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A nonlinear correction (proportional to the wave amplitude) to the zero-sound velocity is 
calculated. The growth rate of the amplitude of the second harmonic is also calculated. The result 
is expressed in terms of the derivative of a Landau function with respect to energy and in 
terms of its variational derivative with respect to the quasiparticle distribution function. Identities 
found in this paper make it possible to express the result in terms of the Landau function 
and its derivative with respect to the pressure, both of which are well known from experiments, 
in the approximation of the first two spherical harmonics. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

The nonlinear effects which accompany the propagation 
of zero sound in liquid ~e~ have been studied in detail both 
theoretically and experimentally1 at temperatures below the 
superfluid transition temperature T,, but not in the region 
T>Tc, of the normal Fermi liquid. The reason is that the 
nonlinearity is anomalously pronounced in the superfluid 
phases: the nonlinear corrections to the velocity and attenu- 
ation of sound are governed by the dimensionless parameter 
(Splp)(EFITc), where p i s  the density of the liquid, EF is the 
Fermi energy, and Sp is the amplitude of the density oscilla- 
tions in the wave. In the region T> T,, on the other hand, 
there is no factor of EFIT,. Nevertheless, nonlinear effects 
accompanying the propagation of zero sound in a normal 
Fermi liquid can probably be studied experimentally. In this 
paper we take a theoretical look at this question. 

We begin with the range of applicability of the approach 
described below. In the linear approximation in the wave 
amplitude, the sound absorption coefficient y (the reciprocal 
of the wave lifetime) is given by the sum2 y= y,+ yT, where 
fi y,-(hw)2/~F is the absorption coefficient at absolute zero, 
which depends on the sound frequency w, and we have 
fi yT- T~/E,. For sound of finite amplitude, we calculate the 
correction Aw-o(Sp lp) for the frequency below (for a given 
wavelength). It is important to note, however, that a nonlin- 
ear correction to the absorption, A y, arises at the same time. 
In estimating Ay we note that zero sound consists of oscil- 
lations in the shape of the Fermi surface. We denote by ApF 
the amplitude of the deviation of the shape of the surface 
from spherical. Quasiparticles within a distance on the order 
of Sp, from the boundary of the Fermi surface have a finite 
mean free path, because there is the possibility of collisions 
of quasiparticles with each other even in the limit w40 ,  
T-0. As usual, the typical collision rate differs from EFlh 
by a small factor, on the order of the ratio of the square of the 
volume of momentum space in which collisions are possible 
(it is piSpF in the case at hand) to the square of the total 
volume (p: )  inside the Fermi surface. The nonlinear correc- 
tion to the absorption which we are seeking, Ay, is of the 
same order of magnitude as the rate of such collisions. As a 
result we have f i ~  y - ~ F ( 6 p F l p F ) 2 - ~ F ( S p l p ) 2 .  

As long as the linear absorption is slight, it does not 
distort the wave (it does not give rise to higher harmonics, 
etc.). Shape distortions stem from the nonlinear effects Aw 
and A y. Below we will take Aw into account, ignoring Ay ; 
this approach is legitimate under the condition AwSA y, i.e., 
for sufficiently small sound amplitudes, which satisfy the 
condition 

In this case we have Aw/y<Aw/y,-(Splp)(EF/hw)Gl, so 
nonlinear distortions do not develop to any great extent over 
the lifetime of the wave, but they can reach a level sufficient 
for experimental observation. At the limits of applicability as 
defined by (I), the relative correction to the frequency (or, 
equivalently, the relative correction to the sound velocity c, 
i.e., Aclc- is reached at T-hw-Tc- 1 rnK at wave 
quality factors Q-ol  y-(E,lhw)-10~. 

2. NONLINEAR BOLTZMANN EQUATION 

Under condition (I) ,  we can (as mentioned above) ig- 
nore collisions in the Boltzmann equation, 

but we can incorporate terms quadratic in the deviation 
Sn(p) of the distribution function from its equilibrium value 
no(p) = 8(pF - p)  on the left side of the equation; here 
8(x)=0 at x<O and 8(x) = 1 at x>O. We first introduce 
some new parameters of Fermi-liquid theory, which have 
seldom been considered in applications of this theory. We 
will also derive several relations among these parameters. 

We expand the quasiparticle energy s(p) in terms of 
Sn (p) , retaining quadratic terms: 
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where d r =  2d3pl(2d)3, f is the ordinary Landau function, 
and #J is the third functional derivative of the total energy of 
the liquid with respect to n(p), taken at n(p)=no(p). Here 
and below, we omit the spin dependence. In addition to the 
ordinary effective mass m*, which is defined in terms of the 
first derivative of the energy ~ ( p )  with respect to the momen- 
tum, 

we also introduce a characteristic mass M, defined in terms 
of the second derivative: 

The function f = f(p,pl,  cos a)  actually depends on the 
absolute values of the momenta p and p' and on the angle a 
between them. In addition to the usual parameters F l ,  
1=0,1, ..., which determine an expansion of the function in 
Legendre polynomials Pl(cos a), 

we introduce some new dimensionless parameters F ! ,  
1=0,1, ..., which are defined by a corresponding expansion 
for the derivatives (which are symmetric with respect to p 
and p') of the function f with respect to the absolute values 
of the momenta: 

It is sufficient to consider the function #J on the Fermi 
surface, i.e., at Jp l=lp ' l= l~ ' ' l=~~.  This function is then com- 
pletely symmetric under interchange of the arguments of the 
function &a,/?, y), i.e., the three angles a,/?, y, between the 
vectors p and p', p and p", p' and p", respectively. It is 
convenient to expand this function in functions correspond- 
ing to the addition of three angular momenta, i.e., 

Here 

are the 3 j symbols; 6 and cp are the angles which specify the 
orientation of the vector p; O', 8", cp', and cp" are the corre- 
sponding angles for p' and p"; we have 
cos ~ = C O S  O cos O1+sin O sin Or cos(cp- cp') and correspond- 
ing relations for /? and y ; Yl,(O,cp) are the spherical harmon- 
ics; and N=p;/3r2h3 is the number of particles per unit 
volume of the equilibrium liquid. The parameters <D111213 
given by (8) are dimensionless. By virtue of the symmetry 
properties of the 3 j symbols, these parameters are zero for a 
symmetric function 4 if the sum 1, + 1, + l3 is odd. The first 
two terms of series (8) are 

We now wish to derive some relations among these new 
parameters. The familiar equality which follows from the 
Galilean principle of relativity takes the form 

where m is the mass of the ~e~ atom. Varying (10) twice 
with respect to Sn, and taking the result for n = no, we find 

It is then a simple matter to find the following result by 
setting p = p l  =pF:  

(1 -cos a )  a cos a I 
sin Od Od cp 

d f l =  
4 r  

Here the integration axis is directed along pF + pk . Retain- 
ing from F(a) and F1(a) the first two harmonics in an ex- 
pansion in Legendre polynomials, and retaining series (9) 
from <D, we also find relations of the following type from 
(1 1): 

Again using the Galilean principle, we can calculate 1/M. To 
do this we need to vary expression (10) with respect to Sn, 
differentiate with respect to p ,  and take the result at n = no,  
p = p F .  We find 

The parameters Fo and F1 depend on pF ,  and their deriva- 
tives with respect to pF are related to FA, F :  and <Dm, <Doll 
by 
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3. NONLINEAR OSCILLATIONS These relations can easily be derived by writing the change 
in f ( p F )  in the case of an infinitesimal change 6pF in p F :  

WP)= ~ ( P ; - P ) -  ~ ( P F - P ) ,  8 p ~ ' p k - p ~ .  

Again using approximate relations (12), we find 

When the functions F (a), F '(a), and @(a,u,P, y) are approxi- 
mated by the first two terms of the expansions in (6),  (7), and 
(8), respectively, the parameters F A ,  F f , Qooo, and aoll are 
thus expressed exclusively in terms of Fo,  F ,  , and their de- 
rivatives with respect to pF . 

As we mentioned earlier, zero sound consists of oscilla- 
tions in the shape of the Fermi surface. Consequently, the 
perturbed distribution function in (2)  is 

n(p,r, t)= erpl(n ,r , t ) -pl ,  

where n=plp, and 

is a small parameter. 
Using (3) and (19), we can rewrite kinetic equation (2)  

to quadratic accuracy in v in the axisymmetric 1D case; i.e., 
v depends on 8, x ,  and t ,  where 8 is the angle between p and 
the x axis: 

I dv' 
L(e ,x , t )=3 cos 8 @(a,/?, y )  - v"dQ'dQ1' 

dx 

m* d v +- cos 8 v -  
M dx 

I dv' 
+ 2 c o s e  F ( a ) v r  - d Q r  

dx 

dv  dv' 
+COS e ~ l ( ~ )  - - u ~ + - - - ~  

[ d x  dx 

dv' + - dx v ' ] d Q t  

dv' d v  
- sinZ 0 1  [ F ( n )  - -- 

dx d cos 6 

We consider small axisymmetric oscillations of the nor- 
mal Fermi surface, which are described by Eq. (20). In the 
collisionless case, in Landau's paper,3 it is convenient to 
solve the problem with given initial conditions. We therefore 
solve Eq. (20) under the initial condition 

by the standard method of successive approximations in the 
amplitude (v= v1 + v2+ ...). For the first approximation, vl , 
we use initial condition (21); for the successive approxima- 
tions (v2,  ...), we use homogeneous initial conditions. 

Taking Fourier transforms, 

and Laplace transforms, 

of Eq. (20), and imposing initial condition (21), we find, for 
the first approximation, 

where 

zzq v l ]  = Jl+)( e ) .  

Approximating the Landau function by the first two harmon- 
ics, 

F=Fo+Fl  cos a ,  

we find 

FoCl+Fl  C 2  cos 8 
-cos e 

(s - cos 6 ) y  ( s )  ' 

where 

I io- i t u F  COs e 

+ I  gk( ~ ) C O S  e m  
i o -  ikUF cos 0 F ~ s w ,  

gk( 
+ I i o -  i kvF  cos 6' Fos w , 
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FIG. 1.  Pressure dependence of s , . 

Now taking inverse Fourier transforms, 

and inverse Laplace transforms, 

we obtain the inverse transform: 

The nondecaying singularities v(l+) in the complex w plane 
are as follows: a cut from -kvF to kvF and the band 
w=kv, cos 0, both of which correspond to one-particle ex- 
citations; and the two bands w=cok, -cok, which arise from 
y(so) =0, where so= colvF, -cO/vF, which correspond to 
longitudinal zero sound propagating rightward and leftward, 
respectively. Equating y(s) to zero, we find a known relation 
for the velocity of longitudinal zero sound, 

Retaining only the contribution from the band w=cok 
( s ~ = c ~ I v ~ ) ,  we find 

cos 0+ cos" 0 
A(&')= 

Fo~owo 
- - \ " I  so-cos 0 

As expected, we have obtained a wave of constant profile 
traveling to the right. 

For the function second approximation v2, we again 
have Eq. (22), with vl replaced by v,, and gk(0) by 

where we have substituted the exact first approximation into 
L(O,x,t) [the nonlinear part of Eq. (20)l. When we find the 
inverse transform of the second approximation, a secular 
term -t arises, because of the simultaneous use of the band 
w=cok (which corresponds to zero sound) in the first and 
second approximations: 

As a result there is a correction to expression (24). Making 
use of the property 

of Laplace transforms, we easily find the following result for 
C1 : 

where L,(O)K(dK/dx) = L(O,x,t), and we have substituted 
=A(O)K(x-cot), (24) (24) into L(O,x,t). After some simple integrations, we find 
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Here and below, we omit the subscript 0 from s and w. The 
secular term in (25) leads to a correction Sc 
= cl(Fo13)(SNIN), where SN is the deviation of the con- 
centration from the equilibrium value N, to the first- 
approximation velocity co in (24). As a result, a traveling 
wave of constant profile, (24), corresponding to longitudinal 
zero sound, transforms into a simple traveling wave with a 
varying profile (different velocities correspond to different 
points on the profile), which is analogous to Riemann solu- 
tions in hydrodynamics. 

If K(x)acos kx, and if we use (25), we see that oscilla- 
tions SNIN-AI cos k(x- cot) +A2 sin 2k(x- cot) corre- 
spond to a zero-sound mode propagating to the right, where 
A and A, are the amplitudes of the first and second harmon- 
ics, respectively. The growth rate of amplitude A, is 

where U = ( 1 + F ~ ) ~ ~ ~ ~ N A : ~  12 is the energy density in the 
zero-sound mode.4 

Approximating the functions @(a,P,y) and F1(a) by the 
first two terms of expansions (7) and (8), and using relations 
(12), (16), and (17), we can carry out a numerical calculation 
of the pressure dependence of the quantity s l=c l lu ,  given 
by (26). The results of some calculations camed out on the 
basis of some experimental data of Ref. 5 are shown in Fig. 
1. Also shown by the dotted line in this figure is the pressure 
dependence of s1 for hydrodynamic sound, calculated from 

where c' is the velocity of sound, P is the pressure, and p is 
the density. 

We wish to thank I. A. Fomin for a useful discussion of 
this study. 
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