- 
ymptotic behavior of the solutions obtained here. 

First, we solve Eqs. (15) neglecting soliton interaction 
(we make no explicit mention of a perturbation in this prob- 
lem, but both solitons are subject to self-interaction). The 
result then consists of two isolated solitons undergoing self- 
interaction: 

where the vn1.2 are soliton amplitudes, ln - p n  13 are soli- 
ton momenta, (xo), are initial soliton coordinates, 

1.1 

- )t  are soli- 7n11= ( ~ 0 ) ~ . ~ +  2 ~ n ~ , ~ t .  and a n l s 2 =  2(pnl1 
ton phases. With the normalization (7) for the wave functions 

(I) =@(I) 1 6  , we obtain the quantization conditions 
%,2- n1.2 

According to the adiabatic approximation in perturbation 
8 

theory, Pn1,2, Tn1,2 9 and pn13 in (15) are not constants but 
functions of t, i.e., qnlV2= vnll(t). TnlT2" Tn1,,(t), and 

Pn1.2 = ~ n ~ . ~ ( f ) *  and 

+ 24 viexp( - 2 7nrn)cos $,,, 

where 

rn=rn  - rn2>0, 
I ~ n = (  v n l +  7n2)/2, 

Pn=(Pnl+Pn2)/2, $n==Pnrn+ (Pn=2Pnrn+6n2- a n l .  

Equations (18) hold when 

I P ~ , - P ~ ~ I ~ P ~  9 I v n l -  . )7n21evn  7 

?~nrn+ 1 ( v n l  - ?In2)rne 1. (19) 

The integrals of the motion in (18) are8 

p, = const, l;ln = const, 

y2- 1 6viexp(-2 gnrn)exp(i$n)=A2=const, 

Y=Spn+i6vn, (20) 

where Spn=pn2-pnl and Svn=l;ln2- vnl. 
In physical terms, the first two integrals of the motion 

simply represent conservation of the total momentum and 
soliton amplitudes. The last integral of the motion in (20) is 
more interesting: it amounts to a specific set of parameter 
combinations for interacting solitons (see Eqs. (27) and (28) 
in the next section). This is of fundamental importance to the 
control of quantum chaos (see Sec. 5, where we take soliton 
interactions in the different channels into consideration from 
the outset, and also allow for losses). Moreover, while we 
integrate Eqs. (18), assuming (19) to hold, the integration 
limits are different from those in Ref. 8. As a result, we have 

p sinh(4 vnpt )  - v sin[4 qnvt) 
Spn(t) = - ch(4 vnpt )  + cos(4 vn vt) + ~Pn(O), 

(PA?)= (Pn(0)-2arctg{th(2vn~t)tg(2vnvf)l  

+4~na~n(O) t -2~n{rn ( t )  -rn(O)), 

where the boundary conditions are Spn(0)= (pn2-pnl) 1 r=o 

and 6vn(0)=(vn2- qnl)lt=O. In addition, 

Making use of the integrals of the motion (20) as well as 
(21), (22), and (17), we can determine the soliton parameters, 
and thus the wave functions (16). The two-soliton state vec- 
tor in the Hartree approximation takes the final form (cf. Ref. 
3) 

where the w ~ ~ , ~ ~  are given by (5). 
We have thus determined the quantum state of the sys- 

tem for this problem in the present approximation. 
It should be noted here that the present lack of coupling 

between the two channels (cr=O) and neglect of soliton in- 
teractions in each channel reduces this to an integrable sys- 
tem under the classical approach. At first glance, then, the 
approximate result (23) ought to be directly comparable with 
the exact solution. The problems that can arise are well 
known-in particular, they resemble the problems of secular 
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terms that can appear in the equation for a nonlinear 
o~cillator.'~ As in the previous case, however, our problem 
can be examined without regard to the exact solution, and 
treated as a model (for instance, as a Duffing oscillator; see 
Sec. 5). More importantly, the quantum case under consider- 
ation actually reduces in principle to a multisoliton problem 
(the number of photons nlP2 can take on any value, and the 
solitons are always coupled by virtue of the nonlinearity and 
vacuum fluctuations). The problem here, then, is in fact 
analogous to the classical problem in which coupled multi- 
soliton aggregates emerge in systems with a noallocal 
nonlinearity.14 The wave function (23), which describes the 
interference between two quantum soliton states, is just such 
a realization of a coupled aggregate (see also Sec. 5). 

4. NONCLASSICAL EFFECTS INVOLVING COUPLED 
SOLITONS 

In this section, we analyze possible nonclassical effects 
in coupled states of two solitons. Above all, the discussion 
will center around photon number fluctuations and nondemo- 
lition measurements in such systems. 

To start with, consider the instantaneous mean number of 
photons, 

where alo and azo are complex amplitudes, i.e., lalo,2012 is 
the steady-state (initial) number of photons in solitons, and 
averaging over the states 1 t), which embody characteristics 
of both solitons [see Eq. (23)], results in the formation of 
coupled states in this system, as already noted (i.e., it leads to 
the onset of a pure quantum interference effect between 
states). 

We see from (24), in fact, that quantum solitons are 
manifested by the superposition of a denumerable set of clas- 
sical wave packets (solitons). The last term in (24) accounts 
for the interference of quantum solitons cited above. In the 
limit 

we obtain from (24) a result that corresponds to the semi- 
classical approximation: 

The behavior of the classical wave packets can actually 
be characterized by the wave functions *::!2+1, and is de- 

scribed by the solutions of (21) (preference being accorded 
the Hartree approximation). We therefore dwell at some 
length on the solutions (21) and (22). 

If we assume that the amplitudes and velocities for this 
denumerable set of solitons are all the same at the instant 
t =0, i.e., Svn(t=O) =0, Sp,(t=O)=O, we then have for 
(22) 

If we also assume that the classical solitons are still co- 
phased, i.e., $,,(O) = O  (p=O), then 

where n=nl  +n2 is the total number of photons in solitons, 
and the new parameter t , = 8 7 r l ~ ~ n ~  determines the soliton 
width (see Ref. 3). 

According to (28), we can determine the time required 
for solitons to merge from the requirement that r,(t) = 0, i.e., 

and likewise, the period of oscillations in the distance be- 
tween solitons r,(t), which from (28) we can write in the 
form 

In physical terms, Eq. (30) means that the distance r,(t) 
between solitons recurs in times comparable to To$, . 

A similar result obtains for q,(t) and 6pn(t), i.e., 

rn(t) = r,(O) = const, qn(t) = - 2p,rn(0) = const 

(31) 
Sp,(t) = Sp,(O) = 0 = const, Svn(t) = S?;ln(0) = 0 = const. 

Note that because the exponential in (30) is large [see (19)], 
the period of oscillations T,Sts. 

We see, then, that the quantum effects of interest in the 
present paper are quite prominent in each of the solitons, and 
only then do they influence soliton interactions (by modify- 
ing photon statistics, for example; see below). In particular, 
when a soliton undergoes strong phase modulation, we have 
a temporal parameter t,,<t,<<T,, (see Ref. 3). This 
means, for example, that quadrature squeezing of light, 
which is produced by just such phase modulation? first 
shows up in each of the solitons, and their interactions then 
give rise to a transfer of fluctuations between them. 

On the other hand, it is clear from (30) that if 
rn(0) =0, T,= ts . The solutions (28) then show that the 
distance between the solitons oscillates with period T,,. In 
the quantum problem, however, due to the superposition of a 
denumerable number of such solitons (each with its own 
amplitude n), they fill the entire r,(t) plane, and every pair 
has its own oscillation period T,,,, for the intersoliton dis- 
tance. In going to the semiclassical limit, the oscillatory do- 
main shrinks. The upshot [see (26)] is that we wind up with 
a single pair of solitons, namely the one with the strongest 
interaction. 
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FIG. 1. Calculated behavior of a) position difference Ir,(r)- rn(0)l ,  b) amplitude difference Sqn(r), and c) momentum difference 6p,(r) as a function of 
soliton interaction time r (propagation coordinate) (all quantities are normalized). Parameter values are Sqn(0) = 0, Spn(0) = 0, rn (0 )  =2, 
qn(t)= qn(0)=2. Labeled curves correspond to the following initial differences in phase $n(0)=2p,(O)r,(O)+S2(0)-S,(O):  I) $,,(0)=0, 2) 
$,,(0) = 1~12, 3) t,hn(0) = 1~13, 4) $,,(0) = 1~14, 5)  $,,(0) = n [the amplitude difference Sqn(t) = 0 for &(0) =0,  T I .  Below Fig. la we show characteristic 
scales for soliton interactions with $,(O)=O,r,-0.098, t,,-2.68, 1,-2.64, and To,-5.35. 

Note that we have not considered dispersive effects in 
the medium here.3 It can be shown that such group-delay 
effects show up if tgr>T0,, where r,, is the characteristic 
group delay time. We assume this inequality to hold. 

Figures la-c show the typical behavior of the coordinate 
differences ) r,(t) - r,(0) 1 (Fig. la), amplitude differences 
Svn(t) (Fig. lb), and momentum differences Sp,(t) (Fig. 
lc) as a function of time r (in dimensionless propagation 
coordinates); we have used Eqs. (21) and (27) at fixed 77, 
(states are labeled with n = n , + n2 = 8 vnl K) . These plots 
demonstrate that in general [for arbitrary phase difference 
$,,(0)] these quantities exhibit complex behavior. More spe- 
cifically, when $,(O) = 0 (417,pt = O), the system displays a 
resonance with a characteristic time t,,= 7r14vv [see (21)], 
which shows up clearly in Figs. l a  and lb  for the soliton 
position and momentum differences. In Fig. la, we have also 
indicated the characteristic time scales for interacting soli- 
tons: t, is the period of the solitons, r,, is the resonance time, 
r, is the time for solitons to coalesce, and To,, is the period 
of oscillations [see Eqs. (29) and (30)l. 

Figure 2 shows the behavior of Sv,(t), Sp,(t), and 
Ir,(t) - r,(0) 1 as a function of the initial phase difference 
$,,(0)/2, as given by (21) and (27) (with Sv,(0) 
= Sp,(O) = 0). As might be expected, various oscillatory re- 
gimes exist under these circumstances (the curves corre- 
spond to domains far from the resonance time t,,). We also 
note that when $,(0) = 0, only the amplitude difference van- 
ishes: Sq,(t) = 0 [see (22)l. 

We now dwell in more detail on the case 
Ijr,(O)= 1r+27rk (k=0,1,2 ,... ), i.e., the case in which 
v =  0. Then from (21) we obtain 

It is clear from (32) that the distance between solitons grows 
logarithmically. For large arguments of the hyperbolic cosine 
(large t, for instance), and specifically for arguments such 
that 4 v n p t  S 1, we have from (32) that 

i.e., the distance between solitons increases linearly with t. 
In Fig. 3 we have plotted the calculated distance between 
solitons I r,(t) - r,(0) 1 as a function of the quantum number 
(state label) n= 8 v , l ~  at a fixed value of the phase differ- 
ence, $,(0)= 7r13. The curve shows oscillatory behavior, 
with an approximately exponential decrease in the amplitude 
of the oscillations. 

For these solitons, with quantum numbers nl and n2 
satisfying 

K2n2 Kn *n(O) 
ch jq exp [ -  g r , ( ~ ) ]  r sin 

[see (21), (27)], the distance between them remains constant, 
i.e., r,(t)=r,(O). Note that for large quantum numbers n 
(for which (33) holds), we also have r,(t)+r,(O). Indeed, 
in that case we have 

Kn 
p a  n exp 1 - 8 rn(0)]-+O 

(r,(O) ZO), so Ir,(t) -r,(O)l +0  (shown for vn> 3 in 
Fig. 3). 

In the general case, for arbitrary #,(0), the behavior of 
r,(t) and cp,(t) is not so trivial. We also note here that the 
perturbation theory solutions have as their limit the solutions 
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of the classical problem,8 as well as solutions of the quantum 
but without the perturbation theory. In the latter 

case, however, it is not possible for the distance between 
solitons to oscillate; the nature of that behavior is in fact the 
subject of our subsequent studies. One of the principal prop- 
erties of the two-soliton solutions (21) is the dependence of 
the corresponding quantities on the number of photons. From 
a physical standpoint, this means that it is possible to obtain 
qualitatively new quantum properties for coupled solitons, 
over and above those of isolated solitons. 

For the sake of definiteness, consider the generation of 
squeezed light. This is known to be feasible for a fundamen- 
tal soliton (a one-solition solution of the nonlinear Schro- 
dinger equation3). This comes about by virtue of phase 
modulation in the optical wave packet, and shows up in the 

FIG. 3. Calculated dependence of intersoliton distance Ir,(t) - r, (0) 1 on 
total amplitude q, (O)  (the quantum number is n ,  where 
vn(t)  = qn(0) ~ ( n  + n2)/8= ~ n / 8 .  Other parameters have the same values 
as in Fig. 1 ,  @n(0) = w/3,  t = 2. 

FIG. 2. Calculated dependence of Irn(t) - r,(0) 1 
(curve I ) ,  Spn(t) (curve 2), and S%(t) (curve 3) 
on initial soliton phase difference 1,h~(O)l2. Pa- 
rameter values are the same as in Fig. l ,  t = 2. 

quadrature components9 (i.e., we are dealing with quadrature 
squeezed light). On the other hand, fluctuations in the num- 
ber of photons remain unchanged, i.e., the photon statistics 
are unaltered. 

If, however, we consider two-soliton solutions, the inter- 
action between the solitons can give rise both to superbunch- 
ing and antibunching of photons. Physically, this can be at- 
tributed to quantum interference between fluctuations (see 
Ref. 9). Similarly, squeezed states can be shown to exist in 
other parameters as well, such as soliton positions and mo- 
menta. 

Consider fluctuations in photon number. We define the 
operator for the latter (see Ref. 3) to be 

Using (23) for ( A N * ) = ( N ~ )  - ( N ) ~  and the approximations 
(19), we have for the variance (in the semiclassical limit) 

Here we have also set a,,= a,= a. l fi. If in (35) the 
quantity in curly brackets is negative, i.e., ( A N ~ ) < ( N ) ,  we 
have antibunching of photons; conversely, for 
( A N ~ ) > ( N ) ,  we have superbunching. The statistics are un- 
changed only when   AN^) = ( N ) .  
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If in (35) we expand F, in powers of 27,r,(t), some 
straightforward manipulation yields 

where Al(rn0"0.5(l(r,0+2- l(rno+ l). Assuming c o ~ l ( r ~ ~ + ~ - l ,  
we have from (36) that 

Thus, photons will antibunch if we simultaneously have ei- 
ther l(rno+ 1>0, ~inA#,,~>0 or l(rno+ ,<O, sinAl(rno<O. On the 
other hand, when Sv,(O) =0, Sp,(O)=O, and l(rno+ '(0) 
- &0+2=0, we have from (28), (30), and (31) that (AN') 
-(N) on timescales To,, , i.e., the photons still have Poisson 
statistics. The latter property of interacting solitons can be 
used for quantum nondemolition measurements (see Appen- 
dix 2). 

5. QUANTUM SOLITONS IN TUNNEL-COUPLED FIBERS. 
CONTROL OF QUANTUM CHAOS 

In this section we will be interested in the propagation of 
quantum solitons, first in the presence of self-interaction in 
each channel, and then in the presence of cross-interactions 
between two channels. We will examine this problem in a 
special type of optical fiber with efficient intermode energy 
exchange (double-stranded tunnel-coupled fiber optic 
waveguide13). This problem is certainly of experimental in- 
terest, and the information presented in this section is funda- 
mental to the present paper. 

As we have shown above, coupled solitons do indeed 
possess extremely interesting quantum properties, such as 
sub-Poissonian photon statistics. Furthermore, it turns out to 
be possible to conduct quantum nondemolition measure- 
ments of the number of photons in one soliton (the signal) 
via the other (the probe), or of the difference in photon num- 
bers (see Appendix 2). 

On the other hand, in a classical analysis of the propa- 
gation of coupled soliton-like entities in a system described 
by a class of nonintegrable equations: one may encounter 
nontrivial (chaotic) interaction dynamics. The construction 
of a quantum theory of interaction for such objects therefore 
makes it possible to address the issue of quantum chaos in 
general, and the control of quantum chaos in particular (see 
Ref. 6, for example). 

Our discussion begins with the construction of wave 
functions for interacting solitons in a tunnel-coupled fiber 
optic waveguide (see also Appendix 1). The statement of this 
problem was presented in Sec. 2 [see Eq. (ll)]. Here, how- 
ever, we also take fiber losses (attenuation) into account. For 
simplicity, we stay with a commonly adopted phenomeno- 
logical description, without dwelling on the formalities of the 
Hamiltonian approach. 

To begin with, we rewrite (11) in the form 

The last terms on the right-hand sides in Eqs. (38) are re- 
sponsible for fiber losses (the attenuation factor is y). For- 
mally, these equations describe the "relaxation" of the wave 
functions (a proper systematic treatment of losses in the 
Schrijdinger formalism is a problem of interest in its own 
right, and will not be considered here). 

This interpretation, however, is tenable when y is small, 
which then enables one to work in the adiabatic approxima- 
tion and perturbation theory. Moreover, a description of the 
problem in the Hartree approximation, which we have 
adopted, is closer to the classical approach, so the wave func- 
tions @k:i) can be considered classical wave packets (soli- 
tons). This ensures consistency of the quantum theoretical 
results with the solution of the classical problem. We also 
note that the introduction of noise sources in the classical 
description can fundamentally affect the behavior of a non- 
linear system.14 

The procedure for solving (38) is similar to the one em- 
ployed above. We can therefore immediately write out the 
soliton solutions [cf. (16)l: 

where 7,- ~ n 1 4  and 7k- ~ m 1 4  (we assume that 
m-n 9 1 and for convenience we will re-indicate the sym- 
bols n=nl,k=n2) are the soliton amplitudes, the are 
their phases, and the P , , ~  are their momenta [see (16)]. As 
before, we assume that all of these quantities depend on t.5 

In the present case, the perturbing term in the nonlinear 
Schriidinger equations (38) takes the following form [we 
make the same assumptions about the soliton interactions in 
each channel as before-see the explanations accompanying 
(15) and (16)l: 

v. 1.1 .[@..I= 11 - y@!1,2)-iEf@~*1), i , j=n,k,  i #  j. 

We then ultimately obtain for the soliton parameters under 
consideration the equations (cf. Ref. 5) 

2 
E'  r, +-- 

1 . ~ i . 2  2 7, sh r, sin l(rn, 

r n (40) 
rjnlS2= +2vne1 - 

sh r, sin l ( r n - 2 ~ r l n ~ , ~ *  

where dn12~dpn l ,21d t ,  ?jnl,2=d7n1,2/df, +nl,2=drn1,2/df, 
hn,+2=dSn1,21dt, and we denote the distance between soli- 

I tons by r,= 2qn(rn l  - rn2). In addition, 7,' ~ ( r ] , , ~  - vn2). 

1002 JETP 80 (6). June 1995 A. P. Alodzhants and S. M. Arakelyan 1002 



pn=  $ (P~ , -P~ , ) ,  and h = 2 p ( r n l - ~ n 2 ) +  4 2 - 6 n l -  We 
have derived Eqs. (40) under the same approximation as 
(18). The following remark is useful in connection with the 
latter statement. 

For the nonlinear Schrodinger equation that we consider 
here, it is of fundamental importance that there exist pertur- 
bations that lead to the establishment of coupling between 
the solitons, regardless of whether it arises as a result of 
energy exchange between the two strands (E'#O) or direct 
interaction (apart from self-interaction effects) between two 
solitons in each of the fibers. The actual form of the perturb- 
ing term, be it v,,,[@L~~] in Eq. (15) or u~,~[@;:$'] in Eq. 
(38), is therefore probably not so important in a physical 
sense, and the results that we have obtained in the present 
section are in fact applicable to the case considered in Sec. 3, 
with coupling between the solitons. Naturally, the specific 
form of the resulting wave functions depends on the type of 
interaction considered (mathematically, these are different 
problems), and here it would be of some interest to clarify 
the analogies between the interacting solitons in these two 
situations. 

Straightfoward manipulation of Eqs. (40) reduces them 
to equations for 9, , r,, Spn=pnz-pnl, and vnz 
- ?In,: 

, rnch rn- sh r, 
rn+2yi ,=16vne  cos clr,=O, 

sh2 rn 

r n 
$n+?~( in+ 167%' sin *,,=o, 

r n 
(414 

S4',+477,~' - sin +,=0, 
sh r, 

r, ch r,- sh r, 
Spn+4v,&' cos *,=o. 

sh2(rn) 

Here the solutions for p, and 7, take the form 

where the are the total soliton amplitudes at t = 0. Con- 
tinuing, we expand the last terms in Eqs. (41a) in powers of 
r, which yields 

t j , + 2 y ( i n + 1 6 v ~ ~ '  sin 1),,=0, 

S7jn+477,s1 sin @,=0, 
(42) 

~ p , + $ ~ , ~ ~ r ,  cos *,=0. 

In conjunction with (41b), Eqs. (42) determine the soli- 
ton parameters, and thus the wave functions (39). 

It is fundamentally important in Eqs. (42) that the am- 
plitude 7, depends on the state label n [see (39)l; this is true 
of the other quantities as well. In other words, as we noted 
above, an optical wave packet in the quantum problem is a 
weighted sum of a denumerable set of classical solitons (with 

differing n) [see (24) and Ref. 91. This is actually the deci- 
sive factor that enables one to consider the problem as stated. 

Indeed, we have reduced the solution of the quantum 
problem, in the context of our approach, to a set of equations 
that can be analyzed with no particular difficulty. Specifi- 
cally, the quantities that appear in Eq. (42) can be investi- 
gated via a phase-space approach, since we are dealing here 
with individual "classical" solitons, each with its own value 
of n. The overall behavior of the quantum system will then 
in fact be determined by a superposition of such objects, 
whose phase portraits (trajectories) can be calculated using 
standard methods.' This approach admits of an analogy with 
a solution technique based on path integrals.4*'5 

We now consider various limiting cases. 

5.1. Harmonic oscillation regime 

We assume the linear coupling parameter between two 
strands of a tunnel-coupled fiber waveguide to be constant in 
time  con con st). Equations (42) can then be solved in the 
following manner. To start with, we set y=O for simplicity 
[in which case 7,' v:) is an integral of the motion; see 
(41b)], and for convenience we put 

With these assumptions, Eqs. (42) yield 

i.',-$2;rn cos $,=0, &,+a: sin +,=0, 

1 1 (44) 
S+,+-~ni sin$,=O, Sljn+- air, cos & = O .  

477, 1277, 

Equations (44) for r, and #,, are well known-they are 
of the same form as the equations for coupled nonlinear os- 
cillators (with different n) that have the same mass and natu- 
ral frequencies a, (see Ref. 14). We can formally write the 
Harniltonian as 

where &-,, plays the role of the momentum and , the po- 
sition. In the present (optical) problem, the 1,4, are the phases 
of the classical solitons, and the awn= A=d$,.,ldt are the 
frequency deviations (chirp). For some fixed value of n ,  the 
phase portrait is trivial, and has been treated in the literature 
numerous times (see Ref. 14, for example). Equilibrium 
states correspond to the points 

The behavior of the system near these equilibrium points is 
of the greatest interest. 

As we showed above [see (31), (32) and Eqs. (B11)- 
(B14) in Appendix 21, in those regions, coupled-soliton am- 
plitude (or phase) fluctuations are stabilized, and quantum 
nondemolition measurements of signal soliton photon num- 
bers are possible. Thus, for the t,b t) in (46), we can use (44) 
to obtain 

S?;l,(t) = Svn(t = 0 )  = const, (47) 
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i.e., the soliton amplitudes are integrals of the motion. It is 
important to note here, however, that satisfying (46) is not a 
sufficient condition from the standpoint of the general theory 
of quantum nondemolition measurements [including, in the 
present instance, high-precision (reproducible) position mea- 
surements on the signal soliton]. It is also necessary that 
there be interactions between the (signal and probe) solitons 
that are periodic in time. In the present case, we are dealing 
with oscillations in the distance r, between solitons [see 
(30)l. The equation for r, in (44) corresponds to harmonic 
oscillations only when 42; cos $,<0. In (46), we must there- 
fore eliminate values of $!) with even k, whereupon (44) 
yields 

According to (48), then, quantum nondemolition measure- 
ments of the position of the signal soliton are feasible at time 
intervals 

and for the momentum difference Sp, between the solitons, 
we obtain from (44) 6p,= 6pn(0) = const. 

Thus, in the present case, quantum nondemolition mea- 
surements can be made 

a) at equilibrium points for phase differences between 
two coupled solitons, i.e., where $!)= 27rk + 7r, 
k = 0,1,2, ...; 

b) when the distance between solitons oscillates; the pe- 
riod of these oscillations is T,,,,,= 27rfili2,. 

These two conditions yield the integrals of the motion 
Sp,= Sp,(O) = const and Sv,(t)= 6vn(0)=0 = const. Note 
that the required phases in the present case are shifted by 
n- relative to the phase difference $,, for two-soliton solu- 
tions [see (31)l. 

5.2. Parametric oscillations 

Consider the time-variable quantity E = E (I), which 
characterizes the linear coupling between solitons in two fi- 
ber strands, and which plays the role of the longitudinal po- 
sition (along the fiber).12 We assume the time dependence to 
be harmonic, E = EO + P COS(XI), where is the regular part 
of E', p is the modulation amplitude, and x is a periodicity 
parameter (analogous to the reciprocal lattice vector in the 
spatial Bragg diffraction problem?. The oscillator frequen- 
cies a, [see ( a ) ]  will then be time-dependent: 

=a;,,,[ 1 + E I  COS(X~)I, (50) 

where a:,,,= 1677;~0 and E I = P I E ~ ~  1. 
We begin our analysis of Eqs. (44) in this case with the 

equation for $, , in which we are dealing with nonlinear 
parametrically excited oscillators (for each n). 

The Hamiltonian, as was true for (45), can be cast in the 
form 

where H, is the Hamiltonian of the corresponding unper- 
turbed system (45) (with the replacement a:--+ a;,,,), 
E lVn is the perturbed part (E is the small perturbation pa- 
rameter for this problem), and V, = - cos $, . 

It is well known14 that such a system will have domains 
of instability, and that stochastic processes can develop. The 
web-like boundaries of the stochastic regions are concen- 
trated near the separatrices (equilibrium states), and are 
specified by5,14 

I ~ , - ~ ~ ' l s 6 2 : , , , a ~  e ip  -- ( td3 ( 2 (52) 

where H, is the value of the Hamiltonian at the separatrix. 
The stochastic region thus decreases exponentially, and its 
maximum width (the stochastic layer) is of order E 

Under certain conditions (selected values of the param- 
eters), such a system can make the transition to dynamical 
chaos, which can come about through overlapping reso- 
nances. Here we are dealing with the appearance of a sto- 
chastic web with islands of stable motion.14 If, making use of 
(50), we allow for a dissipative term [see (41a)l in Eqs. (44) 
for $, , the system will have an attractor. The process will 
then entail the destruction (or alteration) of the problem's 
integrals of the motion. 

This sort of picture for the onset of chaotic behavior (via 
the phase difference between the two solitons, in the present 
case) applies to the classical description. The passage to the 
quantum limit follows the procedure outlined above. 

We have then a set of classical parametric oscillators 
with frequencies a,. In the general case, however, when 
one sums over states of all oscillators, from the standpoint of 
the classical criteria for stochastic behavior (52) it is difficult 
to say much about the quantum-mechanical problem. 

In fact, even the criterion (52) for the advent of a sto- 
chastic layer will obviously not be satisfied for all n ,  so that 
certain of the solitons that enter into the sum will be per- 
fectly regular. On the other hand, each of the oscillators to 
which (52) applies will have its own stochastic web, and the 
result of superposing them all will be quite complex. Control 
of such a quantum system will be discussed in the next sub- 
section; we now turn to an analysis of the rest of Eqs. (44), 
with (50) taken into account. 

We know, to begin with, that r, satisfies the Mathieu 
equation: 

Here we again assume that the stabilization requirement 
leading to the possibility of quantum nondemolition mea- 
surements, cos $,=-l, holds for the phase difference be- 
tween the two modes. We also assume that the small param- 
eter E ~ < O .  

The solutions of Eq. (53) have domains of instability, 
which in the present problem come into consideration for 
certain intersoliton distances. The boundaries of the first such 
domain (parametric resonance) are determined (see Ref. 14, 
for example) by 
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where S is a small frequency offset between Cl,,,,/ fi and ,y 
(y is the damping factor). The value of r, increases in the 
unstable domains, so that as mentioned above, quantum non- 
demolition measurements of the signal soliton position re- 
quire that we be outside those domains. Equation (53), on the 
other hand, has no stochastic eigensolutions. 

In the general case, then, this type of solution depends 
solely on the behavior of the phase difference #,, [see (42), 
(44)], which then determines the dynamical motion for all 
other quantities in (44). 

When a nonlinear term and damping are present, Eqs. 
(53) in and of themselves can result in chaotic behavior (via 
period-doubling bifurcations).14 This corresponds to a con- 
sideration of higher-order soliton-like solutions in tunnel- 
coupled fiber waveguides (see Secs. 2 and 3, and Appendices 
1 and 2), in which the nonlinearity shows up as a perturba- 
tion. Instead of Eqs. (42) for r, and #,, , we then have 

2 2 F , + ~ ~ ~ - $ K , ( ~ K , + E ' ) ~  COS #,+K,T, 

Xcos #,,+2~: COS $hnr,=O, $ , ,+2y&+2~, (~ , -&' )  

x sin #,+ ~:r,(r,-2)sin #,,=0, 

where K,= 8 ll:. We thereby obtain a pair of coupled equa- 
tions that can be analyzed using standard numerical 
methods.14 

5.3. Discussion. Control of a quantum chaotic state 

Let us briefly summarize. The physical model employed 
to analyze the given problem in this paper is in fact based on 
the semiclassical approximation, in which the number of 
photons in the solitons is large. This is why one can easily 
allow for damping in the original equations (38). 

On the other hand, even in the semiclassical approxima- 
tion, macroscopic states of light can exhibit quantum prop- 
erties. Above all, this applies to the uncertainty relationship 
governing the variance of conjugate quantities. Squeezed 
light, with nonclassical photon statistics, provides an ex- 
ample of this phenomenon.16 In the Hartree approximation, 
which we use here, the interacting solitons are a superposi- 
tion of a denumerable set of classical solitons (cf. Refs. 3,9) 
whose behavior gives rise to complicated system dynamics. 
In interpreting the results, it may be useful to employ the 
quantum chaos criteria for the system wave functions or en- 
ergy ~pectrum.~ Another possibility, which we dealt with 
above, is to search for stochastic behavior in the classical 
analog of the quantum system under study. We can then 
bring to bear the powerful and well-developed methods used 
to study chaos in classical systems.14 The behavior of quan- 
tum solitons can be quite complex, however, as both the 
superposition of classical solitons and their interference must 
be taken into account, leading to significant departures from 
the classical analog of the problem. 

At first glance, with this complicated an array of phe- 
nomena, the prospects for controlling quantum chaos would 
appear to be bleak. However, we do have at our disposal 
methods of influencing both the noise level in a quantum 
system (squeezed light) and the role played by the measure- 

FIG. 4. Block diagram demonstrating the feasibility of quantum nondemo- 
lition measurements of the chaotic quantity O(t l ) .  I) Quantum chaotic sys- 
tem generating the quantity O(t); 2) device implementing quantum non- 
demolition measurements of O(r l ) .  Here 6(tf) is the probe quantity 
employed to make the quantum nondemolition measurements. 

ment process (specifically, quantum nondemolition measure- 
ments), which enable us to contemplate some approaches to 
this problem. 

Indeed, the foregoing analysis leads us to believe that 
system fluctuations grow in regions of unstable motion. 
More precisely, the lower bound in the uncertainty relations 
on the product of fluctuations of conjugate (quadrature) 
quantities rises, an observation upon which a number of 
workers have focused attention (see a discussion of the quan- 
tum H6non-Heiles model in Ref. 6, for example). This of 
course does not rule out the possibility of generating 
squeezed light in such a system for just one quadrature com- 
ponent. But because the overall product of the variances of 
the two quadrature components increases, what we actually 
have is an increase in the total system noise. 

On the other hand, when one makes quantum nondemo- 
lition measurements in some system (see Appendix 2), noise 
is suppressed. Notably, the lower bound on the uncertainty 
relation (for example, between the number of particles and 
the phase of the light field) is unchanged as a result of such 
measurements-it remains at a ~ninimum.'~ In our opinion, 
this is precisely the key issue in the control of quantum 
chaos. There would seem to be two possible paths to such 
control. 

The first is to produce a complicated description of the 
interaction between the quantum objects (solitons) in the sys- 
tem, and to control the latter within the confines of that sys- 
tem (as discussed above). Subsequent interactions of such 
objects (detection, for instance), can then be treated classi- 
cally. 

The second is to either initially or subsequently influence 
the complex system thus produced (see Fig. 4). In the pro- 
cess, those influences are quantum effects. 

On the other hand, this problem is closely related to 
observation of the eigenvalues (measurement) of a chaotic 
quantity, as well as to the emergence of the system from such 
a chaotic state in the quantum problem. To clarify the point, 
we now dwell on this problem in more detail, and analyze 
the quantum nondemolition measurement technique itself. 

Let O(r )  be an observable (measurable) physical quan- 
tity. The essence of the quantum nondemolition measurement 
is that by measuring O(t )  at some instant of time t ,  we 
obtain complete information about its prior history, i.e., its 
behavior at times t<t,,, (cf. Ref. 18). It is also possible to 
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take sampled measurements at well-defined times t,,, . 
In other words, by making such high-precision measure- 

ments, we can reduce the quantum uncertainty in measure- 
ments of O(t). This occurs, of course, at the expense of 
increased uncertainty in the quantity conjugate to O(t). 

The basic point here, however, is that in general, such 
quantum measurements cannot yield information about regu- 
larity or the lack of it (chaos) in the behavior of O(t). 

In fact, as shown in Ref. 19, it is precisely under the 
conditions of sampled quantum nondemolition measure- 
ments of the position of a quantum object that one can detect 
chaotic behavior, while no such measurements can be made 
in a regular domain. This property of a quantum system can 
be used to observe quantum chaos. It corresponds to the first 
of the two possibilities mentioned above for implementing 
quantum nondemolition measurements of chaotic systems. 

In the present problem, however, it is exactly in the do- 
main of regular behavior of the system that we have analyzed 
the possibility of making quantum nondemolition measure- 
ments of the difference in photon numbers, momenta, or soli- 
ton positions. 

Requiring consistency between these two cases brings us 
to the fact that quantum nondemolition measurements disrupt 
the chaotic regime. Nevertheless, in no way does this mean 
that such chaotic behavior cannot show up in the present 
problem. 

Figure 4 is a block diagram of the proposed measure- 
ment scheme, in which a stochastic (irregular) quantity 
O(t l )  is measured nonperturbatively in a quantum measure- 
ment setup with the aid of the quantity 6( t ) .  Interestingly 
enough, in a quantum nondemolition measurement, the inter- 
action between O(t) and 6 ( t )  is regular. This then com- 
prises the aforementioned second possibility in the quantum 
chaos control problem. 

Actually, by measuring a quantity at some time t,,, , we 
can deduce something about its chaotic behavior at earlier 
times t, with t l = t S  tmeas. We thus see that quantum non- 
demolition measurements can be a genuine instrument for 
controlling the state of a quantum chaotic system. We also 
note that this does not rule out the possibility of simulta- 

FIG. 5. Evolution of the phase volume 
u(t) in the (r,p) phase plane (p is the 
momentum, r the position). Here 
u(ro) represents the feasible initial 
conditions. For clarity, we show only 
two phase trajectories, labeled I and 2. 
In the quantum problem, each one is 
uncertain (in the classical sense); for 
clarity, the "uncertainty envelope" is 
shown only for trajectory I.  Rect- 
angles (cells) within that envelope 
(shown dashed for trajectory 2) indi- 
cate the measurement errors in p.  For 
squeezed states, it is not always the 
case that (Ap2)<h12 (a), while for 
quantum nondemolition measurements 
(b), the uncertainty envelope surrounds 
the trajectory out to a finite width that 
depends on the degree to which the 
measurement is not ideal (measure- 
ment error (Apz)<fi/2). 

neously making another kind of quantum nondemolition 
measurement-a high-precision measurement of the number 
of photons in the signal soliton, or its momentum (see Ap- 
pendix 2). 

We now describe the measurement method using 
squeezed light, with which one can also suppress quantum 
fluctuations and improve the observational accuracy of O(t). 
In the present problem, we make use of squeezed states for 
the difference in soliton photon numbers (see Sec. 4) or the 
difference in their positions, as described by the Mathieu 
equation (53). Indeed, it is well known in the latter case that 
in a region where the corresponding quantity is increasing 
[here we mean r , ( t ) ] ,  i.e., in a domain of instability of (54), 
squeezed states of a parametrically excited oscillator are pro- 
duced that have an exponentially growing squeezing 
~oefficient.~' 

We believe, however, that the main problem concerns 
the relationship among the characteristic time scales that 
govern the production of squeezed states (the evolution of 
quantum fluctuations), and the times for instability (chaos) to 
develop in such a system. In large measure, this has to do 
with dissipative (non-Harniltonian) chaotic systems, in which 
the extent of squeezing is limited by dissipation. In order for 
the behavior of such systems to be observable, the aforemen- 
tioned time scales must bear a certain relationship to one 
another, and this is not always the case (cf. Refs. 21,22, and 
25). 

By way of illustration, consider the phase-space dia- 
grams in Figs. 5a and 5b. We have plotted portions of phase 
trajectories within a phase volume a in the position- 
momentum plane of a quantum particle (at certain times in 
the interval t0<t<t3). According to the uncertainty prin- 
ciple, every trajectory will always have some "uncertainty 
envelope," which will generally vary with time. In Fig. 5a, 
for example, we see that when we observe the particle mo- 
mentum at successive times to, t ,  , t2 ,  t3 ,  the uncertainty in 
the momentum is different for each. 

Thus, for example, at t = to, the uncertainty corresponds 
to a cell in the phase plane with dimensions of order fi.12 (a 
coherent state). We have a squeezed state (for momentum 
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fluctuations) at times t =  t ,  and t = t2 ,  and it turns out to be 
possible to track such a trajectory with higher accuracy, 
which depends on the degree of squeezing. Subsequently, we 
see that at t=  t ,  the "uncertainty cell" has grown (it exhibits 
larger momentum fluctuations). Accurate measurements can 
thus only be made at t = t l  and t= t2 .  For this to be so, 
however, the mere existence of a squeezed state is not at all 
sufficient, and the two cases given, involving the complex, 
convoluted behavior of a stochastic system, can differ sig- 
nificantly when we consider a bundle of possible trajectories 
in some phase volume22 and two nearby trajectories do not 
differ in terms of their uncertainties (Fig. 5a, t=  t,). 

The situation is different when we carry out quantum 
nondemolition measurements (Fig. 5b). The uncertainty en- 
velope is then related to the measurement accuracy, which 
remains high and constant for all trajectories in the course of 
continuous (at all instants of time) measurements. 

In the first case, of course, by controlling the degree of 
squeezing of fluctuations and the uncertainty-cell orientation, 
we can measure some property of a chaotic system at a given 
time to the required accuracy. We might, for example, illu- 
minate such a system with specially prepared light in a 
squeezed sate, and thereby have an additional (external) pa- 
rameter with which to control the measurement process.23 

Obviously, however, such states themselves may be con- 
sidered a source of additional perturbations conveyed to the 
system from outside, which can randomly disrupt the evolu- 
tion of the system. As a consequence, we again end up with 
the need to make quantum nondemolition measurements. 
Special procedures for making such measurements are dis- 
cussed in Ref. 24. 

Quantum nondemolition measurements thus provide a 
universal method of controlling a quantum chaotic system. 
From a formal mathematical standpoint, this derives from the 
fact that the analysis underlying quantum nondemolition 
measurements goes beyond the scope of perturbation theory, 
and holds for long time intervals, over which system evolu- 
tion can be examined. In contrast, squeezed light is usually 
linked to certain constraints in the theory on the length (time) 
scale of the interaction, the number of photons, and so on? 

6. CONCLUSION 

In this paper we have analyzed, for optically coupled 
soliton-like entities, such fundamental problem as the onset 
and structure of chaos, and the feasibility of controlling it. 
We have discussed these states in various parameters (includ- 
ing the number of photons) of two interacting wave packets. 

One important feature of the overall nonlinear dynamical 
system considered here is the presence of linear energy ex- 
change between the interacting modes, which in fact consti- 
tutes distributed feedback and plays the role of an energy 
support for the inherently nonlinear interaction of the two 
modes. The latter ensures the necessary phase relations be- 
tween the coupled modes (excitation of conjugate fields), 
which leads to a redistribution and attenuation (amplifica- 
tion) of the noise in certain components of the light in such a 
system. 

A nontrivial aspect of our work here is that the given 
states can be determined in a quantum system. Indeed, the 

problem of quantum chaos has thus far been extremely nar- 
rowly defined and not fully solved, entailing the analysis of 
chaotic phenomena in dynamical systems and in their quan- 
tum properties.6 In the present case, however, the production 
of squeezed light and the implementation of a nondemolition 
measurement technique for a given quantum system (coupled 
solitons) has made it possible to investigate problems in the 
semiclassical approximation. 

The basis for doing so has been our previous result9 for 
the propagation of pulsed laser beams in a nonlinear distrib- 
uted feedback system. Specifically, we have shown for this 
case that a quantum wave packet in the Schrodinger picture 
is a superposition of a denumerable set of differently shaped 
classical pulses (beams) with different instantaneous phases, 
and that the pulses are summed with different weights. Such 
an approach makes it easy to examine the correspondence 
between the quantum and classical description, making it 
possible to obtain specific results. 

In essence, we have been discussing the feasibility of 
representing and interpreting a wave function in terms of a 
conventional classical field.26 This field interpretation, it 
turns out, is actually feasible and is likely to be especially 
useful in treating the propagation of chirped laser pulses in a 
nonlinear medium, which corresponds to the problem we 
have considered here. 

We thank the referee for constructive criticism and valu- 
able remarks, which we incorporated in the final version of 
this paper. This work was partially supported by the Russian 
Fund for Fundamental Research and the International Sci- 
ence Foundation (Grant No. NYW000). 

APPENDIX 1 

The nonlinear Schrodinger equation and its sollton 
solutions 

We briefly discuss the class of equations considered in 
the present paper, which give rise to soliton-like solutions. 
We have in mind here the nonlinear Schrodinger equation, 
which we write in the form 

Another model for the formation of solitons in the con- 
text of this class of equations is one of the same type as in 
Eq. (Al), but with the independent variables 
interchanged: '0~11 

i@,+(I",,+21(I"J(I"2=~. (A21 

In Eqs. (Al) and (A2), q" represents some property asso- 
ciated with the wave (the field amplitude in the classical 
theory, or the wave function in the Schrodinger picture for 
the quantum case). We limit attention to a one-dimensional 
wave with two independent variables, a "position" 6 (or z) 
and a "time" t (or 7). Subscripts on (I", as usual, correspond 
to first or second derivatives (one or two subscripts, respec- 
tively). 

These two types of nonlinear Schrodinger equation are 
essentially consistent with one another, but (A2) is used in 
solving boundary value problems, while (Al) is used in 
initial-value problems.10 In the classical theory of waves, 
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these two parabclic equations, which relate to the seccnd 
approximation of dispersion theory, yield similar soliton so- 
lutions which are usually known as funciamental solntions. In 
some sense, the choice between (Al) and ( ~ 2 )  is a matter of 
convenience (we have used different independent variables 
in the two equations). For example, in problems related to 
the nonlinear diffraction of light, these coordinates are the 
longitudinal and transverse field distribution. If z and 
r= t - : lug  ( v g  is the group velocity of the wave packet, t is 
the time) are the space and time (running) propagation coor- 
dinates, then Eq. (A2) describes optical solitons? Their dis- 
tinctive feat: .e; for example from (Al), is the existence of 
attraction between second-order solitons (this is the case for 
two-soliton solutions obtained without the use of perturba- 
tion theory for the soliton parameters; see be lo^).^^"^ Thus, 
in analyzing Eqs. (Al) and (A2), we are in fact concerned 
with the interpretation and physical meaning of the indepen- 
dent variables, which depend on the type of problem. 

The quantum description of the problem is somewhat 
different. In quantum mechanics, Eq. (Al) is the Schrijdinger 
equation, which corresponds to the traditional approach in 
which the derivative with respect to t specifies the temporal 
evolution of the wave packet, and dynamical processes are 
described by means of transition probabilities. For optical 
solitons in spatially distributed systems, it is necessary to go 
to a boundary-value problem. This is normally based on sec- 
ond quantization of the nonlinear Schrodinger equation (A2), 
for which the procedure has been analyzed, for example, in 
Refs. 3, 9, and 12. In the latter case, the particle number 
operator describes the photon density per unit area. 

In the present paper, while taking a general approach to 
the problems considered, we do no damage to the widely 
adopted quantum description in which we have the temporal 
evolution of the state vector (see Eq. 4), but for optical soli- 
tons the corresponding variables must be identified [see (9)]. 
It is also important to note that in perturbation theory, there is 
no qualitative difference between (Al) and (A2) for two- 
soliton solutions. In fact, the soliton parameters are then 
functions of the time t for (Al) and functions of the position 
z for (A2). As a result, soliton attraction and repulsion be- 
come possible in either case. There will, of course, be some 
quantitative differences, such as in the numerical values of 
the phase difference [see (27)l. 

We make brief mention of specifics relating to the pro- 
duction of multisoliton quantum states in the media under 
consideration. We first consider two-soliton states in one 
strand of a fiber (see Sec. 3). From a physical standpoint, 
such solitons can be generated by virtue of the cancellation 
of dispersion in the medium by phase modulation of the 
wave ao.  In the ideal case of noninteracting solitons, the 
energy of the a. field is equally shared by the two solitons. 
Each is then a fundamental solution only when one takes into 
account the additional phase shift and spatial translation. In 
other words, the soliton profiles remain unaltered (see Ref. 
7)- 

In contrast, soliton interactions lead to nontrivial quan- 
tum effects (see Sec. 3). In a certain sense, one might say 
that the two solitons engage in energy exchange. This re- 
duces, however, to just a small redistribution (accessible to 

perturbation theory) of the energy of the original field a. 
between the two solitons. Mathematically, this situation 1s 
reflected by the fact that two-soliton solutions can be de 
scribed by the unitary state vector Ito) of the optical wave 
packet c,  and by various fumtions q i : ) ,n2 (x , t )  [sec (12) and 

(23)j. ?he system can also be described by the unitary 
TIamiltonian for the 0 mode (cf. Ref. 3). 

Wlysically, the situation is different for coupled solitons 
in two-strand fibers. Here we have energy exchange between 
t'ne solitons, which are described by operators ah  and a o .  In 
fx!  we are dealing with two "types" of bosons, 0 and h ,  
vhch  have "tunneling" interactions in the propagation co- 
o r d i ~ ~ ~ t e  and are described by the Hamiltonian (1). The gen- 
erd state vector 1 t )  for system of coupled solitons, given by 
(3), in the approximation we consider here (Hartree), cail be 
represented as a product of the state vectors /to) and Ith) for 
each of the solitons [see also (23)], 

where the wnm are given by (5). 
Note that energy exchange between the 0 and h solitons 

should not be "strong," as the coupling constant E in (1 1) is 
fairly small. This is generally the only case in which one can 
speak of the formation of soliton-like optical wave packets 
(16) and use perturbation theory for the soliton parameters. 

Despite the difference between the physical mechanisms 
involved in the production of coupled solitons in the two 
cases considered here, there is some physical analogy in the 
nature of the interaction in the context of the aforementioned 
approximations. This in turn makes it possible to more fully 
understand the behavior of the physical quantities and their 
fluctuations in nonintegrable systems, which for a variety of 
reasons would be difficult to analyze directly in the quantum 
case (for example, due to the operator algebra of those quan- 
tities; see Appendix 2). 

APPENDIX 2 

Quantum nondemolition measurements of the number of 
photons in a soliton 

In this section we detail two types of quantum nondemo- 
lition measurements that can be implemented with the aid of 
interacting solitons. 

First, we have the measurement of the number of pho- 
tons in a signal soliton as a result of its interaction with a 
probe soliton. A similar problem was considered in Ref. 3, 
but in contrast to our present approach (based on perturba- 
tion theory), the work described in those papers made use of 
the asymptotic solutions for elastically interacting solitons. 
Obviously, the number of photons N i  and momenta pi of the 
solitons are then conserved quantities. Nevertheless, it was 
shown that even in this case, ideal quantum nondemolition 
measurements cannot be implemented automatically. 

Mathematically, this comes about because there is no 
unambiguous relationship between fluctuations in the phase 
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S2 of the probe (measuring) soliton and the number of pho- 
tons N1 in the signal (measured) soliton, i.e., there is an 
additional term responsible for fluctuations in the momentum 
p of the signal soliton. Only when the state of the soliton is 
close to a momentum eigenstate can such a term be ne- 
glected; that is, only when 

where (AN:),, is the measurement error for the number of 
photons in the signal soliton. A similar situation obtains in 
quantum nondemolition measurements of the position xl  of a 
signal soliton. 

The physics of the phenomenon is that two-soliton solu- 
tions for light result from interaction effects, which not only 
fail to facilitate quantum nondemolition measurements, but 
induce additional noise in the measurement process as 
we11.17 On the other hand, for optical wave packets (solitons, 
pulsed lasers, cw lasers), similar meas~rernent~~ have their 
own peculiarities, which relate, for example, to the effects of 
transverse phase modulation (for pulsed and cw lasers), and 
therefore to changes in wave packet shape. For solitons, this 
is a manifestation of novel quantum-mechanical characteris- 
tics-soliton momenta and positions. 

Second, making use of the actual details of soliton inter- 
actions, we can in this problem implement a method of mak- 
ing quantum nondemolition measurements of the amplitude 
difference (number of photons) between the wave packets 
with the aid of phase difference measurements. We will re- 
turn to this question in more detail at the end of the present 
section; for now, we analyze the feasibility of quantum non- 
demolition measurements of the number of photons and the 
momentum of the signal soliton during both elastic and in- 
elastic interactions with the probe soliton. Calculations are 
most convenient for this problem in the Heisenberg picture, 
wherein the classical Poisson brackets for canonically conju- 
gate quantities become the corresponding commutation rela- 
tions in the quantum theory of the operators for the param- 
eters in question-qi (the number of photons), Si (the 
phase), and pi  (the momentum) [see (16)l. These are also 
solutions of the perturbation problem [see (18) and (21)l. 
Obviously, in this approach all perturbation calculations [see 
(16-(21)] remain valid for the present case as well. 

For example, the commutation and uncertainty relations 
for the number of photons and the phase are 

Further on, however, we will need certain other relations, 
particularly for the difference in photon numbers and phase 
for the two solitons: 

Equation (B4) shows that these differences can be measured 
for interacting photons as accurately as in the classical 
theory. 

Further calculations based on the specifics of the prob- 
lem can be conveniently carried out. For example, the quan- 
tities 771,~ and P , , ~  individually are not constants of the mo- 
tion in the present problem, but there is such a constant of 
the motion (20) for their differences Sp=p2-pl and 
ST= q2 - vl . Starting with this information, let us calculate 
fluctuations in the phase difference and the intersoliton dis- 
tance. To do so, we make use of the techniques described in 
Ref. 3. 

In the semiclassical limit, the operators can be put in the 
form 

where vi,,, Si,C, q C ,  and pi,, are the regular (coherent) 
classical parts, and A qi , A a,,  Ari , and Bpi are operators, 
where these operator increments (i.e., their eigenvalues) are 
assumed small-for example, A q i 9  vi,, (for brevity, we 
omit any special notation from operators). We then have 

We can write similar relations for q ,  Sq ,  r ,  and Sp. 
In the semiclassical limit, we have for the fluctuations in 

the intersoliton phase difference and distance operators AQ 
and Ar (see Ref. 3) 

where qo= q(t=O), ro=r(t=O), Spa= Sp(t-=O), and 
Sqo=Sv(t=O) are the values of these quantities at time 
t=O. 

Equations (B7) and (B8) for two interacting solitons take 
account of interference between the noise sources associated 
with each, so one can only speak of their joint effects on 
fluctuations. This distinguishes our approach from the treat- 
ment given in Ref. 3, where the contribution of each soliton 
to the difference in fluctuations (Ar2(t)) or (Acp2(t)) was 
identified. Analysis of (B7) and (B8) is difficult in the gen- 
eral case, so we assume that Spa= 0, 0, p= 0, ie., 
@(O) = 0 [see (27)], corresponding to the oscillatory mode of 
soliton interaction: 
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where 

Even with the assumptions made above, it is clear from (B9) 
and (B10) that there is a nonvanishing contribution to the 
fluctuations Ar( t )  due to the terms drldn and drld(8po),  
with similar considerations for the fluctuations A q .  

We consider the special case in which 4 qcvt  = 2 m, i.e., 
we are only interested in the behavior of fluctuations over a 
time corresponding to the oscillation period To,, [see (30)l. 
Then both the distance between solitons and their phase dif- 
ference are constants of the motion [as are the number of 
photons and momentum of each soliton taken individually; 
see (3 I)], so from (B9) and (B10) we have 

This approximation corresponds to the elastic limit of soliton 
interaction. Hence, we have for the mean squared fluctua- 
tions 

where we have assumed all fluctuations to be initially inde- 
pendent. The measurement errors in the amplitude and mo- 
mentum differences between the two solitons can then be 
estimated to be 

Further, in the interests of brevity, we calculate the num- 
ber of photons only for quantum nondemolition measure- 
ments. Noting that (771,2)cmn,,2 [see (17)], we obtain 

Our final result is therefore 

( ~ ~ : ( t ) ) + ( ~ $ ( t ) ) a 1 6 ~ ; t ~ ( ( ~ v : ) r n e a s + ( ~ ~ i > )  

+ 1 6 p ; t 2 ( ( A p : ) + ( A p i ) ) .  

This yields our conclusion. 
To obtain quantum nondemolition measurements of the 

number of photons n l  in the signal soliton, it is necessary 
that [see (B 17)] 

The latter equation for ( A  8;) shows that we are dealing 
with nonideal quantum nondemolition measurements, since 
there is an additional source of noise associated with mo- 
mentum fluctuations (Ap: ) .  Nevertheless, satisfaction of 
(B19) implies the validity of (B18) as well. Note that the 
converse is not always true, since phase fluctuations of the 
probe field can also result from fluctuations in the number of 
photons, as occurs when self-interaction effects develop. 
Based on (B18), it would therefore be more correct to be 
discussing the feasibility of stabilizing the noise (phase or 
photon numbers) of two coupled solitons. On the other hand, 
this kind of stabilization is also possible through quantum 
nondemolition measurements of the number of photons in 
the signal soliton (see, for example, Refs. 3 and 17). 

In order for quantum nondemolition measurements to be 
of high quality (close to ideal), we must have 

which is easily derived from (B19), i.e., the signal soliton 
needs to be approximately in a momentum eigenstate (see 
Ref. 3). The better the fluctuations are suppressed, the closer 
we are to ideal quantum nondemolition measurements. These 
fluctuations can in principle be brought to a level lower than 
their vacuum value, for instance by increasing fluctuations in 
the conjugate quantity, the soliton position (as is usually 
done in generating quadrature squeezed light). 

Finally, we note that in the other limiting case [as in the 
derivation of (B9) and (B lo)], in which the distance between 
solitons grows ( v  = 0)  , actual calculations [based on Eqs. 
(21), (22), (B7), and (B8)] show that quantum nondemolition 
measurements retreat farther from the ideal. 

We now briefly examine the feasibility of implementing 
quantum nondemolition measurements of the difference in 
soliton photon numbers via measurements of their phase dif- 
ferences. Mathematically, this statement of the problem is 
better grounded than the approach taken above. 

In fact, in treating interacting solitons, we obtained a 
relationship between their phase differences, amplitudes, po- 
sitions, and momenta [see (21)l. To assess the feasibility of 
implementing qualitatively similar high-precision measure- 
ments, it is convenient to introduce two correlation coeffi- 
cients (see Refs. 24, 27): 
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Here K, specifies the correlation between the measured 
difference in amplitude (photon numbers) at times t = 0 and 
t ,  and it characterizes the degree to which the measured 
quantity [in this case SdO)] is conserved. K2 indicates how 
accurately such a measurement can be made in terms of the 
phase difference in cp(t). For ideal quantum nondemolition 
measurements, we have 

where X is a numerical factor associated with the measure- 
ment process itself. Analysis of the final Eqs. (21) (in the 
Heisenberg picture) shows that in general, implementation of 
quantum nondemolition measurements of the difference in 
photon numbers is far from an ideal case. In the semiclassi- 
cal approximation that we have considered (with p=O, 
4 % v t - 2 ~ ,  and 67,- Sp,-O), it is clear from Eq. (B12) 
that Ap(t)-A(Svo) (the latter term, which is associated 
with fluctuations in Spo, reflects the nonideal nature of the 
quantum nondemolition measurements). Accordingly, 
Svo(t)= Svo(0). 

Note that similar coefficients can also be introduced to 
measure the soliton momentum difference Sp(0) by measur- 
ing the position difference. We must then make the replace- 
ments 811-18~ and rp+r in (B21) and (B22). 

Thus, we see from the foregoing discussion that over a 
period T,,, it becomes possible in principle to conduct quan- 
tum nondemolition measurements of the difference in soliton 
photon numbers [Sv(t) - N2 - NI] by making use of their 
phase differences (see Ref. 25). A more detailed and con- 
vincing discussion of the practical implementation of such 
measurements in an actual experiment would require consid- 
erable further discussion, which lies beyond the scope of the 
present paper. Here we merely note that the present analysis 
hints at the high quality of such measurements in the polar- 
ization characteristics (for the Stokes parameters) of a light 

In closing, let us compare the two approaches to quan- 
tum nondemolition measurements that we have proposed. 
The major difference would appear to be that in the first case, 
where we deal with the number of photons in the signal 
soliton, high-precision measurements can in principle only 
take place over the oscillation period To,, . Undesirable self- 
interaction effects can then be suppressed by special 
means.18 In the second case, such measurements (with other 
than the parameter values adopted above) lose meaning, 
since in practical terms they are made under conditions that 
are far from ideal [by virtue of the functional terms in Eq. 
(2111. 

'M. Wadati, A Kuniba, and T. Konishi, J. Phys. Soc. Jpn. 54, 1710 (1985); 
B Yoon and J. W. Negele, Phys. Rev. A 16, 1451 (1977). 

'B Yurke and H. Y. Potasek, J. Opt. Soc. Am. 6, 1227 (1989). 
3 ~ .  A Haus, R. Watanabe, and Y. Yamamoto, J. Opt. Soc. Am. 6, 1138 
(1989); Y. Lai and H. A Haus, Phys. Rev. A 40,844 (1989); Y. Lai and H. 
A Haus, Phys. Rev. A 40, 854 (1989). 

4A S. Chirkin and A V. Belinskii, Zh. Eksp. Teor. Fiz. 98, 407 (1990) [Sov. 
Phys. JETP 71,228 (1990)l; A V. Belinskii, Zh. ~ k s p .  Teor. Fiz. 103, 1914 
(1993) [Sov. Phys. JEW 76, 947 (1993)l. 

5~ Kh. Abdullaev, S. A Darmanyan, and P. K. Khabibullaev, Optical Soli- 
tons, Springer-Verlag, New York (1993), Ch. VIII; S. A Damanyan, Zh. 
Tekh. Fiz. 61, No. 11, 217 (1991) [Sov. Phys. Tech. Phys. 36, 1321 
(1991)l. 

6 ~ .  N. Elyutin, Usp. Fiz. Nauk 155, 397 (1988) [Sov. Phys. Usp. 31, 597 
(1988)l. 

7V. E. Zakharov and A B Shabat, Zh. $ksp. Teor. Fiz. 61, 118 (1971) [Sov. 
Phys. JETP 34, 62 (1971)l. 

'V. I. Karpman and E. M. Maslov, Zh. ~ k s ~ .  Twr. Fiz. 73,537 (1977) [SOV. 
Phys. JETP 46, 281 (1977)l. 

9~ P. Alodzhants and S. M. Arakelyan, Zh. ~ k s p .  Teor. Fiz. 103,910 (1993) 
[JEW 76, 445 (1993)l. 

10 T. Yajima and M. Wadati, J. Phys. Soc. Jpn. 59, 3237 (1990). 

"s. A Darmanyan and V. J. Rupasov, in Furure Directions of Nonlinear 
Dynamics in Physical and Biological Systems, P. Christiansen, J. Eilbeck, 
and R. Parmentiers (eds.), Plenum, New York (1993). p. 101. 

1 2 ~ .  D. Levenson, R. M. Shelby, M. Reid, and D. E Walls, Phys. Rev. Lett. 
57,2473 (1986). 

' 3 ~  A Maier, Kvant. Elektron. 11, 157 (1984) [Sov. J. Quantum Electron. 
14, 101 (1984)l. 

I4V. S. Afraimovich, in Nonlinear Waves: Strucrure and Bifurcations [in 
Russian], A V. Gaponov-Grekhov and M. I. Rabinovich (eds.), Nauka, 
Moscow (1987); F. M. Zaslavskii and R. Z. Sagdeev, Introduction to Non- 
linear Physics: From the Pendulum to Turbulence and Chaos [in Russian], 
Nauka, Moscow (1988); E M. Zaslavskii, R. 2. Sagdeev, D. A Ushakov, 
and A A Chemikov, in: Nonlinear Waves: Dynamics and Evolution [in 
Russian], A V. Gaponov-Grekhov and M. I. Rabinovich (eds.), Nauka, 
Moscow (1989). p. 84. 

''A V. Belinskii and A S. Chirkin, Kvant. Elektron. 15, 873 (1988) [Sov. J. 
Quantum Electron. 18, 560 (1988)l. 

1 6 ~ .  F. Smimov and A S. Troshin, Usp. Fiz. Nauk 153, 233 (1987) [Sov. 
Phys. Usp. 30,851 (1987)l; M. C. Teich and B E. A Saleh, Usp. Fiz. Nauk 
161, 101 (1991). 

I7Y. Yamamoto and H. A Haus, Rev. Mod. Phys. 58, 1001 (1986); N. Imoto, 
H. A Haus, and Y. Yamamoto, Phys. Rev. A 33, 2287 (1985). 

18 Yu. I. Vorontsov, Usp. Fiz. Nauk 164, No. 1, 89 (1994); V. B Braginskii 

(Braginsky) and F. Ya. Khalili, Rev. Mod. Phys. (1995), in press. 
I9s. Weigert, Phys. Rev. A 43, 6597 (1991). 
20 V. P. Bykov, Usp. Fiz. Nauk 161, 145 (1991) [Sov. Phys. Usp. 34, 417 

(1991)l. 
"B V. Chirikov, "l%e uncertainty principle and quantum chaos," Second 

Int. Workshop on Squeezed States and Uncertainty Relations, May 25-29, 
1992, Moscow, in NASA Conf. Pub., D. Han, Y. S. Kim, and V. I. Mak'ko 
(eds.), Goddard Space Flight Center, Greenbelt, Maryland (1993), p. 317; 
B V. Chirikov, Chaos 1, 95 (1991). 

2 2 ~  Peres, "Quantum chaos and the measurement problem," in Quantum 
Measurement and Chaos, E. R. Pike and S. S. Sarkar (eds.), NATO AS1 
Series, Ser. B, Physics, Vol. 161, Plenum, New York (1987), p. 59. 

2 3 ~  P. Alcdzhants (Alodjants), S. M. Arakelyan (Arakelian), and Yu. S. 
Chilingaryan (Chilingarian), Laser Physics 2, 341 (1992). 

2 4 ~ .  M. Arakelyan, Kvant. Elektron. 20,969 (1993) [Sov. J. Quantum Elec- 
tron. 23, 843 (1993)l; A P. Alodzhants (Alodjants) and S. M. Amkelyan 
(Arakelian), Laser Physics 4, 765 (1994). 

z ~ .  Fabre, E. Giacobino, A Heidmann er al., Quant. Opt. 2, 159 (1990). 
2 6 ~ .  K. Ignatovich, "Classical interpretation of quantum mechanics" [in 

Russian], Joint Institute of Nuclear Research, Dubna, Rep. No. R4-92-389 
(1992); Yu. I. Zaparovannyi, V. V. Kuryshkin, and I. A Lyabis, Izv. Vyssh. 
Uchebn. Zaved., Fiz. No. 3, 80 (1978). 

"AN. Chaba, M. Y. Collet, and D. F. Walls, Quant. Opt. 4, 119 (1992). 

1011 JETP 80 (6). June 1995 A. P. Alodzhants and S. M. Arakelyan 1011 



'*A R Alodzhants, S. M. Arakelyan, and A S. Chirkin, 23. &sp. Tear. Fiz. Wright, Phys. Rev. A 50, 1681 (1994)l. In this case the nonlinearity results 

107,7 (1995) [JETP 81, 7 (1995)l. from interference of N bosonlike two-level atoms, while the linear coupling 
between the wave functions is due to the interaction of the atoms with the 

Note added in proof (May 10, 1995): The analysis presented here of the wave of the classical laser field. 
solutions of the coupled nonlinear quantum Schmedinger equations can also 
be useful for studying atomic solitons [G. Lenz, P. Meystre, and E. M. ~~~~~.~~~d by ~ ~ ~ ~ ~ h ~ k  

1012 JETP 80 (6), June 1995 A. P. Alodzhants and S. M. Arakelyan 1012 


