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Mechanisms are compared for the excitation of convective structures in liquid semiconductors 
and insulators due to heat or matter fluxes within them. A deep analogy is explored 
between these mechanisms under conditions in which excitation of electroconvection is possible. 
These mechanisms can be useful in explaining effects observed during the melting of solids 
by radiation, and during the development of electromechanical instability. O 1995 American 
Institute of Physics. 

1. The term "electroconvection" usually refers to the 
cellular motion1 that appears when a liquid at rest is sub- 
jected to a sufficiently strong electric field. However, it is 
known2 that electroconvection can also occur without appli- 
cation of an external field, due to an "internal" thermoelec- 
tric field that appears when the liquid is heated. In this case, 
the fundamental property of electroconvection is preserved, 
i.e., the conditions of excitation are independent of the direc- 
tion of the force of gravity, and, consequently, of the direc- 
tion of heating. Therefore, thermoelectric convection is also 
possible when the fluid is heated from above through a free 
surface; in this case, as is well known, ordinary thermal con- 
vection is impossible. It is important to include this fact in 
analyzing experiments in which materials are melted by 
radia t i~n.~ 

However, the excitation of electroconvective cellular 
motion by a thermal flux is possible only in poorly conduct- 
ing media, i.e., in liquid media with large dielectric con- 
stants. In practice, any bulk electric charge generated during 
the nonequilibrium heating of a medium that is a good con- 
ductor can relax before electroconvection can operate. Thus, 
thermoelectric convection is a characteristic of liquid semi- 
metals (or semiconductors). 

However, it is worth emphasizing once more that this 
kind of electroconvection is still a species of thermal convec- 
tion (due to heating). 

The excitation of instability by a heat flux is analogous4 
to excitation by a matter flux, i.e., thermal and concentration- 
induced convection are analogous. For example, the presence 
of a matter flux in a liquid insulator subjected to an electric 
field can, in and of itself, lead to the appearance of cellular 
structures.' In principle, a matter flux, e.g., a flux of one 
insulator in another that leads to nonuniformity of the dielec- 
tric constant, can also lead to the appearance of a 
"concentration-electric" field; however, in practice, this ef- 
fect is weak. 

Thus, the presence of fluxes of heat or matter, and the 
presence of an electric field ("external" or created by the 
same flux) in weakly conducting liquids, can excite both a 
cellular structure (convection) and structures involving the 
electric field within the liquid. In this paper, the excitation of 

structures when various kinds of fluxes are present in a 
weakly conducting liquid will be analyzed with regard to 
similarities and differences. 

This paper is organized as follows. In Sec. 2, qualitative 
physical considerations are set forth and results are given; in 
Sec. 3, the problem is stated; in Sec. 4, criteria are obtained 
for the excitation of instabilities by solving linearized prob- 
lems; in Sec. 5, the amplitudes of the structures that appear 
under excitation are computed by solving nonlinear prob- 
lems. Finally, in Sec. 6, the influence of rotation on the ex- 
citation conditions is discussed. Throughout the paper, close 
attention is paid to analysis of available experiments. These 
are the subject of Sec. 7. 

2. In order to obtain qualitative results, it is sufficient to 
assume that the problem to be solved can be treated using the 
simplest possible model, i.e., a planar layer of thickness h, 
infinite in two directions (x and y), with the z axis directed 
perpendicular to the layer. 

Let a flux of heat or matter flow transverse to the layer. 
This implies that in the transverse direction there is either a 
temperature gradient A ,  or a concentration gradient Ac of the 
light impurity c :  

where Th and T ,  are the temperatures at the hot and cold 
surfaces respectively, and c ,  and cf are the concentrations at 
the starting and ending surfaces, respectively. 

Fluctuations in the motion (v is the velocity) of the liq- 
uid in the presence of a flux also give rise to small departures 
in the temperature T ,  and concentration c l  from their equi- 
librium values To and co .  We may assume that these devia- 
tions are, to order of magnitude, 

x, and xc are transport coefficients that correspond to the 
coefficients of thermal conductivity and diffusion respec- 
tively, while X is the characteristic distance over which the 
motion changes significantly. It is obvious that A and h are of 
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the same order of magnitude. Because of thermal (or concen- 
tration) bulk expansion, a buoyancy force PtgT1 (or Pcgcl) 
appears, consisting of the difference between the force of 
gravity and the Archimedean force [P, = - (1 lp)  dpldT, 
PC= - (l /p)dpldc,  where p is the density and g the accel- 
eration]. At the free surface (if there is one), a surface tension 
force u t ~ , / A 2  (or uCcl/A2) appears as a consequence of the 
dependence of the surface tension coefficient a on tempera- 
ture [here a,= - daldT is the coefficient of thermocapillar- 
ity; likewise, a , = - d a l d c  is the coefficient of 
concentration-capillarity]. 

In the presence of a steady electric field (with potential 
cp, and voltage Eo=cp,JA), electrical forces are also present. 
We note that the field can itself be created by a flow. Thus, 
heating can cause a thermoelectric field E = y d t  to appear 
(where yt is the thermopower coefficient). Electrical forces 
of two kinds are possible: first of all, a Coulomb force 
en lEolp, because the flux can lead to the appearance of bulk 
charge (nl is a fluctuation in the concentration of carriers 
with charge e); secondly, an electrophoretic force 
( E ~ I E ~ ) E ~ ( v E ~ ~ I ~  due to variation in the dielectric constant E.  

Each of these forces (buoyant, capillary, and electrical) 
can enhance the fluctuations that appear randomly in the ve- 
locity and lead to instability. The condition for excitation, 
i.e., the condition for such a force to overcome the force of 
dissipation, can be expressed in terms of a threshold value 
for the corresponding dimensionless number that indicates 
by what factor the minimally exciting force should exceed 
the dissipative force uv/A2 (where v is the coefficient of 
kinematic viscosity or simple viscosity). Let us write these 
numbers, omitting labels corresponding to the various fluxes: 

(for the case of motion of a heat flux, .R and . X are the 
usual Rayleigh and Marangoni numbers4). The deep differ- 
ence between the "hydrodynamic" numbers .X and. /? and 
the "electric" number i5 consists of the fact that the numbers 
.A' and . /? are proportional to the first power of the gradient 
A (the quantity that characterizes the flux). This implies that 
it is impossible to excite any motion using a downward flux 
(for P>O) or from the free surface (for u>O), and in fact the 
numbers ,R and . /d must be positive. However, electrocon- 
vection is possible for any direction of the flux.' 

In the absence of an external field, i.e., if a steady field is 
produced by the flux, electroconvection is still possible and 

It is this form that is most convenient to use in analyzing the 
criteria for stability of thermoelectric con~ect ion.~ 

A flux of neutral particles does not create an electric 
field. Therefore, even in the presence of a matter flux, exci- 
tation is possible only in an external field. The corresponding 
dimensionless number can be written as 

Comparing the numbers A and .,# with the number % in 
Eqs. (4) and (5 ) ,  we see that at the instant of excitation the 
necessary fluxes depend differently on the characteristic 
length, i.e., in the layer model these numbers are different 
functions of the layer thickness. It is obvious that electrocon- 
vection is more important in thin layers, i.e., films. Specific 
estimates will be obtained after an analysis of the exact so- 
lutions, to which we now turn. 

3. The linearized system of equations that describes ex- 
citation of the instability must first include the equation of 
motion (Navier-Stokes). Because the set of system quanti- 
ties that describes the phenomenon does not include a 
pseudovector, excitation takes place in steady state. Then this 
equation can be written as follows (the Boussinesq 
approximation1): 

where p is the pressure, F is the buoyancy force, and f is the 
electrical force. The equation includes pressure and dissipa- 
tive forces. The forces of surface tension must be taken into 
account in the boundary conditions. The equation of motion 
must be supplemented by the equation of heat transfer 

or the analogous equation for mass transfer 

The upper sign on the right side of these equations corre- 
sponds to the case where the flux and the z axis are in the 
same direction, while the lower sign is for when they are 
opposite. If the z axis is directed along the force of gravity, 
then we may speak of an "upward" flux (lower sign) or a 
"downward" flux (upper sign). A further requirement is in- 
corporation of the equation of electrostatics. In the presence 
of a thermoelectric effect it is easy to show that 
e n l  = E yAT1 ; in the presence of a matter flux, this equation 
gives the relation E l =  - E ~ E ~ I E ~  under conditions of 
quasineutrality. For small changes in the concentration of 
impurities, fluctuations in dielectric constant are ~ ~ = a c ~ ,  
where a is the number of order unity. Finally, we treat the 
liquid as incompressible, i.e., div v=O. 

This system of homogeneous equations must be supple- 
mented by homogeneous boundary conditions at the surfaces 
z = 0  and z = h. Of course, for arbitrary (physically achiev- 
able) types of boundary conditions, this double eigenvalue 
problem can be solved only numerically. However, in prac- 
tice this is necessary only when we are required to explain 
the experimental data. To obtain the qualitative effects, many 
calculations have shown (see Ref. 1 for electroconvection in 
external fields, Ref. 4 for thermal convection, and Ref. 2 for 
thermoelectric convection) that it is sufficient to discuss the 
conditions for conversion of damped internal waves into un- 
damped standing waves, i.e., to look for solutions in the form 

where V is a constant amplitude. 
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Because of translational symmetry, the model of an infi- 
nite layer requires that the longitudinal components of the 
wave vector be real: k, , = 27rhlAX,,. This definition of the 
wave vector k: = k i  + kt, k, = 2rrhIX corresponds to arrang- 
ing the system of coordinates so that the boundaries of the 
central cell are located at x,y = .f XX,,/2 (where A,,, are the 
dimensions of the structure along the layer). Generally 
speaking, the quantity k, remains complex in this case; how- 
ever, we can always find a boundary condition for which k, 
is also real. It is just this solution that corresponds to the 
transition point from damped internal waves to undamped. In 
fact, it turns out that after eliminating all variables except v,, 
the equation contains only even derivatives d2"v,ldz2", 
where n = 1,2,3 ,... . In this case, it can be shown that k,= rr. 
For T1 (or c,) the condition for k, to be real corresponds to 
T1=O (or c,=O) at z = 0  and z = h ,  i.e., the conditions for 
maintaining the boundary at fixed temperature (or impurity 
concentration). At such a boundary the surface tension does 
not affect the conditions of excitation of the instability. In the 
presence of a thermal flux at the surface z = h it is preferable 
to satisfy the condition of thermal isolation dTlldz=O, and it 
is necessary to take into account the presence of thermocap- 
illarity at this boundary. (This problem was solved in Ref. 2.) 
In the presence of a matter flux, a more realistic picture is 
one in which the flux is produced by layers of liquid with 
different dielectric constants atop one another1; then the pre- 
ferred model is one in which there are free boundaries at 
which the concentration is constant. 

The boundary conditions for the electric field do not de- 
pend on the type of boundary and are as follows: the bound- 
aries are kept at constant field intensity, and there are no 
fluctuation-induced deviations of the field along them, i.e., 
Elx=Ely=O. 

In what follows, we will solve the problems posed in this 
paper with the specific real value k,=rr (except in Sec. 7). In 
this case it is possible to obtain exact analytic solutions. 

It is known (see, e.g., Refs. 1 or 4) that changing the 
conditions at a boundary can interfere with the excitation, 
but cannot block it completely, as reversing the direction of 
the flux can, for example. 

Note that it is possible to solve the problem of excitation 
in the combined presence of both thermal and impurity 
fluxes. This problem was solved by Gershuni et for the 
case where only bulk (Archimedean) forces act (see para- 
graphs 18 and 19). However, their approach leads to tedious 
computations, which are not needed to analyze the experi- 
mental data. 

4. The solution to the problem as posed leads to the 
following excitation condition, i.e., the condition for exist- 
ence of a nontrivial solution: for the case where a thermal 
flux is present: 

and for the case where a matter flux is present: 

Of course, the excitation conditions implied by these equa- 
tions apply only when the forces act separately. Thus, in the 
presence of bulk expansion alone, the threshold value 

.82.&3*=27rr4/4=660 for A=3h is independent of the type 
of flux, but only for a flux directed opposite the force of 
gravity. When only a heat flux acts (thermoelectric effect), 
the instability is independent of the direction of flux when 
5, 2 = 4rr2 = 40;  a cell is excited with the corre- 
sponding dimensions A=2h. When only a matter flux is 
present (electroconcentration effect), cellular motion appears 
for %, 2 = 3 ~ ~ ( 4 / 3 ) ~  = 1 0 0 0  when X=3.5h; what 
is more, this condition is independent of the direction of the 
flux. In what follows it will be convenient to use the number 
.T= @, then .e = 6.3,  .c = 3.2. 

It is easy to find a range of parameters for which the 
effect of the fluxes is greater than that of the buoyancy 
(Archimedean) forces. This will occur for layers with thick- 
nesses 

for fluxes of heat and matter, respectively. 
Equations (8) and (9) allow us to analyze how the Ray- 

leigh mechanism (due to the buoyancy force) affects a flux- 
induced excitation. For a downward flux, this effect can be 
important in analyzing the experimental data, since the buoy- 
ancy forces stabilize the action of the fluxes in this case. 
Using the obvious relation ~ = . ~ ( h * l h ) ~ ,  we find that un- 
der these conditions 

These values of the dimensionless numbers are once more 
subject to minimization with respect to w = k:lkl. 

The analysis shows that for a downward flux, for which 
the action of the Archimedean force is stabilizing overall and 
leads to an increase in the values of and required for 
excitation, the ratio of the cell dimensions at the instant of 
excitation varies differently for the different fluxes. Thus, 
when only a thermoelectric force acts, wT > 1 instead of 
w: = 1,  while wf < 113 instead of w,* = 113 when only 
the concentration varies. 

For an upward flux, the effects of the buoyancy forces 
and fluxes always add, and it is possible to relax the condi- 
tions for excitation. In fact, however, under these conditions 
everything is determined by the action of the buoyancy 
forces. 

Numerical calculations show that at the instant of exci- 
tation the dimensionless numbers are related by a function 
that in all cases is very close to the function 
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with constants a and b. This function can also describe the 
excitation conditions for boundary conditions that do not 
maintain reality of k,, e.g., when the surface z=O is solid. 
Furthermore, the function (referred to as the stability func- 
tion) 

(where c is also a constant) can specify the relation between 
the dimensionless numbers that characterize the various ex- 
citation mechanisms in a situation where surface tension 
forces act at the free surface. 

For the case of heating, where the lower boundary is 
solid and isothermal while the upper is free (with a vacuum) 
and thermally isolated, we find the values a=43, b=0.037, 
and c=0.53, while for the case of a flux of light particles that 
disperse from the upper free surface into a half-space, the 
values a-33, b=0.051, ~ ~ 0 . 4 4  yield values of the numbers 
.p, .R*, . /C* that are closest to the results of numerical 
calculations. In both of these cases we need to take the lower 
sign in Eqs. (13). 

5. When the conditions for excitation are fulfilled, struc- 
tures in the velocity are also accompanied by structures in 
the other quantities. The coordinate dependence of the exci- 
tation amplitudes other than (7) are determined by the ex- 
pressions 

I h 
= S VEo - sin k - sm k - + k - . (17) 

k2Elx,y v ( .;j - ( y;] 

The lower quantities in brackets on the left sides of Eqs. 
(14), (16), and (17) above indicate quantities obtained in the 
presence of a matter flux. All the remaining relations hold for 
both fluxes under discussion. It is clear that the boundaries of 
structures that arise in the corrections to the components of 
the electric field coincide with the boundaries of cells (struc- 
tures) in the velocity; the temperature (or concentration) de- 
pends on the coordinate in the same way as v,. The coordi- 
nate dependence of all the "hydrodynamic" quantities 
(v, ,vx ,vy ,TI , e l )  is the same as that of ordinary thermal 
convection for free surfaces. However, in the presence of the 
fluxes there also arise structures in the electric field. At the 
surface of a solution, an additional electric charge &El,  ap- 
pears under the action of a flux, which depends only on the 
amplitude and shape of the structure at the time of excitation. 

In order to calculate the amplitude V it is necessary to 
use the same equations from Sec. 2, now taking into account 
the nonlinear terms as well. In writing the nonlinear equa- 
tions, it is necessary, as before, to satisfy the Boussinesq 
approximation.134 In particular, this requires that we discard 

nonlinear terms that contain the gradients of equilibrium 
quantities (A, or A,) everywhere except in terms that are also 
present in the linearized equations. 

All quantities acquire additional terms proportional to 
the second, third, etc. powers of V. Furthermore, by carrying 
out the computations described in Secs. 3 and 4, we find that 
v, has no corrections of second order, while TI (or e l )  does 
have these corrections. To second order, the condition for 
excitation has the form 

which allows us to find the required amplitudes of quantities 
that characterize the state of the liquid immediately after ex- 
citation when the numbers .& and i5 are somewhat larger 
than the threshold values for the onset of instability. This 
result is consistent with the fact that the perturbation ampli- 
tudes are proportional to the square root of the "degree of 
supercriticality," i.e., the excess above the threshold value 
needed to excite the quantity that is the cause of the instabil- 
ity. Thus, in thin layers ( h < h * )  we have V \I-, 
independent of the direction of flux. 

By iterating the solution process we can easily compute 
corrections that determine the change in cell shape. How- 
ever, these computations are too tedious. 

Thus, we have the following relations for the ampli- 
tudes: 

We note that the amplitudes of structures that appear under 
the action of a thermal flux are 1.63 times the corresponding 
amplitudes for structures that arise under the action of a mat- 
ter flux, and are 2.5 times smaller than the amplitudes when 
only the force of bulk expansion acts, computed within the 
same approximation. 

Using Eq. (18), we can also find out how the mechanism 
mediated by bulk expansion affects the amplitude of motion 
driven by the flux. This effect makes itself felt through the 
appearance in Eqs. (19) of a factor (for an downward flux) 

The amplitude resulting from this stabilizing action of the 
buoyancy force is somewhat reduced. 

6. The excitation of cellular motion and structures by 
fluxes of heat or matter is more convenient to observe and 
study experimentally when the liquid is rotated at an angular 
velocity R parallel to the z axis. Under these conditions, 
quantities are present in the problem that are given by a 
pseudovector, so that excitation is possible both with aperi- 
odic and with oscillating growth. In fact, however, the oscil- 
lating branch of the excitation (arising for small A, or A,) 
occurs only when v<<x, and in reality this relation does not 
hold at all in liquid semiconductors and liquid insulators un- 
der laboratory conditions. Therefore, we can analyze the 
branch of excitations with aperiodic growth as before, but 
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with a correction when a heat flux acts, i.e., the term - k : . ~  
in Eq. (8), while a term -k:k2.!Tis present in Eq. (9) when 

2 4  2 a matter flux acts; here the Taylor number . T = 4 R  h l v  . 
Note that the excitation conditions for the branch of oscillat- 
ing growth in fact consists of the same terms as in the case of 
aperiodic growth, but multiplied by a factor of order unity. 

We will not pause to discuss the case of an upward flux, 
but only point out that for downward fluxes the following 
asymptotic values are obtained: 

Note that excitation of structures by fluxes in a magnetic 
field can also be investigated completely. 

7. We will also not pause to discuss experiments on the 
excitation of instability by an upward flux (see, however, 
Refs. 6 and 7 for fluxes of heat and matter respectively). 
Instead, we will discuss experiments in which the direction 
of the fluxes coincides with the direction of the force of 
gravity (downward fluxes). Experiments on excitation of cel- 
lular motion by downward heat fluxes created by laser illu- 
mination are described in detail in Ref. 3. Here, however, the 
results we present will be compared with experimental data 
on electroconvection of binary mixtures.' 

The theory developed above best describes an experi- 
ment in which a component with a large dielectric constant 
cg (for example, transformer oil) is placed above a layer of 
insulator with a small dielectric permittivity em (for example, 
psilomethane). Near the boundary a thin layer of binary mix- 
ture forms, with a gradient of dielectric constant on the av- 
erage equal to (E,- em)lh.  It is obvious that this gradient is 
proportional to the quantity A, [see (I)]. If this mixture is 
placed in an electric field, then all the conditions are satisfied 
for the appearance of cellular motion. Of course, for this to 
occur the quantity ZC must exceed a value %,* = 1000  (see 
below). If we substitute in the values p=102-103 kg/m3, 
v=10-~-10-' m2/s, ~ , = 1 0 - ~ - 1 0 - ~  m2/s, eg= F/m, 
~ , = = 1 0 - ' ~  F/m, which are typical of dielectrics, we obtain 
the estimate 

From this, we find that for ~ ~ 1 0 %  and h =0.1 to 0.01 mm 
the required field ~ , = 1 0 ~  to lo7 Vlm. This value is achiev- 
able in realistic high-power electrical devices, e.g., in 
switches. Of course, in real devices the conditions for this 
model are not satisfied, either for the medium geometry or 
the uniformity of the concentration gradient IVc 1; however, 
in principle these changes cannot "shut down" the excita- 
tion. 

This state of affairs is analogous to the case where cel- 
lular motion is excited in a fluid heated by laser radiation 
from above. For this system, the experimental conditions are 
also far from those of the layer model; nevertheless, there is 

qualitative agreement between the depth of penetration ob- 
served in reality and its value calculated theoretically. 

In liquid semiconductors, the conditions for excitation 
by heating from above are determined by the ratio of the 
exciting force (electrical) to the forces that stabilize it. In the 
presence of heating, the stabilizing force is the force of sur- 
face tension, because the illumination enters in through the 
free surface. We have for the conditions of excitation6 

The condition for excitation in the binary mixture described 
above is determined by competition between the electrical 
and buoyancy forces. This condition can be written in the 
form 

encp 5; 
A ,  > -----7 - 

p/3,gh .A;' 

where, of course, we must also rewrite the expression for the 
potential cp. 

Excitation by matter fluxes in an electric field is clearly 
possible under conditions prior to the appearance of electro- 
mechanical isothermal convection.' The experimental data 
show that for supercritical field intensities the surface is dis- 
torted in such a way that the layer with smaller dielectric 
constant forms elongated spikes that penetrate the less con- 
ductive phase. This phenomenon can be explained by a 
word-for-word translation of the explanation for the appear- 
ance of cells when the layers are heated from above.3 

At first, the operating mechanism is clearly caused by 
the flux in the direction perpendicular to the layer. The con- 
ditions for the instability (24) are surely fulfilled in an exter- 
nal field strong enough to satisfy the estimate (22). Accord- 
ing to the results of Sec. 5, the resulting motion has a 
velocity that to order of magnitude equals 

i.e., about 0.1 to 0.01 mmls. 
Penetration of the material with eg into the lower layer 

results in a gradient in the dielectric constant, and likewise in 
the concentration, in the direction along the layer. As in the 
case of thermoelectric instability: an abrupt expansion (by 
an order of magnitude) of the cell takes place in the plane 
along the boundary in this case. In fact, there is no need even 
to repeat the calculation: we can simply use the fact that 
under conditions of two solid boundaries E,* = 5.6/kX, 
where for E,* we should substitute the field E along the 
layer. Since %: - 1000,  hlh-1100. 

Analysis of the photographs of the evolution of the elec- 
tromechanical isothermal instability given in Ref. 1 (Fig. 43) 
shows that the typical size of a structure in a psilomethane- 
transformer oil suspension perpendicular to the boundary 
changes from 16 to 40 p m  as the applied field changes from 
10 to 20 kV. The dimension along the layer is =16 mm. It is 
obvious that the ratio of the dimensions is around (less than) 
1000, which qualitatively confirms the calculation. 
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