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A formula for extracting the longitudinal deep inelastic structure function FL from the transverse 
structure function F2 and its derivative dF21d In Q' at small x in the leading order of 
perturbation theory is derived. A detailed analysis is given for new data of the H1 group from 
HERA. The values of FL and the deep inelastic scattering structure function ratio R are 
found for 10-~<x=S2. and Q2=20 G~v'. O 1995 American Institute of Physics. 

For experimental studies of hadron-hadron processes on 
the new powerful LHC collider it is necessary to know in 
detail the values of the parton (quark and gluon) distributions 
of nucleons, especially at small values of x. The basic infor- 
mation on the quark structure of nucleons is extracted from 
the process of deep inelastic lepton-hadron scattering. Its dif- 
ferential cross-section has the form 

d 2 a  2?a:, 
-= 
dxdy -;izr [( 1 -Y +Y~/~)FZ(X,Q' )  

where F~(X,Q') and FL(x,Q2) are the transverse and longi- 
tudinal structure functions, respectively. The longitudinal 
structure function FL(x,Q2) and the ratio 

are good QCD characteristics because they are equal to zero 
in the parton model. Moreover, the value of the structure 
function F 2 ,  whose data are usually deduced from the ex- 
periment, depends essentially on the corresponding values of 
FL (or R). We note that the value of the structure function FL 
(or the ratio R) is very important in the case of polarized 
structure functions, which are deduced from the measured 
asymmetry of the cross-sections of polarized leptons and 
nucleons. 

The modern deep inelastic scattering experimental data 
(see the review of Roberts and whalleyl) are not accurate 
enough to determine FL(x,Q2) [or R(x,Q')], In addition, at 
small values of x the data for the structure function FL are 
not yet available, as they require a rather involved procedure 
(see, e.g., Cooper-Sarkar et al.'). 

In the present paper we study the behavior of FL(x,Q2) 
at small values of x, using the new H1 data and the method3 
of replacement of the Mellin convolution by ordinary prod- 
ucts. 

We introduce the standard parametrizations of the singlet 
quark s (x,Q2) and gluon g(x,Q2) parton distribution1) (see, 
Martin et a1.3 

with the Q' dependent parameters in the r.h.s. We use a 
similar small-x behavior for the gluon and sea quark parton 
distribution that follows from the form of the kernel of 
Gribov-Lipatov-Altarelli-Parisi (GLAP) equation (see also 
the recent fits of experimental data4). 

The "conventional" choice is S=O, which leads to non- 
singular behavior of the parton distribution (see the DA fit in 
Ref. 4) when x+O. Another value, +(1/2) was obtained5 as 
the sum of the leading powers of ln(1lx) in all orders of 
perturbation theory (see also the DL fit4). Recent NMC data6 
agree with the small values of 6. This choice corresponds to 
the present experimental data for pp and pp total cross- 
sections (see Ref. 7) and the model of the Landshoff and 
Nachmann pomeronS with the exchange of a pair of nonper- 
turbative gluons, yielding 6=0.086. However, the new H1 
datag from HERA prefer 8-0.5. Using the GLAP equation 
some attempts1' were made to obtain agreement between the 
results of NMC at small Q' and the H1 group at large Q'. 

1. Assuming Regge-like behavior for the gluon and sin- 
glet quark parton distribution [see Eq. (2)], we obtain the 
following equations for the longitudinal structure function 
FL and for the Q' derivative of the structure function F:): 

where ~ f , , ( a )  and y7 (a) are the longitudinal Wilson coef- 
s!' 

ficients and combinattons of the transverse Wilson coeffi- 
cients and anomalous dimensions, respectively, of the 7 
"moment" of the Wilson operators (i.e., the corresponding 
variables extended from integer values of the argument to the 
noninteger values), and 

=x-*s"(x,Q2), Here 6, is the coefficient which depends on the process and 
on the number of quarks f: 6,=5/18 for the ep collision, 

g ( x , ~ ~ ) = A , x - " l  -x)'g(l+ y g x ) = ~ - * ~ ( ~ , ~ 2 ) ,  (2) when f=4. 
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Further, we restrict the analysis to the leading order of 
perturbation theory [where F2(x ,Q2)  = 4 s ( x , Q 2 ) ,  the 
BP,,,(a) are the one-loop longitudinal Wilson coefficients 
c u ( Q 2 ) B ~ , ,  and the f7p(a) are equal to the leading order 
anomalous dimensions and to the case 6=0.5 which 
corresponds to a Lipatov pomeron, which is supported by the 
H1 data. Taking into account the case S=O, which corre- 
sponds to the standard pomeron and the extension of this 
analysis to the next order of perturbation theory require ad- 
ditional investigations. 

For the gluon parts from the r.h.s. of Eq. (3) to 0 ( x 2 )  we 
have the form 

Equation (3) may be represented in the form 

Extracting the gluon distribution from Eq. (6) and sub- 
stituting it into Eq. (5), we obtain the equation 

where 

By analogy with Eq. (4) for the quark part from the r.h.s. 
of Eq. (7). to 0 ( x 2 )  we have 

which leads to the following equation for the longitudinal 
structure function 

where t s = i i , 1 1 2 i i , 3 / 2 .  
Using the exact values of the Wilson coefficients and the 

anomalous dimensions, we obtain 

Note that the arguments of the transverse structure func- 
tion and its derivative from the r.h.s. of Eq. (9) are different. 
This is not convenient because the experimental data are 
known (see Refs. 9, 11) for both variables in a similar range 
of x .  To overcome this problem we note that to 0 ( x 2 )  the 
quark part from the r.h.s. of Eq. (7) may be represented as a 
sum of two terms like Eq. (4), with some coefficients and 
shifts of arguments. Choosing the shifts as 1 and r ,  ' ,  we can 
write the following representation for the quark part: 

where 

with i f , , =  B&,A yyg. 
Using the exact values of the Wilson coefficients and the 

anomalous dimensions, we find the following expression 
from Eqs. (7)-(10): 

2. Let us analyze the predictions inspired by Eq. (11). 
We use the values of the structure function F2 and its Q2 
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FIG. 1. The longitudinal structure function F,(x,Q') at Q2=20 Gev2. The 
black circles indicate the values extracted with the help of Eq. (11). Only the 
statistical errors are presented. The curves represent different parametriza- 
tions of F,(x,Q')."'~.'~ The GRV curve is the leading-order parametriza- 
tion, and the MR parametrization is given in the deep inelastic scattering 
renormalization scheme. The AKMS curve is the solution of the Lipatov 
equation and is used at e 2 = 3 0  G~v'. 

derivative found by the H1 collaboration (see Refs. 9 and 11, 
respectively). The extracted FL(x,e2)  and R(x,e2)  values 
are shown in Fig. 1 and Fig. 2, respectively. These values are 
compared with theoretical predictions. As in Ref. 11, we 
used the hypothesis concerning the approximate linear In e2 
dependence of F2 at small x as well as the value of QCD 
scale AE = 200 MeV. As can be seen in the above fig- 
ures, we found the R(x ,Q~)  values to be close to the GRV 
predictions12 only.3) The predictions of other groups (see 
Refs. 4, 13) lead to smaller R(x,e2) values at x- lov4. Note 
that all groups also predict smaller FL(x,e2) values for 
x~ 1 0 ~ ~ .  In addition, as can be seen from Fig. 2, there is also 
disagreement between the R(x,e2) values, which were used 
by the H1 group in Ref. 11, and the values following from 
Eqs. (1) and (11). This is due to the very large values of 
d ( ~ , ( x , ~ ~ ) ) l ( d  In e 2 )  at x-10-~ found in Ref. 11, which 
show themselves also in comparison between the gluon dis- 
tribution at x ~ 1 0 - ~  and the corresponding theoretical pre- 
dictions (see Refs. 11 and 14). This disagreement may be 
overcome by including the next-to-leading order corrections 
to our equations, and this requires additional investigations. 

Note that the basic contribution to FL(x,e2)  [and 
R(x,e2)] is given by the d [ F , ( x , ~ ~ ) ] l ( d  In e 2 )  part. How- 
ever, the contribution from F ~ ( X , Q ~ )  increases the values of 
FL(x,Q2) from several percent at x - 1 0 ~ ~  to 30% at 
x-2. 

FIG. 2. The same as in Fig. I .  but the R ( X , Q ~ )  values are extracted with the 
help of Eq. (1). The white circles indicate the R(x,Q')  values used by HI 
group." The symbols A, V and are represented in the BCDMS (Ref. IS), 
CDHSW (Ref. 16) and SLAC (Ref. 17) data, respectively 

In summary, we have presented Eqs. (9) and (11) to ex- 
tract the longitudinal structure function FL at small x from 
the structure function F2 and its e2 derivative. These equa- 
tions make it possible to determine FL (and R) indirectly. 
This is important since the direct extraction of FL from ex- 
perimental data is a cumbersome procedure (see Ref. 2). 
Moreover, the fulfillment of Eqs. (9) and (1 1) in deep inelas- 
tic scattering experimental data is a check of perturbative 
QCD at small values of x. The addition of the next-to- 
leading contribution to Eqs. (9) and (11) can be done by 
analogy with Ref. 3. 

Equation (11) was used in the analysis of H1 data from 
HERA. The values of FL(x,e2)  and R(x,e2) were found 
for small values of x ( ~ o - ~ s x s ~ - ~ o - ~ ) .  The extension of 
this analysis to the case 8-0, which is in agreement with the 
NMC data and the evaluation of the next-to-leading order 
contributions, requires additional investigations. 
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tional Association for the Promotion of Cooperation with 
Scientists from the Independent States of the FSU (INTAS 
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')we use the parton distribution multiplied by x and neglect the nonsinglet 
quark distribution at small x. 

')1n contrast to the standard case, below we use a ( e 2 )  = a,(Q2)/4.rr. 
3 ) ~ o  find the values of F,(X,Q~) predicted by the GRV approach, we use the 

values of g ( x , ~ 2 )  and F,(x,Q') from Ref. 12 and then the equation from 
Ref. 3 to extract F L  from g and F,. The values of R ( X , Q ~ )  are obtained 
from the FL and F, via Eq. (1). 
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