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The dynamics of a 2D topological soliton (magnetic vortex) in an easy-plane Heisenberg 
antiferromagnet in an external magnetic field H is analyzed. The field is assumed to be 
perpendicular to the easy plane. Effective equations are written for the coordinates of 
the vortices in the vortex gas which exists in the 2D antiferromagnet above the point of the 
topological phase transition. The rms velocity of the vortex motion is calculated. The components 
of the dynamic structure factor of the 2D antiferromagnet in a magnetic field are calculated. 
It is predicted that characteristics of the soliton peaks (their positions and widths) in the dynamic 
structure factor will be strong functions of the magnetic field. O 1995 American Institute 
of Physics. 

1. INTRODUCTION 

Two-dimensional magnetism has attracted new interest 
in recent years. One reason is progress in the fabrication of 
high-quality samples of layered magnetic materials, includ- 
ing intercalated compounds1 and artificial quasi-2D spin 
systems-magnetic lipid layem2 A second reason is that im- 
portant experimental information has been acquired by the 
methods of inelastic neutron scattering, antiferromagnetic 
resonance, and NMR. A third reason is the existence of 2D 
spin subsystems in high-T, superconductors. Two- 
dimensional magnetic materials are interesting from the 
theoretical standpoint because nonlinear excitations- 
topological solitons of the magnetic-vortex type-contribute 
substantially to their thermodynamic and high-frequency 
properties. The soliton approach to the thermodynamics of 
quasi-2D magnetic materials starts from the idea of a gas of 
vortices of finite density. This approach was apparently first 
taken in a paper by Kosterlitz and Thouless? but it is only in 
recent years that this approach has become particularly 
popular.4-'2 (We recall that the familiar contribution of kink 
solitons to the thermodynamics of quasi-1D magnetic mate- 
rials has been under study for nearly 20 years now; see Refs. 
13- 15 and some  review^.'^.'^) 

The properties of solitons (magnetic vortices) are more 
complex than those of 1D solitons (kinks) and have received 
considerably less study. The presence of vortices in an easy- 
plane magnetic material determines the specific 
(BerezinskiI-) Kosterlitz-Thouless topological phase 
tran~ition.'~'~ It is assumed that bound vortex-antivortex 
pairs exist at sufficiently low temperatures. As the tempera- 
ture is raised, the rms distance in the pair increases in pro- 
portion to (T,- T)-'I2, and at a certain T,, the "temperature 
of the Kosterlitz-Thouless transition," the pairs dissociate. A 
gas of quasifree vortices exists in the system at TaT, .  As 
these vortices move along with the hydrodynamic flows in 
the medium, they make a specific contribution to the re- 

sponse function of the magnetic material, forming the so- 
called central peak in the dynamic structure factor. This con- 
tribution was calculated in Refs. 6-8 for the case of 
ferromagnets, in Ref. 11 for in-plane vortices in an antifer- 
romagnet, and in Ref. 12 for both in-plane and extraplanar 
vortices in an antiferromagnet. An antisymmetric Dzy- 
aloshinskil interaction was also incorporated in the latter pa- 
per. Comparison with numerical s im~lat ions '~"~ shows that 
the dynarnical properties of extraplanar vortices in antiferro- 
magnets and ferromagnets are quite different from those 
which have been discussed. These differences should be re- 
flected in the mean velocity of the vortex gas and thus in the 
nature of the vortex contribution to the dynamic structure 
factor. 

In the present paper we analyze the dynamics of mag- 
netic vortices and ensembles thereof in a classical easy- 
plane, weakly anisotropy antiferromagnet, taking account of 
the Dzyaloshinskii interaction and an external magnetic field 
H oriented perpendicular to the easy plane. We calculate the 
rms velocity of the vortices and their contribution to the 
dynamic structure factor. It turns out that an external mag- 
netic field is a factor of fundamental importance. It signifi- 
cantly changes the nature of the vortices and also the shape 
and position of the central peak. A calculation shows that the 
vortex velocity and the associated width of the central peak 
are significantly higher in an antiferromagnet than in a fer- 
romagnet, for given parameter values, and they furthermore 
depend strongly on H. If the field is sufficiently weak, on the 
other hand, the dynamics of the gas of vortices is governed 
by the viscous slowing of the vortices. [The situation here 
stands in contrast with that in a ferromagnet. In that case, the 
so-called gyroforce plays a leading role (more on this be- 
low), and it is not a matter of fundamental importance to take 
the slowing of the vortices into account]. The dynarnical 
characteristics of the vortex gas depend strongly on the na- 
ture of the relaxation term in the equation for the antiferro- 
magnetism vector. 
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2. MODEL 

We consider an ordinary two-sublattice model of an an- 
tiferromagnet. We replace the magnetic moments of the su- 
blattices, MI and M2, IMII= (M21 =Mo, with some normal- 
ized vectors: the magnetization vector m and the 
antiferromagnetism vector 1: 

These vectors are related by 

Under the assumption Iml+lll-l (which is valid for 
weak magnetic fields H e  He and weak Dzyaloshinskii inter- 
actions: HD4H, ,  where H, and HD are the exchange field 
and the field of the Dzyaloshinskii interaction), the energy 
density of an antiferromagnet is19 

Here e, is a unit vector along the hard axis of the crystal; Mo 
is the saturation magnetization; S=He12Mo and a are the 
constants of uniform and nonuniform exchange; respectively, 
p > 0 is the anisotropy constant; h = HIMo, d =  2HDlMo is 
the Dzyaloshinskii interaction constant; and a is the lattice 
constant. 

The term with d is characteristic of the purely easy-plane 
case. For an anisotropic basal plane, however, there can be 
other invariants of the Dzyaloshinskii interaction, of the type 
Dijmilj with a tensor D i j f  deijk(eJk. We will discuss their 
role below. In writing the energy density in the form in (2), 
we omitted terms Kp'm;,6'l2 by virtue of the conditions 
Iml+lll, m2+12= 1. 

To study the nonlinear dynamics of an antiferromagnet 
we go over to effective equations for the vector I on the basis 
of a generalized a model of the n field.19-22 It is convenient 
to use angular variables for the vector 1: l,=cos 8, 
l,+ il, = sin 8 exp(iq5). If we ignore dissipative processes, 
we can find equations of motion from the Lagrangian 

The magnetization vector m can be expressed in terms 
of I and d Ydt. It is given by the expression 

In these equations, c = g ~ ~ @ / 2  is a characteristic 
velocity, which is the same as the minimum phase velocity 
of spin waves; g is the gyromagnetic ratio; 1, 
=lo( 1 + H'/H;)- is a characteristic magnetic length; 

lo=(dp)"2 and b=/3(l+d2/6@)1'2 is an effective anisot- 
ropy constant, renormalized by the Dzyaloshinskii interac- 
tion. The characteristic field Ho= M ~ ( & Y ) ~ ' ~ / ~  is expressed 
in terms of the anisotropy and exchange constants, like the 
field of the spin-flop phase transition in an easy-axis antifer- 
romagnet. 

At H=O the dynamics of the magnetization of an anti- 
ferromagnet is Lorentz-invariant with a characteristic veloc- 
ity c. A magnetic field cause changes in not only the static 
energy but also the dynamic properties of the antiferromag- 
net. For a field H directed perpendicular to the easy plane, 
this circumstance determines the onset of a gyroscopic term 
proportional to g~(d+ld t )s in2  8 in the Lagrangian. This 
term destroys the Lorentz invariance [in a ferromagnet the 
situation is fundamentally different: the leading dynamic 
term in the Lagrangian, ~ ( 1 - c o s  B)(d+ldt), is of a gyro- 
scopic nature, and terms with (d61dt)2 and ( d + ~ t ) ~  are un- 
important]. According to the model in (2), the Dzyaloshinskii 
interaction is manifested only in static characteristics, 
namely, in the formula for m and in the renormalization of P. 
However, gyroscopic terms can arise in the Lagrangian of an 
antiferromagnet not only because of an external magnetic 
field but also as the result of certain types of Dzyaloshinskii 
intera~tion.~~-~'  The energy of the Dzyaloshinskii interaction 
is determined by a term which is linear in the components of 
m and which has an odd power of the components of I. It can 
be written in general as 

where the tensor Dij is determined by the symmetry of the 
antiferromagnet. The contribution to the equilibrium value of 
m for this form of wD is given by 

It is easy to see that for Dij=deijk(eJk this expression be- 
comes (4). When the Dzyaloshinskii interaction is taken into 
account, a dynamic increment Dikeijplilk(dlp1dt) arises in 
the Lagrangian. In terms of angular variables, this increment 
can be written 

(see Ref. 25 for more details). For Dij= d€ijk(e,)k , this ex- 
pression has the form of a total time derivative, and it does 
not affect the form of the equations of motion for the angular 
variables. For several antiferromagnets with a nonantisym- 
metric Dzyaloshinskii interaction DijZ d ~ , j ~ ( e , ) ~ ,  however, 
this term is important. For example, this term causes a pro- 
nounced change in the nature of the motion of 1D solitons 
(kinks) in an an t i fe r r~ma~net .~~.~ '  However, the effect of this 
term on the dynamics of vortices turns out to be unimportant, 
as we will see below. In particular, this effect is not mani- 
fested in the effective equation of motion of the vortices, 
(23). 

In the dissipationless limit, the system has as integrals of 
the motion the energy of the magnetic material E and the 
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momentum of the magnetization field P. From the expression 
for the Lagrangian, (3), we find P=PLI +Pg , where 

Here PL, is the ordinary Lorentz-invariant term, and the gy- 
roscopic term P, is due to the magnetic field. This expression 
does not have any singularities associated with the fact that 
4 is not differentiable as r+O and 8 t 0  or .rr (the circum- 
stance that 4 is not differentiable was discussed in Ref. 26). 

In the case of a steady nonuniform state of the antifer- 
romagnet such as 8= 7~12, 4=kr,  the term P, gives the anti- 
ferromagnet a nonzero momentum: P= kgH a a  M ~ S I  c2, 
where S is the area of the 2D antiferromagnet. This behavior 
is characteristic of superfluids which can be described by a 
complex order parameter *= 1 dexp(i 4 ) .  The momentum 
density of the superfluid motion is given by the familiar ex- 
pression p = l ~ 2 ~ 4 = p s v , ,  where p, is the density of the su- 
perfluid component and v, is its velocity. By virtue of the 
similarity of these expressions, one can say that there is a 
fundamental analogy between superfluid systems and easy- 
plane magnetic materials (this analogy has been discussed 
for a f e r r ~ m a ~ n e t ~ ~ , ~ ~ ) .  Using this analogy P,, we would 
naturally associate the quantity p,v, with the magnetization 
density, and p,v?/2 with the energy density. Consequently, 
the quantity ptFM = 2 a a ~ ; ( ~ H l c ~ ) ~  = 8aH2/c26 repre- 
sents the density of the superfluid component, p,, for the 
dynamics of an antiferromagnet. This analogy between an 
antiferromagnet in an external field and superfluid systems is 
manifested in an analysis of the dynamics of vortices (more 
on this below). For an antiferromagnet, in contrast with a 
ferromagnet, the quantity pyM is proportional to H2 and 
vanishes if there is no magnetic field. 

Incorporating dissipation disrupts the integrals of the 
motion E and P. When dissipation is taken into account, the 
Lagrange equations 6L/6B=0, 6LISq5=0 are replaced by 
6LISB- 6 ~ 1 6 6 = 0  and GLIS~~-SQIS~=O, where Q is the 
dissipation function of the magnetic material. The rate of 
energy dissipation, dEldt, of a soliton is equal to twice the 
dissipation function Q calculated from the soliton solution. 
In the limit of a low vortex velocity we can use immobile 
solutions, replacing r by r-vt in them, where v is the vortex 
velocity [see Eq. (10) below]. The viscous drag force acting 
on a vortex moving at a constant velocity v is given in the 
low-velocity limit by 

where 11 is the coefficient of viscous drag. Its value is inde- 
pendent of v in the limit v+O. 

A Hilbert dissipation function, whose density is propor- 
tional to (d is ordinarily used to describe magnetic 
relaxation. In some recent papers by ~ a r ' ~ a k h t a r ? ~ - ~ ~  how- 
ever, it was shown through an analysis of the dynamical 

symmetry of the magnetization field that the dissipation 
function of magnetic materials is more complicated. It 
should contain terms differing in nature, specifically an ex- 
change term Q, and a relativistic term Q, : 

An exchange dissipation function is chosen in order to 
achieve the dynamical symmetry of the exchange interaction, 
specifically, to conserve the resultant magnetization of the 
magnetic material. For an antifemornagnet this approach has 
the consequence that the density of the exchange dissipation 
function contains two terms?' 

At low soliton velocities, only the first term is important, and 
q, is given by 

he 
ye=?; {(V6- sin 0 cos e ) 2 + [ ~ )  sin e 

where A, and X", are exchange relaxation constants, and the 
dot denotes the time derivative, here and below. The fairly 
high symmetry of the exchange interaction has the conse- 
quence that gradients of the variables 8, 4 ,  6, and 4 appear 
in the dissipation function, and there is no dissipation in the 
case of a uniform rotation of 1 (Refs. 29-31). 

Relaxation processes of a relativistic nature (due to 
spin-orbit and dipole-dipole interactions) are incorporated 
in the dissipation function Q, . In principle, the symmetry of 
these interactions is lower than that of the exchange interac- 
tions, and it allows us to write Q, as a quadratic form in 6 
and 4 which does not contain gradients. However, in the 
case of a purely uniaxial magnetic material (this approxima- 
tion corresponds to the assumption that there is no anisotropy 
in the basal plane; it is the one ordinarily used in an analysis 
of vortices), this function must conserve the z projection of 
the magnetization. Bar'yakhtar s h o ~ e d ~ ' , ~ ~  that this function 
should accordingly contain no terms with d2. For the linear 
approximation, this assertion was made even earlier, by Hal- 
perin and ~ o e n b e r ~ ? ~  who constructed dynamic equations 
for the spin density of planar magnetic materials from sym- 
metry considerations on the basis of the Goldstone theorem 
and the Adler principle. The form of Q, and Q, agrees with 
calculations of the magnon damping coefficients in an easy- 
plane antiferromagnet. (A Hilbert dissipation function leads 
to a different dependence of the magnon damping coefficient 
on the magnon quasimomentum.29-32) 

We also note that relaxation terms containing mixed de- 
rivatives of the magnetization vector with respect to the co- 
ordinates and the time have been used by Pokrovskir and 
~hveshenko' to describe the dynamics of an ensemble of 
vortices in a ferromagnet. The approximation of a purely 
uniaxial magnetic material may be an unjustified idealization 
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in a description of dissipation processes, since it ignores (for 
example) the anisotropy in the basal plane, which always 
exists in reality, or magnetoelastic relaxation processes. In 
addition, it is interesting to make a comparison with the re- 
sults of papers which incorporate the Hilbert terms. We ac- 
cordingly choose a relativistic dissipation function in the 
form 

When we set A,=A, this expression becomes the ordinary 
Landau-Lifshitz or Hilbert dissipation function. According 
to Refs. 30 and 32, the case A,=O corresponds to the model 
of a purely uniaxial antiferromagnet. As we will see, the 
results of the analysis depend strongly on the form of the 
dissipation functions. In particular, the case A, =O differs in a 
fundamental way from a case with any A,#O. The quantity 
77, has a finite value only in the case A,=O; for A,#O, a 
logarithmically divergent term arises in 77,. This term was 
ultimately dropped in a paper by ~ u b e r . ~  In the ferromagnet 
studied in Refs. 4-7, the viscosity coefficient appears in an 
expression for the vortex velocity in the combination 
G'+$, where G is the gyrotropy constant (more on this 
below). Since 77 contains the small dissipation constant A,, 
while G does not contain small parameters, this is not a 
meaningless assumption for a ferromagnet, even if there is a 
weak (logarithmic) divergence in 7. For an antiferromagnet 
we have G m H  (more on this below), and the ratio A,/G may 
not be small at small values of H. Whether there is a diver- 
gence (even a logarithmic one) in either the effective mass of 
the vortex or the viscous drag coefficients helps determine 
the nature of the time-varying motion of the vortex (see the 
following section of this paper). 

3. STRUCTURE AND DYNAMICS OF VORTICES 

The structure of a vortex is determined by the equations 
for 0 and 4 which follow from (3). For an immobile vortex 
the solution is 

where $o=const, x and r are polar coordinates in the plane 
of the magnetic material, x y ,  and the quantity v= + 1,+2, ... 
determines the topological charge of the vortex [more pre- 
cisely, one of its topological charges-the so-called circula- 
tion of the vortex-since vortices in Heisenberg magnetic 
materials are described by elements of the group of relative 
homotopies .rr2(S2,s') = Z X  Z; Ref. 281. The function 8(O)(,$) 
satisfies the ordinary differential equation 

1 dO(0) 
-sin O(O) cos 0(0)( l  - $) 

d t 2  +T.-- (11) 

with the natural boundary conditions 8(')(0)= 41 -p)/2 and 
hO)(w) = ~ 1 2 .  This equation can be solved numerically by the 
shooting method.I9 Here the quantity p = * 1, the so-called 
polarization of the vortex, determines the second topological 

charge of a vortex. The energy of an immobile soliton, Eo,  
diverges as the logarithm of the area of the antiferromagnet, 
S, per vortex. (We recall that for vortices there is a logarith- 
mic divergence of the energy of a soliton as a function of the 
area.) For a vortex with Iv (= 1, the calculation carried out in 
Ref. 19 yields ~ ~ = ( l l 2 ) . r r a a ~ i  ln (5 .67~11~) .  The prop- 
erties of immobile vortices were described in detail in Refs. 
19 and 28. 

Constructing a solution to describe a moving vortex is a 
considerably more complicated problem. For a ferromagnet, 
no exact solution of this problem is known even in the case 
of a low vortex velocity. It has simply been pointed out4 that 
the motion of a vortex in a ferromagnet is necessarily accom- 
panied by the onset of a nonzero gradient of q5 (or by a 
deformation of the spin flux in the terminology of Ref. 27) 
far from the vortex: V+k=const-v as 1rl-w. The unique 
relationship between V 4  and v leads to motion of the vortex 
when 4 is nonuniform for any reason. In particular, this situ- 
ation determines the nature of the motion of an ensemble of 
vortices: the resultant value of Vq5 created by a system of 
vortices near some selected vortex determines the velocity of 
this vortex. It is this mechanism which determines the rms 
velocity of an ensemble of vortices4 and thus the width of the 
central peak in the correlation functions in an easy-plane 
f e r r ~ m a ~ n e t . ~  

There is no problem in constructing a moving solution 
for a vortex for a Lorentz invariant model of an antiferro- 
magnet. It is sufficient to carry out a Lorentz transformation 
of the immobile solution, (10). A Lorentz contraction of the 
vortex core arises in the process, as does a distortion of the 
field d r )  far from the vortex: 

(we are assuming that the vortex is moving along the x  axis). 
The energy of a moving vortex in the case H = 0 is given by 
E = E ~ I  d m  or E = d m .  In other words, the 
effective mass of the vortex, m, = ~ ~ l c ~ ,  has the same loga- 
rithmic divergence as the energy of an immobile vertex, Eo. 
For the case of interest, with H #0, the question is consider- 
ably more complicated. In order to construct a vortex ther- 
modynamics of an antiferromagnet in the spirit of Refs. 4-6, 
we need to write an effective equation of motion for the 
vortex coordinates X,, where a specifies the vortices making 
up the ensemble or gas of interacting vortices. Equations of 
this type for vortices in a ferromagnet have been found by 
various methods: through the use of equations of motion for 
0 and 4 (Ref. 5), from a force balance condition: and 
through the use of a soliton perturbation theory28 in the spirit 
of Ref. 34. These methods can also be applied to antiferro- 
magnets. Using the same assumptions as in Refs. 4,28 and 5, 
one finds that they lead to a system of first-order equations 
for X,, which describe the viscous motion of vortex a under 
the influence of the other vortices. To construct this equation 
we follow Ref. 5. 

Using the equations of the preceding section, we write 
the dynamical equations for the angular variables 8(r,t) and 
&r,t) of the antiferromagnet: 
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El$-sin 8 cos 8[ (V~,h)~-  $ ( ( 2 ) 2 - ' 2 g H  2) 

- V V g sin 8 +$V4)2 ( d4 1 
d 4  

-rV+V - sin 28--- A sin2$ . 
at 

d4 ] (13) 
2 at 

To study dynamical multivortex solutions of system (12) 
and (13), we work from the approximation of a low-density 
vortex gas. We seek N-soliton solutions approximately in the 
form5 

cos 8(r,t) = 2 cos d0)(r-  ~ , ( t ) ) ,  
a= 1 

(15) 

where 4(O) and 8 ( O )  are static one-vortex solutions of (lo), 
and X,(t) determines the coordinates of the centers of the 
vortices. We multiply Eq. (12) by dm$, multiply Eq. (13) by 
dm+, add the results term by term, and integrate over the area 
occupied by the vortices. As a result we find the effective 
equations of motion which we need for the ensemble of vor- 
tices. In the approximation used in Refs. 4 and 5, this equa- 
tion can be written 

Formally, the term on the left side of Eq. (16) is an 
inertial term with a Lorentz-invariant mass Eolc2. Terms of 
this sort arise in (16) because of terms of the type $01dt2 and 
$@dt2 in Eqs. (12) and (13). There are no such terms for a 
f e r r ~ m a ~ n e t . ~ , ~  We will discuss the role played by inertial 
terms below; at this point we move on to an analysis of the 
terms on the right side of (16), which will be used to describe 
the dynamics of the ensemble of vortices. 

The first term on the right side of Eq. (16) is a gyro- 
scopic force acting on a given vortex. The gyroscopic con- 
stant for a vortex in an antiferromagnet is 

This expression is quite different from GFM. In the first 
place, the gyrotropy constant is proportional to only one of 
the two topological charges of a vortex (not to the product 
vp, as in a ferromagnet). Second, the gyroscopic force in an 
antiferromagnet exists only in a magnetic field. The value of 
GAFM is, for all reasonable field values, smaller than that in a 
ferromagnet: GAFM=GF,(4HIH,) < G,, . (We recall that all 
the calculations in the present paper are being carried out 
under the approximation H 4 H e  ; furthermore, the antiferro- 
magnetic order is disrupted at a value of the field H above 
the exchange field He .) Since the constant GAFM is small and 
vanishes as H--+ 0, there are features of the dynamics of an 
ensemble of vortices in an antiferromagnet which differ from 
those in a ferromagnet (more on this below37). 

The second term on the right side of (16) contains the 
value of V+ at the position of vortex a. This value is deter- 
mined by the positions of the other vortices: 
V~X,)=C~+~V$(O)(X,-X~).  Taking the explicit form of 
the function +(O) into account [see (lo)], we easily see that 
this term has the meaning of a potential force F: which is 
exerted on vortex a by all the other vortices. This term can 
be written 

where the vortex interaction Hamiltonian Bi, has the form 
of the interaction Hamiltonian of a 2D Coulomb gas. Finally, 
we write the force Fa ,  acting on vortex a, as follows: 

where the quantity E, is analogous to an electric field which 
is acting on a given charge (vortex) and which is produced 
by the other vortices. 

The last term in Eq. (16) is the viscous drag force in (7). 
The viscosity coefficient 

consists of two terms, 77, and 'J , ,  which are of relativistic 
and exchange origin, respectively, and we have 

Values have been found for the coefficients y, and y2 by 
evaluating the integrals, using the specific expression for 
8 (r) found through a numerical integration of Eq. (11). The 
results are y,=3.003 and y2=0.75 1. 

The choice of the exchange dissipation function in the 
particular form in (8) is a point of fundamental importance. 
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Terms of the type d2(v+12, (v+)~ ,  etc., may lead, in a cal- 
culation of the vortex viscosity coefficient, to integrals which 
diverge as r+ 0. Only when they are present in the combi- 
nation in q,  in (8) do we obtain a finite expression for ?I,. 

The terms on the right side of Eq. (16) thus have a clear 
physical meaning: They are forces acting on a vortex: the 
gyroscopic force Ft, the external force Fa, and the viscous 
drag force - fia . 

The condition 

determines the relationship between v and Fe. It describes 
the viscous (overdamped) motion of a vortex. This is the 
condition used in all papers of which we are aware that de- 
scribe the dynamics of a vortex gas and calculate the rms 
velocity of vortices. 

For an antiferromagnet, the equations of motion for 6 
and + contain second derivatives with respect to the time. 
Consequently, an inertial term arises in Eq. (16). Actually, 
however, the inertial properties of vortices in a ferromagnet 
or antiferromagnet at HZ0 cannot be described with this 
term. As Ivanov and Stephanovich have shown,35 the ansatz 
in (14) and (15) is insufficient for describing the inertial 
properties of 2D solitons in magnetic materials whose La- 
grangian has gyroscopic terms. The ansatz must contain in- 
crements in 6 and + proportional to the soliton velocity. 
These increments, 6 and cp, are determined by the solution of 
a system of linear equations. The condition under which this 
system has a solution consists of equations for Xa(t). These 
equations determine the mass of a soliton in a ferromagnet or 
the increment in the Lorentz-invariant value of the mass, 
Eel c2, in an antiferromagnet. An equivalent approach was 
developed by Wysin et al. (see their paper in the collection 
of Ref. 36). This approach was taken in Ref. 35 to calculate 
the effective mass of a localized 2D soliton in a ferromagnet. 
An attempt to use this method to calculate the mass of a 
vortex was made in Ref. 37. It turned out that a slow (power- 
law) decrease in the perturbations of the magnetization field 
in a vortex leads to a stronger than logarithmic divergence in 
the formula for the mass. This result agrees qualitatively with 
the results found by Mertens et ~ 1 . ~ ~  They carried out a nu- 
merical simulation of the rotational dynamics of a pair of 
vortices in circular geometry. Working from an analysis of 
data on the frequency and radius of the motion, they found a 
value of the effective mass for an extraplanar vortex in a 
Heisenberg ferromagnet at T=O. This mass was a linear 
function of the dimensions of the system: m ,  cc L. A numeri- 
cal simulation was carried out only for the case in which the 
size of the pair was comparable to the size of the system, L. 
In our opinion, those results cannot be used in effective 
equations such as (16). We are thus left with the conclusion 
that there has not yet been a systematic description of inertial 
effects in the dynamics of magnetic vortices. However, the 
paper by Mertens et ~ 1 . ~ ~  contains a result which is of fun- 
damental importance to the problem of incorporating the in- 
ertia of vortices in 2D magnetic materials in a description of 
the response functions of a vortex gas at T > T,  . According 
to that paper, inertial effects are manifested by the onset of a 
fairly fast motion (of the nature of motion along a cycloid) 

against the background of a slow motion described by force 
balance condition (22). In a numerical simulation for non- 
zero temperatures T-TC, this "fast" motion is never seen. 
This fact is an argument in favor of the proposition that the 
force balance equation which is ordinarily used, 

successfully describes the dynamics of a vortex gas at tem- 
peratures T> Tc , at which this gas exists in a 2D magnetic 
material. 

4. MEAN VELOCITY OF A VORTEX GAS 

An effective equation of motion for vortices like that in 
(23) was used by ~ u b e r ~  for a thermodynamic calculation of 
the velocity of a vortex gas in a ferromagnet. Mertens et ~ 1 . ~  
proposed a method for calculating the contribution of a vor- 
tex gas to the response function of a magnetic material at 
T> Tc (so-called vortex phenomenology). A calculation car- 
ried out for a ferromagnet in that paper showed that vortices 
contribute substantially in the region of the central peak. Vor- 
tex phenomenology operates with two parameters: the vortex 
density nu and the rms velocity ii, which also determines the 
width of the central peak. A numerical simulation revealed 
that the observed value of zi in a ferromagnet agrees fairly 
well with the Huber formula," except for a slight decrease in 
zi with increasing temperature in the immediate vicinity of 
Tc (more on this below). 

For an antiferromagnet, a singularity associated with the 
possible vanishing of G as H-+ 0 arises in the thermody- 
namic characteristics of a vortex gas. A numerical 
~imulation"~'~ has demonstrated a significant discrepancy 
between the observed values of ii for an antiferromagnet and 
those for a ferromagnet. 

To calculate ii for a vortex gas in an antiferromagnet we 
use the method developed in Ref. 4. In the continuum ap- 
proximation we introduce a self-consistent effective "electric 
field" E, which describes the interaction with other vortices. 
There is an analog between dynamical equations (23) for 
vortices and the equations for particles in a plasma in a trans- 
verse magnetic field.4 We can accordingly use results found 
in Ref. 38 to estimate (E2): (E2) = n u  r e 2  In A, where nu is 
the equilibrium vortex density, and A is a measure of the 
proximity of the vortex gas to a state of thermodynamic 
equilibrium. In the limits of random and equilibrium distri- 
butions, A is given by AR= ~ l r r a ~  and A,= 4rr2~lnue2a2 ,  
respectively, where S is the area of the system, and T the 
temperature. 

Using the expression for (E2) along with (23), we find an 
expression for the rms velocity of the vortices: 
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For convenience here we have introduced a characteristic 
field Ho (as discussed above) and H,= 7(gS/8aa) .  The 
field H, is proportional to the relaxation constant 7. We use 
Eqs. (21) for 7 and estimates of the relaxation constants 
according to Ref. 5 (some results which agree with those 
data in order of magnitude were found for an antiferromag- 
net in Ref. 39). We find H,-0.05Ho at T-T,. For H P H , ,  
the quantity cl/ziH-He/4H is thus seen to be inversely pro- 
portional to the magnetic field H; at H e H , ,  zilzi, is inde- 
pendent of the field, having a value zitiH-H,14Hr, where 

is the vortex velocity found for a ferromagnetic by ~ u b e r . ~  
We see that for any reasonable values of the field H 4 H e  the 
velocity in an antiferromagnet is higher than that in a ferro- 
magnet. These results agree with the numerical simulation of 
Ref. 12. The maximum values of zi (in dimensionless units) 
are on the order of 0.5 for a ferromagnet10 and 2.3 for an 
antiferromagnet.12 We would like to test the dependence 
U m  lIH, but no numerical simulations have been carried out 
for the case H # 0, to the best of our knowledge. 

For weak magnetic fields H<H,, in particular, for 
H =0, the velocity zi is independent of H but inversely pro- 
portional to the relaxation constant. Since we have p m Tn, 
where n=2 for a ferromagnet5 and n=3  for an 
antiferr~ma~net?~ this formula describes a decrease in zi 
with increasing T. Data found from the numerical simulation 
demonstrate a decrease in u in a small neighborhood of T, as 
T increases, for both ferromagnetsI0 and antiferr~ma~nets.'~ 
For an antiferromagnet, however, the decrease is much more 
pronounced: zi=2.27 and 0.97 for T=0.83 and 0.90, 
respectively.'2 This result can be explained on the basis of 
the theoretical result ii m 1 / 7 7 ~  T-" found above. For a ferro- 
magnet, the decrease is far weaker (zi=0.49 and 0.38 at 
T=0.82 and 0.87, respectively). This result can be explained 
by assuming, for example, that at lower temperatures a vor- 
tex gas having a low density is in a state which is farther 
from thermodynamic equilibrium than that of a dense vortex 
gas at a higher temperature (in this case the logarithmic fac- 
tor In A in zi becomes important). Testing this hypothesis, 
however, will require a more detailed analysis of the simu- 
lation conditions. 

5. VORTEX CONTRIBUTION TO THE DYNAMIC STRUCTURE 
FACTOR 

Let us calculate this contribution. By virtue of relation 
(I), m and 1 make independent and additive contributions to ' 

spin correlation functions. Furthermore, they determine com- 
ponents of the dynamic structure factor which are centered at 
different points in q space: 1 determines a central peak near 
the Bragg peak of an antiferromagnet at the point 
~ ~ = ( a l a , a l a )  (Ref. lo), while m contributes near the point 
q=o. 

Extraplanar components of the dynamic structure factor 
are locally sensitive to the presence of vortices, since the 
component liO)(r) is localized near the center of a vortex. 
The central peak for extraplanar correlations has a Gaussian 

shape. The height of this peak increases with the number of 
vortices, and it depends strongly on the vortex form factor. 

In-plane components of the dynamic structure factor are 
globally sensitive to the presence of vortices, which destroy 
the long-range order in the plane of a 2D magnetic material. 
A Lorentzian central peak for in-plane correlations does not 
depend on the vortex form factor, i.e., on the nature of the 
deviation of the antiferromagnetism vector from its equilib- 
rium value at the center of the vortex. The height of the 
central peak decreases with increasing number of vortices, 
since the magnetic material becomes uniform, on the aver- 
age, with increasing nu .  

A concrete calculation of the vortex contribution to the 
dynamic structure factor is carried out by analogy with the 
calculation for a ferromagnet (Ref. 6; see also Refs. 10-12), 
and we will not go into it in detail here. For both extraplanar 
and in-plane components, the widths of the central peak, 
AT,=qzi and ArX=1.14zin:/*, are proportional to the rms 
velocity of the vortices, and they increase substantially with 
decreasing field [see (25)l. 

It is important to note that a magnetic field and the Dzy- 
aloshinskii interaction independently affect different compo- 
nents of the dynamic structure factor. The form of the in- 
plane components does not depend on the field; it is given by 
expressions analogous to those found in Refs. 10 and 12 (the 
Dzyaloshinskii interaction was taken into account in the lat- 
ter paper): 

where 

determines the known expression for a Lorentzian central 
peak; ~=fi(.rm,)"~, and q=lql. 

For the extraplanar components, the DzyaloshinskiT in- 
teraction has no effect, but the shape of the dynamic struc- 
ture factor depends strongly on the magnetic field: 

Here F G ( q , ~ )  determines the expression for a Gaussian cen- 
tral peak, which is characteristic of extraplanar components 
of dynamic structure factors of various magnetic 

where fk(q) =$d2x cask O(r)expiqr, and k= 1,2, are two dif- 
ferent vortex form factors, which determine the distributions 
of I and m, respectively. We would like to point out that the 
intensity of the third term is proportional to H'. An analysis 
of this functional dependence might be a good test for a 
comparison of experimental data with theory. 
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6. CONCLUSION 

The analysis of this paper demonstrates that there is sub- 
stantial difference between the dynamics of vortices in an 
antiferromagnet and in a ferromagnet. It also demonstrates 
that an external magnetic field perpendicular to the easy 
plane has a strong influence. Even in weak fields 
H S H o G H e ,  which do not destroy the antiferromagnetic or- 
der, this circumstance is manifested in the following circum- 
stances. 

The dynamics of vortices in an antiferromagnet in the 
absence of a transverse magnetic field is described by 
Lorentz-invariant equations, and the rms velocity of the vor- 
tices is determined by the viscosity: u ~ l l g  As a result, u is 
a strong function of the temperature. 

A field causes a special contribution to extraplanar com- 
ponents of the dynamic structure factor, whose intensities 
depend strongly on the magnitude of H .  In a field, a gyro- 
motion of vortices arises. As the field is increased, there is a 
transition from viscous motion to gyroscopic motion, which 
is manifested in the behavior of u and which causes charac- 
teristics of the peaks to depend on the field. 
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