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We develop a theory of longitudinal electron transport in tunnel-coupled quantum wells placed in 
a nonquantizing transverse magnetic field. The conductivity tensor in a longitudinal variable 
electric field is calculated using the formulas of the nonequilibrium diagrammatic technique. Such 
a quantum approach makes it possible to describe the electronic properties of the system 
under conditions in which the energy of tunneling splitting of a pair of levels is comparable to 
the energies of collisional broadening and the Boltzmann transport equation breaks down. 
We derive a formula for the conductivity tensor that cannot be reduced to the Drude formula if 
the relaxation times differ for different wells (asymmetric scattering). Here the conductivity 
tensor proves to be a complex function of the parameters of the structure, including the level 
splitting fixed by an external bias, which gives rise to macroscopic quantum effects in 
tunnel-coupled quantum wells. We give a detailed description of resistivity resonance, 
magnetoresistance, and the Hall effect and such magneto-optical phenomena as cyclotron 
resonance and the Faraday effect. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Electronic states in tunnel-coupled double quantum 
wells are being actively studied by various kinetic methods. 
We have directly mea~ured' .~ tunneling electron relaxation 
by the luminescent spectroscopy method with high temporal 
resolution, and we have observed submillimeter radiation 
due to transient oscillations of the dipole moment after fem- 
tosecond laser excitation of a double quantum-well 
~t ructure .~ IR transitions in such structures have also been 
studied4 (recently Faist et alO5 were able to build a monopo- 
lar IR laser that uses a double quantum-well structure, which 
has stimulated interest in studies of transport phenomena in 
such structures). Longitudinal transport electrons in double 
quantum wells in the presence of a transverse electric field 
controlling the splitting of tunnel-coupled levels has been 
studied6-" in connection with electron redistribution (trans- 
port in real space) and resistivity resonance. Studies of lon- 
gitudinal transport in quantizing magnetic fields display the 
special features of the quantum Hall effect1*-l5 and 
Shubnikov-de Haas ~scil lations. '~- '~ On the other hand, to 
our knowledge, longitudinal transport in weak (quasiclassi- 
cal) magnetic fields, both static (magnetoresistance and the 
Hall effect) and high-frequency (cyclotron resonance and the 
Faraday effect), has not been specially studied for the case of 
double quantum wells with asymmetric scattering. 

The theoretical description of electrons in double quan- 
tum wells is based on the two-level approximation." In this 
approximation the electron energy spectrum incorporates the 
two-dimensional (2D) kinetic energy and the transverse en- 
ergy similar to that in a two-level system, so that the disper- 
sion laws of the states are given by 

Here A  is the splitting of levels in the absence of tunneling, 
T is the tunneling matrix element, A T  determines the split- 

ting of tunnel-coupled levels, ~ , = ~ ~ / 2 m  (we ignore the dif- 
ference in effective masses inside a quantum well and in the 
barriers and the fact that the energy spectrum is not para- 
bolic), and p is the 2D-momenturn. Allowing for longitudinal 
motion sets the situation apart from the two-level system 
studied earlier.20 

References 21 and 22 show that in describing electronic 
states in double quantum-well structures with asymmetric 
scattering, one cannot always use the idea of quasiparticles 
with the dispersion laws (1). The point is that when the en- 
ergy AT of level splitting is comparable to the difference 
hu in collisional broadening between these levels [here 

-1  -1 v =  r, - rr , with r, and r, the momentum relaxation time 
in the left (1) and right ( r )  quantum wells; for the sake of 
definiteness we assume that rl< T,], there is no unitary trans- 
formation that diagonalizes the one-particle matrix Green's 
function of tunnel-coupled states. Hence the quasiparticle de- 
scription of the energy spectrum is inapplicable for the case 
in which 

which means that describing the kinetic phenomena in 
double quantum-well structures with asymmetric scattering 
requires a consistent quantum approach. 

Another reason why a quantum approach is required is 
that the scattering potential leads to inhomogeneous addi- 
tional terms in the tunneling matrix element T. Usually these 
terms are not taken into account because they contain the 
overlap integral of the wave functions of the left and right 
wells. However, for special cases of selective doping of 
double quantum wells (e.g., when the middle of the potential 
barrier is doped with impurities with a short-range potential) 
these additional terms must be taken into account together 
with the scattering potentials of the left and right wells. Here 
the matrix of the scattering potential proves to be nondiago- 
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nal, and there is no way in which the matrix Green's function 
of tunnel-coupled states can be diagonalized. 

In this paper we develop a quantum theory of longitudi- 
nal electron transport in double quantum-well structures that 
allows for asymmetric scattering and the above-noted fact 
that the scattering potential is nondiagonal. Methods of the 
nonequilibrium diagrammatic technique are used to calculate 
the linear response of the electron system of the double 
quantum-well structure in a nonquantizing transverse mag- 
netic field to a variable longitudinal electric field. The gen- 
eral expression for conductivity is used to describe several 
effects that show up in such systems. 

For a vanishing magnetic field and a constant electric 
field our study generalizes the results of the theory of the 
resistivity resonance effect, which was recently observed in 
experiments.677 This resonance occurs at A = 0  and is due not 
to changes in electron concentration in the left and right 
quantum wells brought about by the variation in A  (transport 
in real space) but to changes in the scattering probability 
caused by tunneling mixing of the states of these quantum 
wells. When scattering processes suppress the tunneling su- 
perposition of quantum-well states, the resistivity resonance 
peak changes shape22 in comparison to the classical case 
studied in Refs. 6 ,  9, and 10 [where A T 9 h / r 1 , h / r ,  and 
conductivity is determined by the classical kinetic equation 
for the two-level system formed by ( + ) and ( - ) states; see 
Eq. (111. 

For a variable electric field, conductivity obeys a fre- 
quency dispersion law differing from the Drude formula be- 
cause of asymmetric scattering and the fact that the scatter- 
ing potential is nondiagonal. In the presence of a magnetic 
field, the same effects determine the way in which both the 
classical magnetoresistance and the classical Hall constant 
depend on the magnetic field strength,21 with the possibility 
that these relationships may be nonmonotonic; in addition, 
there are negative-magnetoresistance regions. 

The asymmetric-scattering effect and the fact that the 
scattering potential is nondiagonal lead to a non-Dmde ten- 
sor of high-frequency conductivity of double quantum wells 
in a magnetic field, which determines the special features of 
resonant scattering of far-IR or microwave radiation (cyclo- 
tron resonance) and rotation of the polarization plane of such 
radiation (the Faraday effect); these distinguish the system 
examined here from a single quantum well (see Refs. 23 and 
24 on cyclotron resonance and Ref. 25 on the Faraday ef- 
fect). In Sec. 8 (Conclusion) we analyze the limiting cases in 
which the classical kinetic approach can be used to describe 
the conductivity of double quantum wells; we also give nu- 
merical estimates of the parameters for the known experi- 
ments. 

2. MODEL OF A DOUBLE QUANTUM WELL 

We start by describing the model considered in this pa- 
per, a heterostructure with a pair of tunnel-coupled levels 
from the left and right quantum wells, and with different 
scattering in these wells. A simple band diagram of such a 
structure consists of two rectangular quantum wells with dif- 
ferent widths (see Fig. 1, where d l < d r )  separated by a nar- 
row barrier of thickness d b .  The height of the barrier (the 

FIG. 1. The band diagram and the position of levels for a model of a double 
quantum-well structure. 

energy Uo in Fig. 1) exceeds all characteristic energies in- 
volved in the problem. If these energies are also small com- 
pared to the typical localization energy, ( ~ f i l d ~ , ~ ) ~ / 2 r n ,  we 
can limit our discussion to the tunnel-coupled ground states 
of the left and right quantum wells and expand the exact 
wave function in terms of basis functions that contain only 
the pair of orbitals 11) and Ir): 

The orbitals in (3) have maxima at the centers of the left and 
right quantum wells and fall off exponentially under the bar- 
riers over distances of order K - ' .  These tails of the wave 
functions determine the small tunneling matrix element, 
which for the band diagram depicted in Fig. 1 can be esti- 
mated to be 

If d r -  d l < d l , ,  , we have A- E(d?- d:) /2dld ,  for the split- 
ting of levels not coupled by tunneling. The expansion (3) is 
retained for problems with a more complicated band diagram 
than that depicted in Fig. 1, which emerge when we allow for 
a self-consistent potential. The only requirement here is that 
E + A T .  Below we assume that A  and T are fixed variables 
of the model whose order of magnitude is estimated by the 
above formulas (note that the value of A  can be controlled by 
a transverse voltage applied to the double quantum-well 
structure). 

In such approximations, also discussed in Refs. 19 and 
26, the column matrix whose elements are *,,, and Yrrp for 
an ideal heterostructure is found by solving the eigenvalue 
problem 

The solutions of this system yield the (+) and (-) states 
(symmetric and antisymmetric at A  = 0 )  with an energy 
spectrum E 2 p  defined by Eq. (1). Here it is convenient to use 
the isospin formalism, where instead of examining 2 X 2  ma- 
trices, the matrix part of the Hamiltonian in (5) is expressed 
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in terms of the Pauli matrices as k = (A/2)Gz+ T&x.  Note 
that this expression can be diagonalized to the form 
ATGz/2 via the unitary transformation 

exp(ivGy), where tan2cp= 2T/A , (6) 

which leads to the dispersion law (1). 
In a magnetic field H perpendicular to the plane of the 

double quantum-well structure, the Hamiltonian in the isos- 
pin representation is given by 

where 

is the kinematic-momentum operator, E, = Eo exp(i wt) 
+ C.C. is the variable electric field, the reaction to which is 
considered below, and x is the 2D-coordinate. Using the two- 
level approximation presupposes that the cyclotron fre- 
quency w,= lelH/mc and the frequency w of the longitudi- 
nal electric field are low compared to the frequency i;lh of 
subband-to-subband transitions. We also assume that the tun- 
neling matrix element (4) does not vary in the weak mag- 
netic fields considered here. 

To describe electron scattering we add to the Hamil- 
tonian (7) the potential energy of the interaction with static 
defects. In terms of the basis functions in (3) we get a 
2 X 2 random-potential matrix whose off-diagonal part is re- 
lated to the random variations of the tunneling matrix ele- 
ment (4). As a result we arrive at the potential energy 

?pressed in terms of Gx and the projection operators i1 and 
P, on the states of the left and right quantum wells. The 
potentials Ul(x), U,(r), and U,(x) (see Appendix) are gen- 
erally statistically correlated and described by the Gaussian 
correlation functions 

where (. . .) denotes statistical averaging over a distribution 
that is homogeneous and isotropic in the 2D-plane; hereafter 
j and j' run through the values 1, r, and t. In the Appendix 
we give the explicit expressions for such correlation func- 
tions for scattering by heteroboundary roughness and irregu- 
larly distributed point defects. 

3. THE GREEN'S FUNCTIONS OF ELECTRONS IN A 
DOUBLE QUANTUM-WELL STRUCTURE 

In the Keldysh technique,27 the one-particle Green's 
^ A  functions 8 t lX2( t l  t2), Gxlx2(tlt2), and kxlx2(tl t2) satisfy 

the symmetrized system of equations 

+ 1 1 dx' d t  [ 2 ~ l x . ( t l t ~ ) E ~ x 2 ( t ~ )  

where the advanced Green's function ~ t ~ , ~ ( t , t ~ )  is deter- 

mined by an equation that is the Hermitian conjugate of (10). 
The self-energy functions f :;a ( t  and hxlx2(t1t2) in the 
Born approximation can be found by solving the equations 

h x l x 2 t 1 t * =  E 1 - 2 1 i x l x 2 1 2 j .  (13) 
ji ' 

In the case of translation invariance in the 2D-plane, it is 
convenient to employ the translation-invariant Wigner 
representation2' by introducing G ; ~ ( E , ~ )  via the relationship 

with 8 i r ( & , t )  and kpr(e,t)  introduced in a similar manner. 
Here we assume that the energy quantum hw is small com- 
pared to the average electron energy i ,  and that the operator 
convolutions on the right-hand sides of Eqs. (10) and (11) 
can be transformed, following Ref. 29, by limiting discussion 
to leading terms in the expansion in powers of h ,  which 
corresponds to the quasiclassical approximation for the col- 
lision integrals. The equations obtained for G;$(E,~) and 
kpr(&,t)  reflect the translation invariance of these Green's 
functions and the lack of any temporal dependence in the 
advanced and retarded functions: G;$(E,~) = 8 ; 3 A ( ~ )  and 
kpr(c , t )  =kp(c , t ) .  We have 
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where the self-energy functions can be expressed as 

dp1 S; (E)=  C I iZ;;i;jI w , , ~ ~ ~ P - P ~ I ~ ~ , ~ ~ , ~ ~ ~ ~ , ~ .  
i i '  

in terms of the Fourier transforms Wjj l (1p-  pl l )  of the cor- 
relation functions. The [ . . . ] + and [ . . . ] - in Eqs. (15) and 
(16) stand for an anticommutator and commutator, respec- 
tively. In view of the matrix nature of the Hamiltonian, the 
left-hand side of Eq. (16) contains, in addition to terms com- 
mon to the classical kinetic equations, the commutator 
[ f i p ( s , t ) , k ] - .  Note that the electron density matrix Ijp(t) 
for a double quantum-well structure can be expressed in 
terms of the functions G ; ( & ) ,  G ; ( E ) ,  and F p ( & , t ) :  

< E ,  we Below, limiting our discussion to the case h w,/2< - 
consider only a nonquantizing magnetic field, with the result 
that in Eq. (15) we can ignore the differential operator, so 
that G R  can be found from a matrix equation. Assuming here 
that the average energy i is of the order of the spread in the 
Fermi distribution, we can ignore not only the quantum Hall 
effect but also magneto-oscillatory phenomena. Since G R  de- 
pends only on the 2 X 2 matrix k + gR, the solution of Eq. 
(15) is 

A self-consistent calculation of & ; ( F )  suggests substituting 
G ; ( E )  from Eq. (19) into Eq. (17) and solving the resulting 
integral matrix equation for $ ; ( E ) .  In the case considered 
here-scattering by a short-range potential-the self-energy 
functions do not depend on momentum p, and such an equa- 
tion is no longer an integral equation. However, in general 
form the solution can be found only numerically. Here we 
consider high Fermi energies, 

for which this solution can be obtained analytically. Since 
carriers with energies of the order of the Fermi energy E F  

contribute to kinetic phenomena, the self-energy function 
gR can be found in the lowest-order scattering approximation 
(S+ +O):  

where we have allowed for the fact that the potential is short- 
range and have replaced W j j r  (p) by constants w,, , . The real 
matrix & ( E )  determines the shift of the energy origin, the 
renormalization of the level-splitting energy A, and the 
renormalization of the tunneling matrix element ( i ~  scatter- 
ing by a short-range potential, the diagonal part SE is loga- 
rithmically divergent, which means that cutoff at small dis- 
tances is needed;*see Ref. 30). When E 9 AT/2, the energy- 
dependence of SE(&) can be ignored. Since the splitting of 
levels is controlled by a transverse voltage applied to the 
double quantum-well structure, we do not write the explicit 
expressions for SE here and assume A to be a given variable. 
The imaginary part of the self-energy function can be ex- 
pressed in terms of the departure relaxation frequencies and 
the energy-dependent functions ( P i ( & ) :  

The denominator in Eq. (19) incorporates the 2 X 2 real 
matrix from the Hamiltonian (7) and the imaginary matrix 
contribution from (21) describing asymmetric scattering (for 
rl  # 7,) .  This expression does not commute with its Her- 
mitian conjugate, and hence there is no unitary transforma- 
tion that can diagonalize the Green's function (19) (see Ref. 
31). This simple algebraic result is central and determines the 
need to use quantum transport theory in this case. If condi- 
tion (2) is met, we cannot introduce the idea of quasiparticles 
with a weakly decaying energy spectrum and proceed from 
the equations of the nonequilibrium diagrammatic technique 
to a kinetic equation. Therefore, we need a quantum descrip- 
tion of transport phenomena even at high Fermi energies 
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c F S A T ,  i.e., macroscopic quantum phenomena are possible 
in a double quantum-well structure with asymmetric scatter- 
ing. 

Using the Green's function obtained above, we can write 
an expression for the density of states 

that differs from the ordinary expression because of the pres- 
ence of an additional trace. The behavior of p ( s )  over the 
energy range from ( - AT/2,AT/2) is fairly complex.') Out- 
side this range, P(E) varies from 2p2 (here p, is the 
density of 2D-states corresponding to a level of a single 
quantum well) when the energy is higher than AT/2 to zero 
when & <  - AT/2. At high electron concentrations n (when 
E ~ S A ~ ) ~  the Fermi energy is determined by the relation 

which uses the step approximation for p(&) described above. 

4. CALCULATING CONDUCTIVITY 

To find the linear response of the electron system to the 
applied electric field E,, we linearize the matrix kinetic 
equation (16) by separating out the nonequilibrium term in 
the function kp(&,t )  via the relationship kP(&,t )  = k(O) - Po) X(E) + G F ~ ( B , ~ )  [and, similarly, hp(&,t )  = Clp 
X(E) + GClp(s,t)]. For GFP(&,t) we have 

Note that for the short-range scattering potential considered 
here, and hp(&,t )  are independent of p and, in 
v i ~ w  of the obvious asymmetry, i.e., 
G F  - p ( ~ , t )  = - Gkp(s,t), the terms containing GhP(&,t) 
drop out of this equation. 

The current density can be expressed in terms of the 
nonequilibrium addition to the density matrix: 

We integrate Eq. (28) with respect to energy, using the ex- 
pression for the Green's function f i r ) ( & )  in terms of the 
equilibrium Fermi distribution function f ( ~ ) :  

This yields the following equation for Gjp(t): 
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where on the right-hand side we have allowed for the high 
level of degeneracy of the electron gas, due to which the 
derivative - d f ( ~ ) l d ~  in the integrand was replaced by 
G(E - E ~ ) .  Below we also assume that E ~ S A T ,  bearing in 
mind that under the conditions specified by (20), &,-AT 
corresponds to the situation in which AT$ A/ r1 ,fit 7, , which 
does not require a quantum description. Here the imaginary 
parts of $ R ( ~ )  and C A ( & )  are energy-independent: 

(where T - ~ = ( T [ ~ + T ; ~ ) / ~  and v = r [ ' - ~ ~ ' ) ,  and the in- 
tegral term in the kinetic equation is transformed into an 
algebraic term. After this Eq. (30) can easily be solved by 
going over to cylindrical coordinates. For the conductivity 
tensor components ud(w) = uxx(w) = uyy(w) and 
u,(w) = uXy(o)  = - uYx(w) we then obtain 

T &;(&F)-&%(&F) 
i - t ]  n 2Pi 

Evaluating the integral with respect to E, with allowance for 
(20) and the condition eF+ AT yields 

where u,,,e2n.rlm is the resonant conductivity expressed 
in terms of the total electron concentration in the double 
quantum-well structure. Further calculations of the trace 
and the integral in (33) can be done directly and yield 
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2 T r  T A FIG. 2. The shape of the resistivity resonance peak defined by Eq. (36) at 
a c = w c r 7  a,=-, a = w r ,  S=-  

h f i  ' p=0.5 and p =  1 for a,= 1 (solid curves) and for Q,%1 (dashed curves). 

*(I + i O c - i a ) + * ( l  - i f lc- i f l ) ,  (I;)=%[ 
- 

Pare \ 

2 [*(I + i a c - i a ) * ( l  - i n c - i a ) ] / i ,  1.0-• 

(34) *(s)=sP1 
0.8 

s 2 ( p 2 +  7 2 ) + t ~ ,  va,)' 

The p- and 7-dependent additional terms on the right-hand 
side of the expression for T ( s )  in (34) determine the devia- 
tion of the double quantum-well conductivity tensor from the 
classical Dmde form (where *(s)=s-I). Over the fre- 
quency range R c  , Q S  I ,  these additional terms can be sig- 
nificant when p2+ 7' or ( p a +  7flT)' is comparable to 
1 + S 2 + a $ .  In the event of weak tunneling splitting 
02,s 1 this condition is equivalent to p2- 1 or 7'- 1 + S2, 
while for Cl:% 1 it is equivalent to p2- 1 + 522,/(1+ S2) or 
7'- 1 + S2/(1 + a $ ) ,  SO that the effects examined here show 
up under the necessary condition p2- 1 or 7'- 1 (note that 
by the very definition of these quantities, ,u2<1 and 
v2< 1). This first condition is met in structures studied in 
resistivity resonance e ~ ~ e r i m e n t s , ~ - ~  while the second con- 

\--,, 

' . / I  = 0.5 -7-- 

is at its maximum (equal to p2 / (1  - p2);  see Ref. 6) in pre- 
cisely this case and decreases appreciably when scattering 
suppresses tunneling ( a $ <  1). Note that for both structures 
studied by Palevski (for these structures 
A,= 1 meV, i.e., 02,- I ) ,  the relative heights of the peaks 
were found to be smaller than p 2 / ( 1  -p2) ,  which agrees 
with Eq. (37). If tunnel coupling is entirely absent 
( a , =  0), the resistivity resonance effect vanishes. 

Figure 2 depicts an example of the dependence of 
u,,,p on 8 / a ,  calculated for a,= 1 and for f lT+w.  The 
curves demonstrate the influence of the degree p of scatter- 
ing asymmetry on the shape of the resistivity resonance 
peak, and the changes in the shape of this peak due to 
scattering-induced suppression of the tunneling superposition 
of double quantum-well states. 

i 
\ 
\ 

X ( l +  0.6 - \\ 
s2(s2+ s ~ + ~ $ ) - s ~ ( ~ ~ +  772)-(p8+ 7.13,)' ' 

The dimensionless cyclotron and tunneling frequencies, a, 0.4 - 

and O T ,  the external-field frequency a ,  the level splitting 
0.2 - 

S, the degree p of asymmetry of scattering ( p = O  corre- 
sponds to the same scattering in the quantum wells, and 0 c 

Ipl = 1 corresponds to scattering in only one quantum well), 0 1 2 3 4 8 l n T  
and the degree 7 of "nondiagonality" of scattering are intro- 
duced in (34) via the relationships 

dition has not been realized and, would probably be difficult 6. MAGNETORESISTANCE AND THE ,.,ALL EFFECT 
to implement for technical reasons. Hence, when examining 
the features of kinetic effects in double quantum-well struc- Let us employ Eq. (34) in describing static magne- 
tures in the following sections, we ignore the fact that the totransport in double quantum wells. Expressing the resistiv- 
scattering is "nondiagonal" and assume that 7= 0. ity p and the Hall constant R in terms of ad and u, , we 

arrive at the following formulas for the dimensionless resis- 

5. RESISTIVITY RESONANCE tivity pa,,, and Hall constant R/Ro (Ro= - l / le(nc):  

Let us employ Eq. (34) to describe the shape of the pure,= R e [ q ( l +  inc ) ] - '  = 1 - p2 f R ( a c l  a,&), 
resistivity resonance i.e., the dependence of the 1 +ac 
double quantum-well DC resistivity p = llu ( u =  ud) on the 
level splitting S fixed by an external field. Assuming that R 1 

- 1m[*(l +i f lC)]- l  = 1 
w = 0 and w,= 0, we write the formula for the resistivity as Ro 0, 

For a finite scattering asymmetry ( p  # O), the resistivity is where the f~ and f~ are given 
8-dependent and peaks at S=0. The "classical" case, in 1 + S2+fl$-3fl: 
which scattering processes do not suppress the tunneling su- fR(fl,I S,R,) = 1 - R$ ( + + a + - a : ) 2 + 4 a ;  ' (39) perposition of the quantum-well states, follows from the 
above formula in the limit a $ %  1. The relative height of the 3 +  S2+Ct; -~:  
resonance peak, f ~ ( a . l a , a ~ ) = 1 - ~ $ ( ~  + ~ 2 - ~ 2 - ~ 2  2 , c)  (40) 

(37) When 1 ,  R: the factors fR and f H  are small, and nei- 
ther the resistivity nor the Hall constant depends on the mag- 
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1.4- \\\QT=O.75 

FIG. 3. The magnetic field graphs of the classical 
magnetoresistance (a) and the Hall constant (b) for 
the resonant (6=0,  solid curves) and nonresonant 
(S= 1, dashed curves) cases at two different values 
of the tunneling matrix elcment. 

0.8 I I I I 

0 I 2 3 4 R ,  

netic field. When Rc*1, the factors f ,  and f H  are equal to 
unity. In the intermediate region, 0;- 1 ,fit:, the magnetic- 
field curves of both pares and RIRo are extremely compli- 
cated. Examples of such curves are given in Fig. 3. They are 
not monotonic, and the pure, vs R c  graphs exhibit regions of 
negative magnetoresistance (p-Pln,=o < 0).  It can be 
shown that for R c 4  1, negative magnetoresistance exists if 

1 + a 2 < ~ , J W ,  (41) 

which for tunneling resonance (S=O) is equivalent to 
RT>0.49. 

7. FREQUENCY DISPERSION OF CONDUCTIVITY 
MAGNETO-OPTICAL PHENOMENA 

Now let us examine double quantum-well conductivity 
in a variable electric field. Ignoring the case of a vanishing 
magnetic field, which was studied in Ref. 22, we immedi- 
ately go to the general expression. The real part of the con- 
ductivity given by Eq. (34) can be written in the form 

ures  
Reu - 

d-2[ l  + ( R - R , ) ~ ]  [ 1 +@,(a  - RC)l 

Reu - (fi-fic)ures 
i -2Ll  + ( n n C ) 2 ]  l ~ + C ( ~ - f i c ) l  

where the functions Qd(R 2 R c )  and @I ( R  2 0 , )  describe 
additional terms ascribable to asymmetric scattering. The ex- 
pressions for this case in the event of a tunneling resonance 
(a= 0 )  are 

(the general expressions for a d ( R )  and @,(a )  are quite 
cumbersome). 

The real part of the conductivity's diagonal component 
determines the electromagnetic power absorbed by the sys- 
tem, with the absorption maximum for R2> 1 occurring at 
R - R c  (the cyclotron resonance condition). Thus, the func- 
tion @, describes the modification of the classical (Drude) 
lineshape of a cyclotron resonance in a double quantum-well 
structure with asymmetric scattering. Figure 4 depicts 
ReudlureS as a function of the dimensionless cyclotron fre- 
quency Rc for ,u=0.8 and several different frequencies R 
and R T  at S=O. The discrepancy between these curves and 
the classical lineshape of a cyclotron resonance is most sig- 
nificant at Rc- f l ,  where the contribution of a d ( R - f i , )  is 
considerable. Here the cyclotron resonance peak is the nar- 

FIG. 4. The shape of the cyclotron absorption peak for 
the resonant ( 6 = 0 )  case at p=0.8 and R,=0.3 
(curves I), a , =  1 (curves 2), and a , = 3  (curves 3):  (a) 
0 = 1, and (b) 0 = 3. The dashed curve corresponds to 
the classical (Drude) peak specified by the "mean" re- 
laxation time T. 
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FIG. 5. The halfwidth A n  of the cyclotron resonance peak as a function of 
the splitting energy 6 at p=0.8 and R,=0.3 (curve I), a , =  1 (curve 2), 
and n T =  3 (curve 3). 

rowest and highest, which becomes especially evident for 
small values of KIT, at which the tunneling superposition of 
quantum-well states is suppressed by scattering. The reason 
is that under highly asymmetric scattering conditions (in 
which the mobility in one well is much smaller than in the 
other) and for weakly coupled wells ( a $ <  I ) ,  the conduc- 
tivity is basically determined by electron motion in the well 
with the weaker scattering, and the broadening of the cyclo- 
tron resonance peak is determined by the longer relaxation 
time ~ / ( 1 -  Ip1). We also note that at flT=O, the double 
quantum-well conductivity tensor can be written as the sum 
of the Drude contributions of the two wells, determined by 
the times T[= ~ / ( 1 -  p )  and T,= ~ / ( 1 +  p ) .  As tunnel cou- 
pling grows (fl ;>l) ,  the electrons in the well with the 
weaker scattering begin to "feel" the scattering potential of 
the well with the stronger scattering and the characteristic 
relaxation time decreases. In the limit fl;+ 1 (for the case in 
which S2%fl$), the function Qd tends to zero and the fl ,  
dependence of Readla,,, follows the classical cyclotron 
resonance lineshape even in highly asymmetric scattering. 
As the splitting S grows, tunnel coupling weakens and the 
cyclotron resonance line narrows. 

Let us now discuss in greater detail the case in which 
R,fl ,+ 1. The broadening of the cyclotron resonance line is 
now much smaller than the cyclotron frequency, the cyclo- 
tron resonance line is symmetric, and we can introduce a 
linewidth that is independent of the frequency of the ab- 
sorbed radiation. Here the value of Reu, at resonance 
( a , =  f l )  is given by 

which depends on the parameters S, f l T ,  and p ,  and for 
finite scattering asymmetry exceeds the classical height 
0.5wre, of the peak. The halfwidth A 0  of the cyclotron reso- 
nance peak (at half maximum) also depends on these param- 
eters. Figure 5 demonstrates the dependence of the dimen- 
sionless halfwidth A 0  on the level splitting 8 for several 
values of the tunneling matrix element. These are typical 
resonance curves, with the maximum at S=O. The "cyclo- 

tron absorption linewidth resonance" effect in a double 
quantum-well structure has the same origin as the resistivity 
resonance effect considered above. All of the features men- 
tioned, such as the maximum in the relative height of the 
resonance peak attained as fl;+m (here the halfwidth 
Afl = 1 at S=O) and the decrease in the relative height when 
scattering suppresses tunnel coupling, are present here as 
well. 

The angle of rotation of the polarization plane OF and the 
ellipticity A of the electromagnetic radiation that has tra- 
versed the two-dimensional electron layer can be expressed 
in terms of, respectively, the real and imaginary parts of the 
off-diagonal component of the conductivity tensor:25332 

Re a, Im a, 
tan OF=27T- , A=~T----. (46) 

G c  JEOc 

These equations hold in the limit 2 .rr( a d ( /  c 6 1. Here 
E O  is the dielectric constant of the medium surrounding the 
2D-layer. Thus, the tangent of the Faraday rotation angle in a 
double quantum-well structure is determined by the function 
Q, . The ellipticity can be expressed in terms of the function 
@, : 

where we have introduced the dimensionless plasma fre- 
quency 

Figure 6 shows the tangent of the Faraday rotation angle 
(in units of 0,) as a function of the dimensionless cyclotron 
frequency fl ,  at S=O. As with cyclotron resonance, the dis- 
crepancy between this dependence and the Drude dispersion 
(which is described by the "average" relaxation time T )  

shows up most strongly at small f l T ,  while it becomes neg- 
ligible as the tunneling mixing increases with f l y .  In de- 
scribing the Faraday effect, the region of low magnetic 
fields, in which f l ,G 1, is of interest. Here the dependence of 
tanOF on the cyclotron frequency is linear: 
tanOF = B(fl)fl , .  The proportionality factor B( f l )  in this 
dependence is given by ( S= 0):  

where B,= op(f12- 1)/(f12+ 1)2 is the appropriate propor- 
tionality factor for the Drude model. Figure 7 depicts 
B ( R )  and compares it with the frequency dispersion of 
B,. A large discrepancy (even with a change in sign) occurs 
at low frequencies f l  for f lT<  1. But if the tunneling split- 
ting is large, f lT+  1, there will be an appreciable difference 
between B ( 0 )  and Bo only within a narrow frequency range 
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FIG. 6. The magnetic field dependence of the Far- 
aday rotation angle for the resonant ( 6 = 0 )  case. 
The values of the parameters are the same as in Fig. 
figure4. The dashed curves correspond to the Drude 
dispersion law. 

near S1= O T ,  i.e., when the radiation frequency is in reso- neling splitting energy of double quantum-well states is com- 
nance with the tunneling splitting energy of the double parable to the collisional broadening energies of these states, 
quantum-well levels. As a result, the a-dependence of B will h/ rl and h/  r, . Note that there are two opposite limiting 
have a resonance peak against the background of the smooth cases that also allow for a classical description. The first is 
~ , = f l , l S 1 ~  curve, as shown in Fig. 8. This feature exists encountered at 4T<hlr1+h/rr, where scattering suppresses 
when scattering asymmetry is finite ( p  # 0). tunneling superposition of double quantum-well states com- 

pletely. The conductivity tensor is then independent of the 
8. CONCLUSION level splitting A fixed by the external field (in this limit 

The qualitative discrepancy between the longitudinal- 
conductivity tensor of double quantum wells [Eq. (34)] and 
the classical (Drude) case can be explained by the presence 
of tunneling mixing of double quantum-well electronic states 
and partial suppression of this mixing due to the scattering of 
electrons by randomly distributed inhomogeneities (impuri- 
ties, roughness of boundaries, etc.). A necessary condition 
for the emergence of such a discrepancy is asymmetric scat- 
tering, in which the electron mobilities in the left and right 
wells differ considerably, or the "nondiagonal" nature of the 
scattering potential, in which scattering has a direct effect on 
tunneling mixing. 

A consistent quantum description within the framework 
of Keldysh's diagrammatic technique has made it possible to 
calculate the conductivity under conditions in which the tun- 

FIG. 7. The proportionality factor B ( R )  in the formula for the tangent of 
the Faraday rotation angle (tane,.=B(R)n,, n , i 0 )  as a function of the 
radiation frequency at S=O, ~ 3 0 . 8 ,  R,=0.3 (curve I ) ,  Or= 1 (curve 
2), and R,=3  (curve 3).  The dashed curve describes the B ( n )  dependence 
calculated by the Drude formula. 

where variations in population are ignored), and can 
be expressed by the sum of Drude contributions from the two 
wells, which are characterized by the relaxation times r1 and 
7,. This representation corresponds to a model with two in- 
dependent conducting channels, formed by the left and right 
wells, that are connected in parallel. Here the finite magne- 
toresistance and the magnetic field dependence of the Hall 
constant (see Sec. 6) exist in the first approximation in de- 
generacy because there are two groups of electrons with dif- 
ferent mobilities. 

The opposite limiting case, 4 T@ h/ rl+ f i /  rr , presup- 
poses the existence of strong tunneling mixing that cannot be 
destroyed by scattering. Here the states that are symmetric 
and antisymmetric at A = 0 and whose spectrum is specified 
by Eq. (1) are well-defined. The conductivity can be found 
by solving the Boltzmann transport equation for the two 
open channels, connected in parallel, formed by these states. 
These channels, however, are not independent now, since in 

FIG. 8. The resonant behavior of the factor B ( R )  in the high-frequency 
range at a,= 7, 6 =  0, p =0.8 (curve 1 )  and p= 0.5 (curve 2). 
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the collision integral in the transport equation we must allow 
for electron transitions between the states (the theory of re- 
sistivity resonance for this limiting case is given in Ref. 10). 
If the splitting A is small compared to 2T, the conductivity 
tensor is described by the Drude formula with an "average" 
relaxation time r. As A grows (A>2T), tunneling hybrid- 
ization weakens and conductivity increases, since the char- 
acteristic relaxation time grows. The dependence of conduc- 
tivity on the level splitting A fixed by the external field 
brings about such macroscopic quantum effects as resistivity 
resonance, which has been observed by a number of 
 researcher^,^-^ and resonance broadening of cyclotron reso- 
nance lines, which is described in this paper. Note that the 
widths of the photoluminescence and photoluminescence- 
excitation spectra in double quantum wells with asymmetric 
scattering also depend on A because of the tunneling hybrid- 
ization of electronic states.33 When scattering suppresses tun- 
neling hybridization under conditions where 2T-h/r,  the 
relative magnitude of these effects decreases, as described by 
Eq. (34). 

In Secs. 5-7 we used several dimensionless parameters. 
To estimate realistic values for these parameters, we list typi- 
cal values of the physical quantities used in the experiments 
on resistivity resonance in double quantum and on 
cyclotron absorption and Faraday rotation in single quantum 
~ e l l s . ' ~ - ' ~  Palevski et ~ 1 . ~  studied two GaAs/ Gao,7A10,3As 
double quantum-well structures in which scattering asymme- 
try could be characterized, according to the difference in the 
mobilities in the wells outside tunneling resonance, by the 
parameters p= 0.13 and p= 0.3. Here 2 T  was approxi- 
mately 1 meV, with the broadening energy h / r  of the same 
order of magnitude (also evaluated via the mobilities), so 
that 0,-1. Palevski et ~ 1 . ~  studied the structure with 
p=0.73, for which 2T=3 meV and h / r  is also of the order 
of 1 meV, i.e., 0,-3 (because of the considerable value of 
p, the resistivity resonance peak observed by these research- 
ers was quite high). For the structure studied by Okuno et 
~ l . , ~  2 T S  1 meV, h / ~ - - 4  meV, and RT=0.25, but 
p = 0.27; because of the strong suppression of tunneling co- 
herence by scattering, the resistivity resonance peak was not 
well-developed. The magnitudes of the magnetic fields used 
in the experiments whose results are reported in Refs. 23-25 
were of the order of 5T, which corresponds to 
hoc=8.5 meV for GaAs and hwcZ3 meV for silicon. Typi- 
cal photon energies were the same. For broadening energies 
hlr2.2-4 meV we have 0 ,0 ,=2-4 .  Typical electron num- 
ber densities in such experiments were n - 1 0 ~ ~  cmP3, which 
corresponds to a Fermi energy in GaAs of about 32 meV and 
a plasma frequency of 2.3 X 10'' s- ' , which at h /  r = 3  meV 
yields 0 ,-0.05. Thus, in interpreting the results of the ex- 
periments reported in Refs. 6-8, the features of the resistiv- 
ity resonance described above are essential, while in mea- 
surements involving such structures as those used in the 
experiments reported in Refs. 23-25, one can obtain the re- 
lationships of Sec. 7. 

Recently Kurobi et reported having achieved the 
transition between classical and quantum resistivity reso- 
nance modes. Their results agree with the pattern described 
in Ref. 22 and Sec. 5 of the present paper.34 

In conclusion we note that the double quantum-well con- 
ductivity tensor could have been calculated in a simpler man- 
ner using the Kubo formula, as is done in Ref. 22 for a zero 
magnetic field. However, the equations of Keldysh's dia- 
grammatic technique provided a more convenient setting for 
calculations involving a finite magnetic field. Moreover, it is 
a useful technique that generalizes to hot-electron transport 
in double quantum wells with asymmetric scattering, which 
becomes important in developing high-speed devices using 
field control of mobility?"0 

The authors are grateful to the International Science 
Foundation (Grant Number U65000) for financial support. 

APPENDIX: CORRELATORS OF RANDOM POTENTIALS 

1. Scattering by a short-range impurity potential 

The components of the matrix potential energy (8) are 
the matrix elements of the impurity random potential 
U(X,Z) calculated using the left and right orbitals: 

Calculation of the correlators (9) must be done with allow- 
ance for the macroscopically inhomogeneous distribution of 
impurities along the longitudinal coordinate z,  described by 
the function NI(z). Such a calculation is especially simple 
for the short-range potential 

We have 

where 

where Fl(z) and Fr(z)  give the explicit expressions for the 
left and right orbitals. For a more or less even distribution of 
impurities, in view of the weak overlap of the left and right 
orbitals, we have wll , w r r S  wit ,wr,+ w,, , wl, . But for highly 
selective doping of the middle of the potential barrier, all the 
correlators (A2)-(A4) are of the same order of magnitude. 
Below we also give the expressions for the quantities (A2)- 
(A4) in the case of uniform doping NI(z) = N I  , using the 
orbital basis functions of the model depicted in Fig. 1: 
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2. Scattering by heteroboundary roughness 

Heteroboundary roughness is described by the deviation 
of the position of the ith boundary from its mean value, 
Si(x). To describe the effective random potential generated 
by such deviations, it is convenient to apply a nonlinear co- 
ordinate transformation (see Ref. 35 and the literature cited 
therein) that smooths the rough boundaries to their ideal 
form. After such a transformation, the calculation of the ma- 
trix elements using the orbital basis functions of the model 
depicted in Fig. 1 yields 

where E I  and E ,  are the quantization energies in the left and 
right wells, and the numbers 1-4 label the heteroboundaries 
of the double quantum-well structure from left to right. The 
first terms on the right-hand sides of Eqs. (A5) and (A6) 
describe random variations in the quantization energies due 
to variations in the widths of the respective wells, and Eq. 
(A7) describes random variations in the tunneling matrix el- 
ement due to barrier thickness variations. The additional 
terms uS1)(x) and u!')(x) are proportional35 to 

Allowing for these additional terms in calculations of the 
correlators (9) leads to relative corrections of order 
( E  - ~ ~ ) ~ / t 5 ~  in the self-energy functions. In calculations of 
the conductivity via Eq. (32), these corrections can be ig- 
nored if 2.rreFr~:/d;,,%-fi, where 1 ,  is the characteristic scale 
(the correlation length) of the roughness. 

In calculating the correlators (9) we can assume that the 
Si(x) for different boundaries are statistically independent. 
This means that the deviation correlators are described by the 
Gaussian functions 

where the a ,  are the rms deviations. The short-range poten- 
tial considered in this paper corresponds to small correlation 
lengths l c < f i / p F .  Here the Fourier transforms of the corr- 
elators (9), w,,, ,  are 

Since the tunneling matrix element T is exponentially small, 
w 1 [ , w r r 9 w l f  , w r f 9 w f ,  . Here ( f i l < ~ [ ~  , T , ' ,  and the off- 
diagonal components of the self-energy functions can be ig- 
nored. 

" ~ h e s e  specific features of p ( ~ )  also influence the spectral dependence of 
the edge of band-to-band optical transitions. Hence special studies of the 
optical properties of double quantum-well structures with asymmetric scat- 
tering would be of interest here. 
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